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Transmission resonances and the localization length in one-dimensional disordered systems
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Numerically obtained results concerning the transmittance and localization length of a

one-dimensional disordered system are presented. We show that as a function of the energy

of the incoming particle the transmittance is characterized by randomly positioned exponen-

tially narrow resonances. Depending upon the relationship between the length of the system

and the localization length, the transmittance may appear to be either a perfectly smooth

function of energy (the resonances being invisible on any practical energy scale) or a highly

structured function varying in a random way.

It has long been known' that the solutions to the
Schrodinger equation for a one-dimensional random
system exhibit exponential growth in the sense that
with probability unity a solution finite at the begin-
ning of a semi-infinite system will diverge exponen-
tially with increasing distance along the chain. A
well-known consequence of this property is that the
transmittance Tt(k) of a one-dimensional disor-
dered system of length L decreases exponentially
with the length of the system in the sense that an
appropriate average of lnT& (k)~ 2L /Lo as-
L~ oo. In this expression Lo is the localization
length and is a function of the energy k of the
states as well as the nature of the disorder. A
second consequence is that the eigenfunctions in the
disordered system are localized in the sense that they
decay exponentially on both sides of their max-
imum. Our purpose in this paper is to present some
numerically obtained results concerning the specific
nature of the function Tt (k) and some characteris-
tics of the eigenfunctions, and to discuss the way in
which the same localization length affects both as-
pects of the quantum mechanics of the disordered
system.

We make the following points:
(1) The transmittance Tt(k) is an exceedingly

complex function of k whose detailed nature de-

pends critically upon the interplay of the length L of
the system and the localization length Lo.

(2) For a specified random system Tt (k), and

indeed, its logarithm inTI (k), exhibits extreme max-
ima (corresponding to transmission resonances) at
energies with an average separation in k (the square
root of the energy) of the order of m/L. The ener-.

gies at which the resonances occur are themselves
random in that they are specific to each particular
random sequence of scatterers. These transmission
resonances correspond, in a sense to be discussed
below, to the eigenfunction of the random system.

(3) The width of the resonances, as a function of
the variable k, becomes exponentially small as the
length of the system increases; the width is of order
exp( aL/Lo), whe—re a is a number of order unity.
Within the resonance region the transmittance in-
creases dramatically, in the sense that the change in

its logarithm obeys blnTt (k) =inTt (k). Thus
Tt (k), which for a system long compared to the lo-
calization length is of order exp( 2L/Lo), at —the
resonance positions becomes exponentially larger
than its typical value and in particular instances can
be of order unity.

(4) According to Landauer, the conductance of a
one-dimensional system, in units of e /~A, is equal
to Tt (k)/[1 —Tq. (k)] or effectively to Tt (k) since
the transmittance is exponentially small. Azbel has
generalized Landauer's result and finds that at finite
temperatures the conductance is related to the ther-
mal average

where nF(k) is the Fermi distribution function. At
any practical temperature, therefore, one should re-

gard the effective localization length as referring to
a thermal average over an interval large compared to
the spacing between transmission resonances. Even
though the width of the resonances is "exponentially
small" the transmittance at the resonance position is
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where the coefficients V„may have either of two
ValueS V'" and V' '. FOr Xn 1&X &X„ the WaVe

function may be written

6n gn
g(x)=A exp cos k(x —x„ i)—

2
n—

(2)

where A is arbitrary and the overall amplitude and
phase may be obtained in terms of their values at
one end of the system by straightforward applica-
tion of the transfer matrices appropriate to the 5-
function potentials. However, in a disordered sys-
tem in which the amplitude of the solutions grow
exponentially it is convenient to work with the ex-
ponent 6n directly. We show in the Appendix that

1+X„
Gi+i ——g ln (3)

n =1 n —1+n —1 n
—1 X2

where Gi ——0 and X„=tanj , [qr„+(~/—2)+h„ i]J,
co„=tan [(h„/2)+(m /4)], and tan(h„) =V„/2k.
The quantities X„satisfy the recursion relation

Xn —1 ~n —1

Xn =6)n
~ +Xn —l~n —1

(4)

where r„=tan[k —(h„+h„ i)/2] with hp ——0. Two
independent solutions are obtained by choosing

y1 ——0 and y1
——m.. We show in the Appendix that

these may be combined to form an eigenfunction
having only an outgoing wave at one end of the
chain, from which we derive the expression for the
transmittance

T=4/[exp(6)+exp(6')+2],

where the G and 6' are the values of Gr +i for the
two particular solutions just mentioned.

