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Correlated random walk in lattices: Tracer diffusion at general concentration

R. A. Tahir-Kheli
Department ofPhysics, Temple University, Philadelphia, Pennsylvania 19122

R. J. Elliott
Department of Theoretica/ Physics, University of Oxford, 1 Keble Road, Oxford, England

(Received 14 July 1982)

A problem of considerable physical interest, wherein a tracer of arbitrary species diffuses

against a dynamic background of double occupancy avoiding classical particles of concen-

tration x hopping on regular lattices, is studied. The theory is exact to the leading order in

vacancy concentration, u =1—x, and to two leading orders in x. Moreover, in the inter-

mediate concentration, it incorporates all the dominant fluctuations from the mean field.

Results are worked out for a variety of quantities of interest, such as the tracer diffusion

coefficient, the dynamic response, as well as the generalized diffusional mass operator for

all the Bravais cubic lattices. New insights are obtained regarding the rapid variation of the

response and the mass operator near the Brillouin-zone edge as a function of the vacancy

concentration when u «1. Inversion of the K-dependent characteristics of these quantities,

not noticed heretofore, is reported and analyzed.

I. INTRODUCTION

Under appropriate conditions ionic motion in su-
perionic conductors, ' tracer atom diffusion in hot
solids via the vacancy mechanism, and diffusion of
hydrogen in various metal hydrides can all be
described in terms of simple hopping motion of clas-
sical particles. The model generally assumes that
the hopping occurs only between lattice sites
separated by a specified distance, that it is instan-
taneous (i.e., that the particle spends most of its time
localized at lattice sites and very little, if any, in the
delocalized state pertaining to its transit between
them) and, above all, that hopping is a stochastic
process, independent of the past history of the parti-
cle. Such hopping motion is, nevertheless, correlat-
ed since a particle cannot hop onto a site which at
that particular instant is already occupied. Similar-

ly, despite the stochastic nature of the hopping pro-
cess itself, there is an important memory correlation
which arises through the interplay of the self-
avoidance characteristic of all the hopping particles
and the stochasticity of the allowed hops. A graphic
representation of such space-time memory effects is
a simple process in which after a recently completed
hop, for example, from site i to j, site i is seen to re-
tain a larger than average probability that it is still
empty and thus available for a return hop.

In view of such memory effects the so-called
"random-walk" motion of self-avoiding particles is
not at all random. Rather, the space-time correla-
tion has the effect of coupling the motion of parti-

cles separated over macroscopic space and time dis-

tances. A well-known consequence of this is the oc-
currence of the correlation factor in the expression
for the tracer diffusion which is substantially dif-
ferent from unity. ' A less well-known, but even

more dramatic effect of these correlations is found
in the low-frequency wave-vector —dependent dif-
fusional response (or, equivalently, in the mass

operator) at the zone boundary.
Procedures for the calculation, and measurement,

of tracer diffusion coefficients ' in the small vacan-
cy limit are now well established, and the corre-

sponding results are readily obtained for a fairly
general set of situations, including the case of
vacancy-assisted diffusion of a tracer with an arbi-

trary jump rate (in units of the vacancy-particle in-

terchange' rate of the host particles). Unfortunately,
these theoretical procedures are applicable only to
the evaluation of the classical diffusion coefficient.
Accordingly, they provide only very limited infor-
mation about the incoherent, self-correlation
response function relating to the limit of vanishingly
small frequencies and wave vectors. In view of the
refinements in Mossbauer spectroscopy, improve-
ments in the NMR techniques, availability of spin-
echo spectrometers, and above all the development
of high-resolution, high-flux slow neutron spectros-

copy, interest in the line shape of the diffusional
response over a wide spectrum of frequency and
wave vectors has sharpened.

Indeed, interest in the evaluation of th". - full
response dates back to the early 1950s, when Torrey
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presented a calculation based on phenomenological
considerations. More succinct quantitative attempts
were later made by Singwi and Sjolander, who used
a mean-field decoupling of the dynamical equations,
and Chudley and Elliott, who described the relevant
correlations in the limit of an empty lattice.

