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Effective conductivity by fluid analogy for a porous insulator
filled with a conductor
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By combining identities relating effective conductivity to tortuosity and tortuosity to induced

mass, a general formula for the effective (electrical or thermal) conductivity of a porous insula-

tor filled with a conductor is obtained. This formula depends on an induced-mass factor which

arises by treating the conducting material as an inviscid fluid. This induced-mass factor can

be estimated with the use of an effective-medium theory. For random arrays of equal spheres,

the estimates of conductivity obtained with the use of this fluid analogy are in good agreement

with recent exact values derived for periodic arrays of insulating spheres to closest packing.

where o and g are, respectively, the conductivity and
volume fraction of the conducting material. We as-
sume that all of the void space of the insulator is in-
terconnected and filled with conductor so P is the
porosity of the insulator.

In a porous material saturated with fluid, the mac-
roscopic kinetic energy per unit volume can be writ-
ten (following Biot') as

2T = p&&U U+ 2p&2U V+ p22V V (2)

where U is the (local) average velocity of the solid
(isotropic) porous frame, V is the average velocity of
the pore fluid, and the densities p ~~, p ~2, p22 are
parameters to be determined. The coefficient p22 is

well known" to be related to o. by

p»= &4'pf, (3)

Recently' an important link has been established
between the effective electrical conductivity o-' of a
porous insulator saturated with a conducting fluid
and a geometrical structure factor u (also known'4 as
the "electric tortuosity") depending on the topology
of the interconnected pore space. Another identity
relating this tortuosity to the induced mass' of the
solid particles oscillating in the presence of the pore
fluid had been noted and exploited previously. In
this Brief Report, we combine these two identities to
produce a comparatively simple formula for the effec-
tive (electrical or thermal) conductivity of a porous
insulator filled with a conductor. The conductor need
not be a fluid but, while developing the fluid analogy,
we will often speak of the conductor as if it were an
in viscid, incompressible fluid.

The identity relating effective conductivity and tor-
tuosity which was established first theoretically" and
then confirmed experimentally is

(r'/(r = y/u,

where pf is the fluid density. Equation (3) has been
used in the derivation" of (1).

When the frame is stationary U = 0 and the fluid
flows through it with local (microscopic) velocity v,
the kinetic energy has the form

Pf f2T=
l

v ~ vd x=p22V ~ V
Qf

(4)

where Bf is the fluid volume and 0 is the total
volume being considered. Defining v = V+ b v such
that

hv d'x =0,
g Of

we find

2T=p~gV'+ — Av Av d x
Qf

(6)

since Of/ fl = @.
For an isolated particle in an inviscid, incompressi-

ble fluid, the integral corresponding to the one in (6)
is defined' as

b v b, vd x =—grj Q„V;V~
(n)

f n

By noting that Q„Q„=(1 —$)0 and by assuming
that the porous medium is isotropic on the macro-

pf J„hv hvd'x=mj V;V,f
where the summation convention has been assumed.
The induced-mass tensor m„" has the general form(0)

(0) (0)
m&j = rj&0opf f

where zopf 1s the mass of the displaced fluid and r j
is a dimensionless tensor of order unity (r;, =

2 g;, for

spherical particles). When many particles are
present, (7) becomes
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scopic scale, we can define a scalar induced-mass fac-
tor r for such a medium by

approximately by @p~ since the other particles act like
holes in the fluid. Thus the induced mass of the new
sphere is one-half the mass of the displaced fluid or

(10)

Combining (4), (6), (9), and (10), we find directly
that

p22= [p +r(1 —@)]py

so

1
r py II p — $p—f fI o

ir= 2Q

(18)

(19)

The coefficient p22 is related to a by (3) so we find,
in general, that

n=l+r($ ' —1) (12)

Equation (12) was derived previously6 in a less
direct fashion. We present this new derivation to
stress the generality of the result. In particular, the
validity of Eq. (12) is not dependent on the validity
of Biot's macroscopic equations' for elastic ~aves in

fluid-saturated porous media. It therefore follows
from (1) and (12) that the equation

~'/~= y'/[y+ r (I —@)] (13)

a /a ~ 2@/(3 —$) (14)

and the Miller upper bound9 for symmetric-cell ma-
terials with spherical cells

is a rigorous formula for the effective conductivity in

terms of the induced-mass factor r.
By considering known rigorous bounds on 0-', we

can learn something about the behavior of the
induced-mass factor. Two simple rigorous upper
bounds on cr' are the Hashin-Shtrikman upper
bound'

1

r py= —,p22 (20)

For particles which are not spherical in shape, the
factor —, must be replaced by the appropriately aver-

1

aged factor (e.g. , —, for randomly oriented needles' ).
However, we will restrict our present discussion to
spherical particles.

Substituting (11) into (20) and solving for r, we

find that

which is just the Hashin-Shtrikman lower bound on r.
The preceding argument gives a value of r which is

generally too low —actually achieving the lowest al-
lowable value of r. To improve this argument, we
must answer the question "What is the correct effec-
tive density of the displaced fluid?" However, our
previous discussion has already at least partially
answered this question. The effective macroscopic
density of the fluid is given by p22 in (11). This den-
sity p22 has two terms: the first term corresponds to
the fluid with holes and the second term is the back-
flow contribution. Thus, if we ignore details like the
precise location or distribution of the other particles,
an elementary effective-medium argument suggests
that, for a spherical inclusion,

~'/~~2d'/(I+y) . (15)
and

r =y/(1+@) (21)

and

2 @ ~ r ~ ~ (Hashin —Shtrikman ) (16)

The corresponding lower bounds vanish in both cases
for all @ & 1. These inequalities can be translated
into bounds for r. We find

~'/a= —,@(I+y) . (22)

To check the accuracy of (22), we first consider
low-concentration expansions. Define the packing
fraction ri by q = 1 —P and note that Eq. (22) is

—~ r ~ ~ (Miller)
2

(17)
cr /cr =1——,ri+ —,vt

3 1

(23)

It is interesting to note that setting r = —, (the

value for isolated spheres), as was done in Ref. 6,
leads to the Miller bound (15) for spherical-cell ma-
terials. Real materials will not generally be sym-
metric-cell materials so we will leave further discus-
sion of the Miller bounds to a future publication.