The results presented in this paper were obtained
using the preceding expressions. We frequently
refer to the localization length of a particular sys-
tem, which we calculate by evaluating
—lnT~(k)/2L for a single system (or at most, a few
systems) of the same nominal concentration of

"exponentially large" compared to the background,
and the resonances contribute an amount compar-
able to the background to an average of Tq (k) over
an interval large compared to the spacing between
thein. It is probable, therefore, that the effective lo-
calization length is significantly different from that
characterizing an arbitrarily chosen energy.

The specific numerical calculations were done for
a lattice of 5-function potentials (with unit lattice
spacing)

V(x) = g V„5(x—x„),

scatterers as the one of interest but very long com-
pared to Lp itself. The point is that according to (3),
the G and 6' entering into Eq. (5) are the sums of
independent quantities, provided that the length L
exceeds all characteristic lengths of the system.
Thus it is to be expected, and indeed we find, that
for large L the random variables 6 and 6' have the
same mean and are normally distributed about their
average value. Therefore, for all practical purposes,
we may calculate the localization length using
Lp 2L/——G. Alternatively, we may use the prescrip-
tion of Azbel and Soven to determine Lp through
an analytical procedure.

In Fig. 1 we show in'� (k) for a system contain-
ing 100 sites with equal concentrations of zero and
unit strength 5-function potentials. The system was
chosen to refiect a regime in which L &&Lp. Nll-
merical and analytical calculations show that Lo is
approximately four lattice constants for this system.
The curve should be viewed as composed of a
smooth background interrupted by maxima at the
approximate spacing mentioned previously. For a
few of the maxima we show a blowup of the graph
on a much expanded wave-vector scale. Note that
both the main plot of InTi (k) and the insets refer to
the same vertical scale. Our numerical results for
many chains show that the width of the fine struc-
ture may vary widely from resonance to resonance
but is always of the order of exp( aL /L p) (w—here a
is of order unity) for whatever system we studied.
In the immediate vicinity of the transmission maxi-
ma (except for a very small rounding region reflect-
ing the finite length of the sample) the function
1nTr(k) varies as ~k —k

~

', where k is the res-
onance position. For a chain twice as long as the
one used to generate Fig. 1 the analogous plot is
simply a smooth curve with no apparent structure;
only after very detailed probing on a wave-vector
scale of order 10 ' do we discover a pattern of
exceedingly sharp transmission maxima.

The intervals between transmission resonances de-
crease only as 1/L whereas the width of the reso-
nances decreases exponentially. In the limit L »I.o
the function inTr(k) has the "appearance" of a
smooth function, since the probability is overwhelm-
ingly great that a randomly chosen energy will not
lie close to a resonance. It is in this regime that for
all practical purposes In'�(k) is characterized by
the single parameter Lo.

Figures 2(a)—2(d) illustrate 1nTi(k) for a chain
2000 lattice sites long for which the localization
length is approximately 200 lattice sites. Figure 2(a)
is plotted on a wave-vector scale chosen to illustrate
the extreme fluctuations exhibited by lnTr (k) in a
regime in which n. /L =exp( L/Lp). The dotte—d
curve is the function —2L/Lp(k), where Lp(k) was
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FIG. 1. Logarithm of the transmittance for a system 100 lattice sites in length. The insets show the transmittance on a
much expanded wave-vector scale, as indicted, to illustrate the details of the transmission maxima.
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FIG. 2. (a) Logarithm of the transmittance for a system whose length ls approximately ten times the locallzatlon length

(b) Same as (a) but for a wave-vector scale ten times smaller. (c) Same as (b) but for a wave-vector scale ten times smaller.

(d) Same as (c) but for a wave-vector scale ten times smaller.
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FIG. 3. Two successive eigenfunctions satisfying

standing wave-boundary conditions at the end of a system
2000 lattice sites in length for which the localization
length is approximately 200 lattice sites. Note that what
is plotted is the logarithm of the square magnitude and
not the eigenfunctions themselves.

calculated using the procedure of Azbel and Soven
and verified by explicit calculations of the transmit-
tance for much longer chains but the same nominal
concentrations of potentials. Our point that in a
short sample lnrl(k) simply oscillates about its
nominal value is mell illustrated by this plot. Fig-
ures 2(b)—(2d} show lnTL (k} for the same system on

successively smaller energy intervals. In accordance
with our earlier comment, the structure persists
down to a scale of order exp( aL /—Lo).

The transmission resonances correspond to the
eigenfunctions of the disordered system in the sense
that, as is true for any resonance phenomena, the
phase yL + ~ at the end of the chain of the two in-

dependent solutions referred to above (and therefore
of any solution) varies by nearly m. over the reso-
nance region. Therefore it is possible to satisfy arbi-
trary boundary conditions at the ends of the chain
for an energy within the resonance region. While
there is no doubt that the eigenfunctions resulting
from imposition of boundary conditions at the ends
of the system are exponentially localized, it is of in-
terest to study them in more detail in order to deter-
mine their decay length and the spatial distribution
of the maxima within the chain.