A sophisticated theoretical analysis of the fre-

quency and wave-vector —dependent response was
undertaken by Fedders and Sankey (FS) a few years

ago. In an important series of papers'0 ' they put
forward diagrammatic procedures for calculating
dominant contributions to frequency moments of
the response function. While neither the moments
nor the response function constructed from them

were made available' in any explicit form, results
for the tracer diffusion coefficient were presented
which are accurate to three digits in both of the non-

trivial limits (i.e., when U —+0 and also in the limit
x —+0). Moreover, FS predictions agree to within a
couple of percent with numerical simulation esti-
mates for the self-diffusion coefficient over the
whole concentration range. ' '

Despite the commanding stature of the FS work
in this field, its applicability is restricted to the case
of self-diffusion: namely, to the ease where the hop-

ping characteristics of the tracer and the host atoms
are identical. This is a serious limitation in view of
the fact that suitable tracers are often different from
the host particles. Moreover, interest in incoherent
neutron scattering from metal hydrides with hydro-
gen tracers diffusing against a background of hop-

ping deuterium atoms' ' has heightened the need
for a more general analysis. In particular, results
are needed for systems with hopping rates which,
rather than being identical to that of the background
particles, are arbitrary. Moreover, in addition to the
K~O, co~0 results for the tracer diffusion coeffi-
cients, a readily accessible description of the general
K- and e-dependent characteristics of the response
is needed for arbitrary concentrations.

To this end, we present here a treatment for the

arbitrary tracer hopping rate J . The background
particle hopping rate is L In Sec. II, after a brief
description of the model, the relevant equations of
motion of the correlation functions are given. The
nature of the truncation is discussed to bring out the

physical motivation behind the approximation. The
solution and some analytical results are presented in

Sec. III. Section IV deals with numerical results for
the response function and the mass operator. This

paper concludes with a discussion of the results.

II. EQUATIONS OF MOTION

As is usual in this field, ' we make a number
of simplifying assumptions. Particle hops are re-

stricted to occur between neighboring lattice posi-
tions. Moreover, the mechanics of the hop are sim-
plified to a picture where the particle is assumed to
spend essentially all of its time localized on lattice
sites. Accordingly, a relatively insignificant time is
taken for completing any hop that it undertakes
(during which the particle is in transit between the
relevant two sites}.

These assumptions are implicit in the following
rate equations referring to the stochastic occupancy
variables of the tracer as well as those of the hop-
ping host particles,

=—QJ,)[p;(1—nj) pj(—1 n; —)],0 (2.1)

dPlI.

dt
QI~~[—n;(I pj ) nj——(1—p;)] . (2.2}

Here p is the stochastic occupancy variable referring
to the tracer and n is the corresponding variable re-
lating to the host atoms. Accordingly, if at tiine t a
lattice site i is occupied by the tracer, than p;(t) = 1;
otherwise, p;(t)=0. Similarly, n;(t)=1, or 0, ac-
cording to whether or not one of the host atoms is
present at site i at time t. The hopping rate parame-
ters, because of the restriction of the hopping range
mentioned earlier, have the following property:

M ifia dnj

are nearest neighbors

0 otherwise

~IVI'j tJVj( ~

(2.3)

(A =J or J).
Care has to be exercised in handling any rate

equations relating to more than one particle, since
the chain rule for computing time derivatives does
not apply in its usual form. This aspect of the time
derivatives of stochastic occupancy variables has
been emphasized by Richards. Moreover, some of
its formal consequences have been noted in the FS
work '

We define the tracer occupancy Green's function,

(t)= —2 e(t)(p, (t)p, (o)),
and its frequency Fourier transform,

(2.4a)

+1 for t &0
0 otherwise,

(2.4c)

and the single angular brackets denote a statistical

+ 00

G —= ((p, ;p, ))= Gss

(t}exp(idiot)dt,

2s'

(2.4b)
where e(t) is the usual Heaviside step function

r
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average. The rate equation (2.1) now readily leads to
the relationship

~6~ =5m i—vXJN(6~ G—
Jg )

l
~ 0 (2) (2)+'+ gi ai;it' is g') .
l

(2.5)

Here U denotes the vacancy concentration in the
hopping host lattice. Assuming x to be the atomic
concentration in this lattice, i.e.,

x =1—u=(n, ), (2.6)

the two-particle propagators G' ' occurring in Eq.
(2.6) are defined as follows:

(2)

where

(2.7)

u, =ni x, (u, )—=0. (2.8)

Within simple mean-field approximations
(MFA}, such propagators 6' ' are assumed to be
negligible. These approximations are useful only to
the extent that dynamic fluctuations of the stochas-
tic variable ul. are insignificant. A useful, qualita-
tive estimate for the range of validity of the unem-
bellished MFA can be obtained as follows: The
neglect of fluctuations in uj would be more accept-
able, the smaller its variance 0.. In other words, er-
rors inherent in the MFA mass operator may be ex-

pected to be of order craP», where

0 = (u,'& =xu, (2.9)

and c0» is the unblocked, tracer diffusion mode fre-
quency, i.e.,

» =J'z(1 r—»» (2.10)

y» ——+exp(ik 5) .
Z

(2.11)

(Here 5 represents one of the z nearest-neighbor lat-
tice vectors. )

Thus we see that in a Fourier-transformed repre-
sentation (with respect to the inverse lattice space)
the contribution of the first set of terms on the
right-hand side of Eq. (2.5) is uto»6», whereas the
fluctuations (i.e., the scattering terms represented by
G' ') are proportional to xvto»6». Accordingly, the
neglect of fluctuations would be acceptable if their
relative size, with respect to the retained MFA
terms, is small. This happens only when x~0.
Since the fluctuations get larger as x increases, the
u~0 limit represents the worst possible regime for
the application of the unembellished MFA.

In order to improve upon the MFA in a systemat-
ic and meaningful fashion, a careful accounting of
the scattering terms in Eq. (2.5) is needed. To this
purpose, we examine below the equation of motion
of 6'"

coGt'j z
—— 5tj.xcoGts—tx(zJ u+—zJ)5' Gts +ix(vJtj+ J&j)Gtz +t«Jtjgj/ g

+iGt( '[(v .«)Jr, +—J,, z(J v+J)]+i QJt;Gtj.s +g ji
0 (2) (2)

I

(2.12)

In the above, the remainder A is linearly propor-
tional to three-body scattering terms of the general

OH11

l

bodied in the remainder A'. Such a solution is
presented below.

Gi', 23;, =—«piu2u3;p,
' » (2.13) III. THE SECOND-ORDER SOLUTION

where sites 1, 2, and 3 are a/l different. Consequent-
ly, the neglect of the remainder A contributes errors
of the order

It is convenient to replace spatial dependence with
one involving inverse lattice wave vectors. This en-
tails using Fourier transformation,

( u iu 2 )co» x v co»
2 2 0 2 2

1~2
(2.14) QG»exp[i&'(g —g )]

K
(3.1a}

to the mass operator of our basic Green's function
GK. This statement is rigorously correct in both the
x~0 and the U —+0 limits, and is qualitatively valid
in this form in the intermediate concentration re-
gime. Thus, in order to obtain the mass operator for
the basic Green's function 6 which is exact to the
linear order in u and to orders x and x for small x,
Eqs. (2.5) and (2.12) have to be solved simultaneous-

ly, neglecting the third-order fluctuation terms ern-

GI ~ . ~ ——(2)
l g

2

)&g QG», '», exp[iKi (1 —g ')
Kl K2

+iKz-( j —g ')],
(3.1b}
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5~ =—gexp[iK (g —g')] .
gg (3.1c) f»(r)= —+exp( i—A, r)G»'i„i„

The equation of motion, (2.5), is now represented
in the form

(ro+ivr0»)G» ——1+iJ +[1—exp(ik 5))fk(5) .
5

1=—g g &(pii i „ps ))
E g'

Xexp[ —i k ( 1 —g ') ] . (3.3)

(3.2)

For arbitrary K and ro, there are a total of z dif-
ferent f»(5)'s.

