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An alternative proof is given which shows that scattering of electrons by spherically symmetric
impurities cannot contribute to the Hall coefficient.

The Hall effect is caused by the change in the aver-
age drift velocity (V), resulting from the Lorentz
force (—e/c)V x B. Chambers argues! that scattering
cross sections acquire a right-left asymmetry, propor-
tional to B, and that this contributes an additional
term to the Hall constant.

In our paper? we presented a mathematical proof
that impurity scattering (from a spherically sym-
metric, spin-independent potential) does not modify
the Hall constant. We agree with Chambers that for
impurities having a finite size, and therefore a finite
collision duration T (not to be confused with the time
between collisions 7), the scattering cross section be-
comes skewed. However, the rotation of (V) attrib-
utable to the skewing is w.7T, the same angle through
which the Lorentz force term of the transport equa-
tion rotates (V) during a time T, i.e., from

a{(V,t)] =L (¥xB)- T/ .
Lor.F.

ot mc

The presence of this term in the transport equation,
which describes the time evolution of the velocity
distribution, guarantees that (V) will be rotated at
the cyclotron frequency w. at all times. If one wishes
to include this rotation during the collision duration T
by means of a skewed cross section, then one must

delete the action of Eq. (1) during that same interval.
|

This could be done with a collision operator

[QLS—’E)"] =Flf(¥,t—11 , @
coll

where F, relates the velocity distribution emerging
from the scattering center (at time 7 to the velocity
distribution reaching the center at an earlier time,

t — T. Chambers has failed to incorporate into trans-
port theory the time lag T of the collision operator
(2), and has therefore double counted the rotation
w.T during the collision.

The foregoing discussion explains the subtlety of
the issue in classical terms. It is possible to reach our
conclusion quantum mechanically.? An alternative
approach, less encumbered by formalism, is the fol-
lowing: In the presence of a magnetic field
B= curlK, the velocity operator is

Vop=D/m+eA/mc . 3)

The acceleration operator @,, is obtained from the
commutator of (3) with the Hamiltonian

H=H0+ Vscatt( i:.) ’ - (4)
with Ho=muv2,/2. Accordingly,
 Bop=(iF) (TopH —HVyp) . )

This can be divided into two parts:

Top=(ifim) ' [(F+eA/c)Ho~ Ho(F+eA/c) ]+ (itm) ' [(F+eA/0) Ve T) = Veard (F) (B +eA/c)] . (6)

The first term is easily recognized as the acceleration
of a free electron in a magnetic field. The second
term (the only one involving V) simplifies to

(Eop)2= (iﬁm)—l(f).Vscan_ Vscattﬁ) » (7)

since A(T) commutes with Ve ( T). Note that the
magnetic field does not appear in (7). It follows that
any acceleration caused by the scattering potential is
independent of B. Consequently, the scattering
centers cannot contribute to the Hall coefficient.
There is no acceleration (linear in B) other than the
Lorentz force term, and that is taken into account

27

[
completely by Eq. (1) (in the transport equation),
which rotates (V) continuously— even during those
short intervals (of duration T') during which the ac-
celeration of Eq. (7) occurs.

Although the acceleration (@,p)2, Eq. (7), does not
involve B, we must still verify that its expectation
value has no term linear in B (which might conceiv-
ably arise from the influence of the magnetic field on
the scattering wave function).

At this point we make use of the (agreed upon) as-
sumption that we are dealing with a spherically sym-
metric scattering potential. The exact solution of
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such a problem, for an electron of energy #w, can be
written in terms of partial waves:

lp0=e_imt Ealm(’) Ylm(g» ¢) ’ (8)
Lm

where {Y;,(0, ¢)} are spherical harmonics. The
scattering center is located at T =0. If a magnetic
field Bz is turned on, the perturbation (to order B) is
kFw.L,/2, where L, is the Z component of the angular
momentum operator. But the {Y,,} are eigenfunc-
tions of L,. So the new solution of the scattering
problem can be written

=7 3 am(r) Yim(0, ¢) exp(—imwt/2) . (9)
Lm

This wave function solves the time-dependent
Schrodinger equation. It defines a scattering event,
with a given incident-velocity vector, only during a
small time interval, which we may take to be at 1 = 0.
Suppose we select an incident velocity in the x-z
plane. Then (at t =0) the ¢ dependence for each
|m| in (9) is cosm,* and only the component of
(@4p)2 in the y direction is relevant to a left-right
asymmetry. From Eq. (7),

=1 dV scan

[(Eop)21y= dr

l] ~sin@sing . (10)
r

It is now obvious that

W@ ly")y =0, an

since each term in (11) involves an integral,
27 .
_I; cos(m'ep) cos(me) sinpdp=0 . (12)

This completes our alternative proof. The simplicity
of the derivation leading to Eq. (11) derives from the
fact that the perturbation fw.L,/2 does not modify
the {am(r)}, but merely introduces time-dependent
phase factors, as shown in Eq. (9).

We find Chambers’s analysis of the uncertainty re-
lation, Av,Av, > Fw./m, to be selective and faulty.
This relation imposes limitations to physical meaning
for all wave functions, not just for (our) wave pack-
ets. One must recognize that the electrical current
contributed by a wave packet is proportional to the
expectation value of the velocity operator for that
packet. We insist that there is no injunction against
following the evolution of this expectation value as
the packet travels through the field B and past
scattering centers. Chambers’s implicit assertion that
changes in expectation value are meaningless unless
they exceed the velocity uncertainty of the packet
contradicts elementary quantum mechanics.

We emphasize that the transport equation com-
monly used to calculate the (weak-field) Hall coeffi-
cient employs Jones and Zener wave packets.* Con-
sequently, our choice of these (same) basis functions
to treat the scattering term of that transport equation
is singularly appropriate.
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