We investigated the special case corresponding to
standing wave boundary conditions at the ends of
system. In summary, we found, as might be expect-
ed, that the maxima of the eigenfunctions are ran-
domly positioned along the chain and decay away
from their maxima with an exponential falloff cor-
responding to the localization length Lo. In Fig. 3

we show the logarithm of the square amplitude [i.e.,
the quantities G„of Eq. (2)] of typical normalized
eigenfunctions. The eigenfunctions illustrated are
adjacent in regard to the energy eigenvalue, but are
otherwise arbitrarily chosen. The positions of the
absolute and relative maxima are, of course, specific
to the particular eigenfunctions and random system,
but the general nature is typical of our results. Note
that the absolute maxima of the eigenfunctions oc-
curs at some random position along the chain. It is
interesting that even the magnitude of the eigen-
functions are exceeding complex of position; the ac-
tual eigenfunctions, including the phases, oscillate
with periods of the order of a few lattice constants.

In summary, we have shown that the transmit-
tance of a one-dimensional disordered system is
characterized by randomly positioned and exponen-
tially narrow resonances. In addition, we have illus-
trated how the localization length Lo is the charac-
teristic length of a random one-dimensional system,
in the sense that it determines the transmittance
(and hence, conductance) of the system, the width in

energy of the transmission resonances, and the scale
of exponential falloff of the eigenfunctions satisfy-
ing arbitrary boundary conditions at the ends of the
system.

This work was supported in part by the National
Science Foundation MRI. program under Grant No.
DMR-7923647.

APPENDIX

The numerical calculations presented here refer to
a one-dimensional system of 5-function potentials.
Although this model has been studied for half a cen-

tury, the specific algebraic expressions we use to
describe it are somewhat unusual; accordingly, we

present a brief derivation at this point.
We study a system of L 5-function potentials with

a uniform lattice spacing of unity; the nth potential
is located at x„and has a strength V„. In this paper
we only consider a system in which V„can have ei-
ther of two values, although the expressions we
derive are more general. In the region x„&&x g x„
an arbitrary solution to the Schrodinger equation for
energy k may be expressed in the form

ik(x x„() — —ik(x —x„() (Al)

Imposing the continuity in value and discontinuity
in slope appropriate to a 5-function potential of
strength V„we find the relations

A„+(——[I i tan(h„)]e'kA„i t—an(h„)e—'k8„,

B„+, i tan(h„)e'"A——„+[I+i tan(h„)]e '"8„,
(A2)
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A„=exp[( 6„—iq&„)/2],
8„=exp[(6„+iq&„)/2],

and substituting into (A2) we obtain

(A3)

gn+1 fn

n

where tan(h„) = V„/2k.
It is convenient to use real solutions to the

Schrodinger equation. Defining Gn and y„ through
the relations

m
&n = fn+ —"n —)

we derive, after considerable manipulation

tan(a„+ &) =to„tan(a„—tan 'r„)

and

1+tan an+&
2

exp(G„+ &
—G„)=

to„+co„'tan (a„+,)
where

(A5)

and

=sin(h„)cos

G„+)
—G„

2

%n+1+fn

2
(A4)

hn
co„=tan +—

2 4

Expansion of the tangent in the first of these and
taking logarithms in the second leads directly to
Eqs. (4) and (3).

The transmittance is found by direct application
of the preceding expressions. Choose a solution
which, for xp (x (x&, has the form

=sec(h„)cos +k —h„
gn+ 1

—f'n

2
e ikx+ re —kx

=(1+r)cos(kx)+i(1 —r)sin(kx) . (A6)

gn+1+Wn
+tan(h )sinn 2

—k

Defining the auxiliary quantity

The cosine and sine functions have the form (2) with

y&
——0 and ~, respectively. Letting G and y denote

GL+& and yL+& for the case y~
——0, and G' and y'

the same quantities for the case y&
——m, the wave

function for x )xt takes the form

[(1+r)e( —'%)/
+ t ( 1 r )e(G' —ip')/2]+ e

' t- [(1+r)e (G+ip)/2+
( 1 )

(G +i+ )/2]''(A7)

Imposing the condition that there be no leftward
moving wave for x & xL leads immediately to

I

The unitarity condition that
~

r
~

+
~

t
~

=1 pro-

vides the constraint

e (i y' —6)/2 ~ (i y —G')/2—le

e +le(imp' —G )/2+ ~ (iy —6') /2 (A8) —(G+G')/2

2
(A10)

The transmission coefficient t is the amplitude of
the rightward moving wave in (A7). Substituting
(AS) into the original formula leads to

which leads immediately to

2isin[(y' —y) /2]
e +le(i y' —G )/2, ~ (iy —G') /2 (A9)

e +e +2
as was given in the text.
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