It is convenient to define the function

It represents the propagation of the tagged particle
and a vacancy held at a fixed relative distance r,
and propagating together through the crystal with
K. It satisfies the Fourier-transformed second-order
equation of motion (2.12),

cd»(r)= —xG» 5(r)[c+uiz(J v+J)]—+5(r 5')i—(J v+J)
5I

i5(i—)g[Juu exp( iK 5 '—)+J)f»( r 5')—

+ig[J u exp( iK 5 ')+—J]f»(r 5') iz(—J u—+J)f»(r )
5'

+i+5(r 5')I—[J (u x)+J]f»—(r)+xJ exp( iK 5')f—»( —r)3 . (3.4}

If the interaction terms which occur for r =0 or 5 are neglected, the free propagation of the particle-vacancy
pair is given by

1 ~ exp[ —i A, (r —r ')]
N+l(Ni„+vco» x)

with cox defined as Jz(1 —yi },analogously to coi in (2.10). For the case r =0, Eq. (3.4) gives

f»(0)=—xG»,

as required since ((pini, p» )) =0. The equation for r =5 becomes, using (3.6) to eliminate f»(0),
a)f»(5)=iJ vxG»[1 —exp( iK 5)]—iz(.J u—+J)f»(5)+i[J (u x)+J]f»(5)—

+xJ f»( —5)exp( ik 5)+—i g [J u exp( iK 5')—+J]f»(5—5'),
5 '~5

(3.5)

(3.6)

(3.7)

which is conveniently written

f»(5) = —i+[1—exp( i K 5 ')]—

X T(5, 5 ')uxJDG», (3.8)

V(5, 5)=i [J (u —x)+J],
V(5, —5')=iJ x exp( —iK 5),
V(0, 5)= i[J v exp( ——iK 5)+J)

= V( —5,0),

(3.10)

where T is a matrix

(3.9)

which represent the particle-vacancy interaction.
Combining Eqs. (3.2} and (3.8) the Green's func-

tion is
confined to the z+1 sites r=0 or 5. I' is given by
(3.5) and V has the elements 6» [ru+i X(K——,ro)) (3.11)
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where the mass operator

X(K,co) =ucoxF(K, co) (3.12}

X [1—exp( —iK 5 ')) .

and

~rrF(K, co ) =cox0

+ix(Jo)~g g[l —exp(iK 5)]T(5,5 ') Gx ——lim (co+iufoJ K a )
K ~0
N~O

Then, from (3.13},

(3.14)

wave length and small-frequency limit E a
«co /Joz «1 (where a represents the elementary

cube edge in a Bravais cubic lattice} the correlation
factor F reduces to the so-called diffusion correla-

tion factor fo F——(K +—O, co~0) and

(3.13)
Thus the approximation of decoupling in the
second-order equation of motion yields a relatively
simple closed-form expression for the mass operator
which depends through T only on the parameters V,

J, and J, and does not involve any self-consistency
constraints of the type encountered in the coherent-
potential approximation (CPA) theories which we
have applied to the specific case J=0 in the present
problem. For general K the matrix inversion re-
quired to obtain T is tedious and best performed nu-

merically, but at points of high symmetry, relatively
simple analytic expressions can be obtained.

Near K=O, for example, X(E,co)-iE D(ro) and
the coefficient D can be obtained from (3.13) by cal-
culating T at K=O where it has full lattice symme-

try, which has been taken to be cubic. In the long-
1

fo= 5 +2xJ ig(5 5 ')T(5, —5 ')
6a 5 5'

(3.15)

For the simple cubic lattice (sc) this becomes

fo I 1+DU i——[T(5,5} T(5, ——5)]J . (3.16)

The form of the second term in (3.16) is clearly re-
lated to the well-known lattice sum

cos0= —gi(5 5')P(5, 5'),
$2

5

(3.17)

which is widely used to describe correlated dif-
fusion ' and is physically interpreted as the aver-

age cosine of the angle between successive jumps in
a random walk. For cubic lattices,

cos8= g(C4„—1)j(1—yr )=—0.209842 (for sc lattice}1

6N

1

8N
g(C2„+1)(C2 C2, —1)j(1—yx) = —0.157948 (for bcc lattice)2

(3.18)

I

ours to within 0.5%. The extrapolated form also
agrees with the computer simulation and Monte
Carlo estimates within the accuracy of the latter (see
Fig. 1).2J xcos6I

(J+J u)(1+cos8)
(3.19) I I ~ $ I I

1.0,

+[2(C2„—1)(C~C,+Cz„C2~—1)]/(1—yg)= —0.122680 (for fcc lattice) .