A simple interpretation can be given to the
Hashin-Shtrikman bound (16). Suppose we imagine
imbedding one new sphere in a fluid already contain-
ing a finite concentration of particles. For random
placement of the sphere, the fluid displaced by the
new particle will, on the average, have density given

in terms of q. For periodic arrays of spheres, it is
known' that

~'/~=1 , q+ —,q'+—0—(q') .

Jeffrey" has shown that

(24)

a'/a = 1 ——,rt + 0.588''+ 0 (7t ) (25)

for random arrays of equal spheres at low concentra-
tions if the distribution of spheres satisfies the well-
stirred approximation (the probability of finding a
second particle center is zero inside and constant out-
side the first particle's exclusion sphere). McCoy and
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Beran' have shown that the coefficient of q'
depends on the choice of distribution, and it is not
difficult to show that a distribution with higher pro-
bability of finding another particle close to a particle
at the origin will lead to a smaller coefficient of q'
than the one given by Jeffrey. For the hard-sphere
radial distribution function, ' corrections to Jeffrey's
coefficient are of 0 (q) for small q and therefore do
not alter the result (25). However, the sign of these
corrections again tends to decrease the contribution
from the second-order term.

Thus, for low particle concentrations, Eq. (23)
gives a good approximation to the exact results for
random arrays to second order in q. It is not surpris-
ing that (23) does not agree with (24) to second or-
der since the effective-medium approach does not as-
sume the particles are "well separated" (no particle
center within a radius R/qt/' of a given particle when
R is the radius of the particles) as is the case for the
periodic arrays.

For large particle concentrations, exact results are
known' for periodic arrays of spheres but not for
random arrays. However, it is a common supposition
that results for random arrays of spheres should not
differ too much from results for periodic arrays at

high concentrations. In Table I, comparison is made
between recent exact results of Sangani and Acrivos'
for periodic arrays and the predictions of (23) for
random arrays of spheres. Agreement between the
two sets of values is quite good.

Although the formula (13) is a rigorous identity
for o-', its usefulness is limited in at least three ways.
First, the formula applies only to porous insulators.
If the porous frame is also a conductor, the present
approach for calculating conductivity does not apply

because Eq. (1) is no longer true. However, even if
the frame is conducting, the formula (12) for the tor-
tuosity n (important for Biot's theory' as has been
amply shown elsewhere' ) is still valid. Second, if
some of the pore space is isolated from the connected
pore space, the relevant value of tt (i.e., the volume
fraction of the connected pore space) will be more
difficult to measure. Except for measuring tt, the
presence of isolated pores will not affect the present
arguments as long as the porous frame is an insulator
since isolated pores (whether filled with conductor or
not) are completely surrounded by insulator and,
hence, . cannot contribute to the conductivity.

A third limitation of formula (13) is that the
induced-mass factor r may not be especially easy to
calculate for arbitrary shapes and arrangements of
particles. The factor r may nevertheless prove to be
a useful tool for correlating experimental data. For
example, the tortuosity data of Johnson et at. ' for
sintered packings of glass spheres have been reduced
to the equivalent induced-mass factor and plotted in

Fig. 1. We see that most of these data fall in the
range r =0.35+0.05. No explanation of this virtually

constant value of r can be offered at the present
time.

We conclude that the fluid analogy provides both a

0
0 ~

O0

Random arrays
of spheres

Periodic arrays
of spheres

0.5236
0.64
0.6802
0.7405

0.352
0.245
0.211
0.163

0.344
(0.250)
0.217
0.160

TABLE I. Comparison of the values of effective
conductivity o- /o- for random arrays of spheres estimated

using Eq. (23) and for periodic arrays of spheres calculated

by Sangani and Acrivos (Ref. 10 ). The four values of
packing fraction q correspond to the three close-packed

periodic arrays —simple cubic (q = 7r/6), body-centered
cubic (q = 43m/gi, face-centered cubic iq =42vr/6), —and

to random close packing for hard spheres (Ref. 13)
(q =0.64 +0.02). The value of o- /tT quoted in parentheses
for periodic arrays at q = 0.64 was obtained by interpolation

from the exact results for sc and bcc arrays.
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FIG. 1. Induced-mass factor as a function of porosity for
various models. Dash —long-dash line is the Hashin-

Shtrikman lower bound (16). Dot-dash line is the Miller

lower bound (17) for spherical-symmetric —cell materials.
Solid line is Eq. (21) for random arrays of spheres. Dia-

monds are exact results for periodic arrays of spheres from

Sangani and Acrivos (Ref. 10) (also see Table I). Data
[courtesy of Johnson et al. (Ref. 3 )] from measured tor-
tuosity of porous structures fabricated by sintering packings

of glass beads are shown as crosses for superfluid acoustic
measurements and octagons for electrical measurements.
The dashed line is for the self-similar estimate (Refs. 2 and

14) for effective conductivity o- /o-=P / .
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rigorous new identity satisfied by o-' for porous insu-
lators and also a surprisingly simple method of es-
timating the induced-mass factor for random arrays
of spheres. More detailed calculations including
corrections to (20) and comparisons to other theories
are planned to appear in a later publication.
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