Since fo only involves the p-wave part of T the full

expression takes a relatively simple form to become
after some manipulation,

This result is correct to first order in u, and first or-
der in x, and generalizes the exact results known in
the zero vacancy limit for a long time, and for the
small x limit obtained by us recently, ' to the case
J&J . The full extrapolated form (3.19) appears to
be equivalent to the "multiple scattering approxima-
tion" of FS for J=J . [See Eq. (25), of Ref. 11 for
fo in the sc lattice and Eqs. (22)—(24) of Ref. 14 for
the fcc lattice. ] For the sc case their result has the
same form as (3.19) if the number —0.2118 is taken
as cos8. For the fcc lattice the form of their result
is different but numerically their value agrees with

'+P 0.8

l i t I t i l I

X

FIG. 1. Correlation factor fo predicted by Eq. {3.11) is

given as a solid line for the fcc lattice with J =J. Closed
circles represent the Monte Carlo simulation estimates of
Kehr et al. (Ref. 18). Dashed line at top gives the MFA
estimate.
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The T matrix required for (3.13) now only in-
volves s-wave scattering and after considerable
manipulation we find

F(K,a)) = 1+ 2xJ

4JJ v

J+vJ

(3.21)

where

1 zygo

N x co+iz[J+uJP —(J—uJ )yx]

(3.22)

For thc case m =0 we note anomalous behavior near
v =0 where

r 1/2
vJ'

J 0.5164+0 J (3.23)

These corrections of order u'~ are found at all
zone-boundary points. The mass operator in this
theory is correct to order v, but approximately treats
processes involving vacancy pairs which are antici-
pated to be of order v . However, this calculation
makes it clear that at the zone boundary there are
corrections of order u whose accuracy is uncer-
tain.

For general hopping rates J of the background it
is instructivc to examine the behavior in two ex-
treme limits. As J/J —+ oo the background parti-
cles make many hops during the single hop of a
tracer atom. The latter sees an average background
and~ as may be seen from (3.9) T~O and
F(K,co}=1, so that the mean-field approximation
(MFA) result is recovered. The opposite limit J=0
corresponds to tracer hopping in a background of
fixed blocked sites. As may be seen from (3.19) and
(3.21) for specific cases, since P(K,ro) ~ u

F(K,co) o: u and this may be shown to be true in gen-
eral using (3.8} and (3.9). Thus X(K,co) varies as u

in our approximation. This is correct in the limit
v =0, when no motion is possible, but incorrect to
order v . For example, we know that diffusion is im-
possible, i.e., fp Oat u & u, the perc——olation limit, a
result which is not reproduced by our theory. For

A second point with a straightforward analytic
solution is Ka =(m, m, n) in the simple cubic lattice
where the group of K is again the full cubic group.
In this case exp(i K 5 )= —1 for all 5 and

1 exp[ —iA, (r —r ')]
N i pi+iz[J+uJ (J—uJ—)yi. ]

(3.20)

this limiting case the CPA method developed earlier
is more satisfactory. z

IV. NUMERICAL RESULTS

Although the analytic results of the preceding sec-
tion are instructive, the general correlation parame-
ter F(K,co) contains a wealth of additional informa-
tion. Owing to the importance of the small frequen-
cy regime, it is useful first to examine the properties
of F(K,O) as a function of both the wave-vector and
the system concentration. For simplicity, we begin
with the case J =J.

In Fig. 2 F(K,O) is plotted as a function of K for
the three directions Kb/ir=(k, 0,0), (k, k, O), and
(k,k, k). For convemence, the abscissas are given in
terms of the dimensionless variable k. Here b =a,
for the simple cubic lattice [Fig. 2(a)], and b =a/2,
for the fcc lattice [ Fig. 2(b)]. The K dependence is
found to be the most pronounced for a small vacan-
cy concentration. [Results for five different vacancy
concentrations, namely v =0.0001, 0.25, 0.5, 0.75,
and 1.0, are recorded in Figs. 2(a} and 2(b)]. Anoth-
er striking feature of these results is the total inver-
sion of the K dependence that occurs somewhere be-
tween the concentrations v =0.0001 and v =0.25,
contrasted with the seemingly slow and uneventful
dependence on u for the 0.25 & u & 1 regime.

In order to get a better understanding of the
manner in which the inversion of the K dependence
comes about as the vacancy concentration increases
from 0.0001 to 0.25, in Figs. 3(a} and 3(b) the corre-
lation parameter F(K,O) is plotted as a function of
the concentration x. Here the relevant K value for
curves labeled 1 is (0,0,0); for curves 2 and 3
Kb =(m/2, 0,0) and (m, 0,0), respectively. As before,
Figs. 3(a) and 3(b) are for the sc and the fcc lattices.
Only for the sc lattice are there more than three
curves shown. Here curves 4 and 5 are for
Ka =(m, m, O) and (m, m, m), respectively.

It is observed that for u ~0, F(K,O) undergoes ra-

pid variation for K near the zone edge, as expected
from the term in v' discussed in the preceding sec-
tion. While the rate of change of F(K,O) (with va-
cancy concentration} is slow and undramatic when
Eb « m' [here one is basically dealing with
F(K,O)-fp], it is precipitous at the zone edge. Ac-
cordingly, for only a few percent vacancy concentra-
tion, the relative ordering of F(K,O) foi different
wave vectors undergoes an inversion. As v increases
beyond the inversion region, in these figures the con-
centration dependence of the correlation factor ap-
pears to show little qualitative change. The vacancy
concentration at which the inversion occurs seems to
depend upon the coordination of the lattice and is
approximately twice as large for the fcc lattice as it
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precipitousness was, however, somewhat underes-
timated when we used the mass operator, calculated
for the v =0 limit, to compute the response function
S(K,co), for the case v =0.012 in the fcc lattice,

S(K,co)= lim — I—mGx(m+ie) .
a~0+ 'IT

(4.1)

[For practical reasons, all of the computations being
reported in this paper were carried out with
@=10 (J z).] In view of the rapid variation with v

at the zone edge, the v =0 result for the mass opera-
tor turns out to be approximately 10—15%%uo of an
underestimate for the case of v =0.012 in the fcc
lattice. This results in a corresponding overestimate
in the value of the response function. Consequently,
our remarks based on the U =0 limit solution
presented in an earlier paper, about a possible un-
derestimate in the Monte Carlo work of Kehr
et al. ' for the Kb =(m, 0,0) response in the fcc lat-
tice were themselves an overstatement. Indeed, us-
ing the present theory we have recalculated the
relevant response and find it to be in complete agree-
ment with the Monte Carlo results of Kehr and oth-
ers. (See Fig. 4.)

Despite the rather direct physical relevance of the

response S(K,co) the mass operator is a more con-
venient quantity to analyze for assessing the
strengths and weaknesses of the theory. The reason
for this convenience lies in the fact that while in the
co=0 limit the response S(K,co) directly measures
the mass operator, or equivalently the correlation
parameter I' (K,co), away from the low-frequency re-
gion the presence of the rapids increasing quantity
ap in the denominator for S(K,co)—as can be seen
from Eqs. (3.11) and (4.1)—effectively masks many
of the variations occurring in the mass operator.

Accordingly, continuing the analysis of the J =J
case, in Figs. 5 and 6 we display the real and the
(negative of the) imaginary parts of the generalized
correlation factor F(K,co) as a function of
log~p(coiJ z). It is clearly observed that the frequen-
cy dependence of E(K,co) is qualitatively similar
over a wide range of concentration. The exception
to this rule would appear to arise in the small vacan-
cy and large-K vector limits. In particular, for
v~0 (rather than showing a mathematical limiting
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FIG. 4. Response S(K,co) for Kb=(m, 0,0), J =J, and

v =0.012 is given as a function of (10~co ) where

(co=co/J z). Curves 1, 2, and 3 refer to the fcc, bcc, and

the sc lattices, respectively; curves 1', 2', and 3' show the
corresponding results obtained within the MFA. For con-

venience of display, for the bcc lattice (i.e., curves 2 and
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FIG. 5. For J =J in an fcc lattice, ReF(K, co) is plot-
ted as a function of log~o(co ) for wave vectors at the center
and the edge of the Srillouin zone. W'e have chosen five
different vacancy concentrations, i.e., v =0.0001 (curves
1,1'), v =0.25 (curves 2,2'), v =0.50 (curves 3,3'),
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Kb =(m, 0,0).
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FIG. 8. For u =0.0001 and J z=1, the real part of
F(K,co) is plotted as a function of Q. Beginning with the
top set of two curves (the higher being continuous and the
lower one dotted) and coming down the zero-frequency
axis, the relevant values of Jz for various sets are the fol-

1 1 1
lowing: 5, 1, —,—,and —.The continuous curves refer

to K=(0,0,0). For the dotted curves Kb =(m, 0,0).

Again, the most interesting feature of a(K, co) ap-
pears to be its wave-vector dependence at m=0. To
bring this out, in Figs. 11(a)—11(c) a(K, O) is plotted
as a function of K.

A dramatic dependence on K is observed for
J/J =0 (see the top set of three curves in each of
these figures). Somewhere within the regime
0&J/J & —,, the relative ordering of the curves un-p 1

dergoes an inversion and thereafter the behavior of
the curves does not undergo any qualitative change
[except for the fact that as J/J increases, the MFA
become progressively more accurate and a(K, co)
moves toward zero].

V. CONCLUSION

In order to best set the results of this paper into
their proper perspective, two aspects of ihe theory
need special attention. First, is the exactness of the
theory at the two concentration ends. A direct
consequence of this fact is the exactness of the
parameters a(K, ro) in the limit x~O, and E(K,co)
in the limit U —&0. In this regard, the feature of par-
ticular interest is the contrasting behavior of the
U =0 and the x =0 results as a function of the ratio

0 I.O 2.0

Q

FIG. 9. Same as Fig. 8 with the difference that here
the function being plotted is —ImF(K, co) and the order-
ing in relative heights of the curves is exactly inverted.
Note also that the top continuous curve in this figure
represents the set of curves for Jz=—and that the

1

20

shown thickness of this curve accommodates all the K
values within the Brillouin zone.
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FIG. 10. For the bcc lattice, F(K,O) is plotted in terms
of concentration x. For curves 1, 2, and 3, K=O. Curves
1', 2', and 3' refer to Kb=(m, 0,0}. The top set of two
curves (1,1') refers to J/J =5, the middle set (2,2') to
J/J =1, and the lowest set (3,3') to J/J = —,.
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J/J . For given K and co, while the results for
F(K,to) at v =0 are all qualitatively similar (as a
function of J/J ), this is manifestly not the case at
the x =0 end. Here the parameter a(K,co)
undergoes a gradual but, nonetheless, dramatic in-
version of its K-dependent characteristics as the ra-
tio J/J is increased from zero through some criti-
cal value p, toward infinity.

The second noteworthy aspect of the theory refers
to the inversion of the K-dependent characteristics
of the generalized correlation factor F(K,co) as the
concentration is varied between the two ends. The
details of this latter inversion are also observed to be
strongly dependent upon the ratio J/J, indicating
both a relationship of the two inversion processes
and also pointing out possible inadequacies in the
theory in the intermediate concentration range when
the ratio J/J is decreased from large values toward
zero.

Before proceeding further, it is instructive to ex-
amine the magnitude of what has been referred to as
the critical ratio of J/J p, . For the simple cubic
lattice, which is the most non-mean-field-like lattice
of the three Bravais cubic lattices, we have comput-
ed p, to be -0.120+0.002 (for bcc and the fcc lat-
tices p, would be somewhat smaller). Thus, for the
cubic lattices, the large fluctuation effects associated
with the crossover from one type of qualitative
behavior to another occur when J is of order J /6 or
smaller. Consequently, in three dimensions the
present approximation scheme can be expected to
get progressively more meaningful as the ratio J /J
increases beyond about —,. Indeed, for large ratios
J/J, even the unembellished MFA would become
accurate.

In view of the above, a rough estimate for the re-
gion of adequacy (over the entire concentration
range) of the present theory would be J/J ) —, .
However, in lower dimensionality, we expect this re-
quirement to become considerably more stringent.
Accordingly, even for J/J -1, improvements over
the second-order theory presented here would be
needed so as to adequately describe lower-
dimensional systems.

(Note to the readers: Owing to space limitations,
only a small fraction of the computed results have
been presented. Readers who are interested in addi-
tional results are encouraged to contact the authors. )
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