
PHYSICAL REVIEW B VOLUME 27, NUMBER 12 15 JUNE 1983

Self-consistent kinetic energy in the electron fluid
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A self-consistent expression for the kinetic energy of a fermion Jastrow trial function is

derived. Calculations for the electron fluid show only a small shift from earlier results using the
Clark-Westhaus kinetic energy with the convolution approximation.

I. INTRODUCTION

The Feenberg-Jastrow variational theory has been
applied extensively to the theory of highly correlated
quantum fluids with much success. These fluids in-

clude both the electron fluid, with its long-range
Coulomb interaction, ' and systems with short-range
interactions such as the helium liquids2 and nuclear
matter. When applying integral-equation methods to
evaluate the energy in these systems [most notably
the hypernetted-chain approximation (HNC) and its
generalizations], it is necessary to choose between
several formally equivalent expressions for the kinet-
ic energy, the most common of which are the
Jackson-Feenberg (JF), Clark-Westhaus (CW), and
Pandharipande-Bethe expressions. ' Each expression
has advantages and disadvantages. It was shown in
Ref. 1, for example, that the CW kinetic energy
used with the effective-correlation HNC approxima-
tion gives very good results for the electron fluid
over a wide density range. On the other hand, the JF
kinetic energy is generally preferred for short-ranged
systems because the three-body term in the kinetic
energy in those systems is small and the resultant
Euler-Lagrange equations are well behaved.

In Ref. 2 it was shown that the differences
between these evaluations of the kinetic energy are
due to inconsistent approximations for the two- and
three-body terms in these forms. It was pointed out
that the fermion generalization of the Born-Green-
Yvon equations (FBGY) removes this inconsistency.
The natural approximations within the FBGY method
are not, however, stable under Euler-Lagrange

analysis, in contrast to the HNC-based approxima-
tions.

Another possible resolution of the kinetic energy
difficulties is to make use of the fact that, while
three-body functions appear in the kinetic energy, the
HNC equations depend only on the two-body distri-
bution function and other related two-body functions.
Thus a suitably chosen HNC approximation for the
three-body functions will render all of the kinetic
energies equivalent. '

Since the three-body term in the JF kinetic energy
is ignorable in short-ranged systems, such a self-
consistent approximation scheme is unnecessary; it
would merely bring the other evaluations into agree-
ment with the JF value. Such is not the case, howev-
er, in the electron fluid where the three-body terms
are important in each of the alternative expressions.
Our purpose in this Brief Report is to develop an
HNC-consistent expression for the kinetic energy and
to investigate its effect in the electron fluid.

II ~ SELF-CONSISTENT KINETIC ENERGY

The Jastrow trial wave function for an N-body fer-
mion system has the form

N

P( r &, . . . , r „)=Q( r ~, . . . , r „)ge ", (l)
i(j

where P is the ground-state Slater determinant of the
noninteracting system and u(r) is chosen to minim-
ize the expectation value of the Hamiltonian. The
CW expression for the kinetic energy is

3 h h= Tg+T2+ T3 kp+p J d r g(r) [Vu(r)]
5 2m 8m
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where g(rt2) is the two-body (or radial) distribution
function

Pj'(+ —l ) JJ d &3
' ' ' d &w I Q I

JI d3rt d3r~~q ~2

and g3 is the similarly defined three-body distribution
function.

To eliminate the three-body term in Eq. (2) in
favor of two-body functions, we define an operator 9
which has the same effect as the ordinary gradient V'

except that it operates only on the r dependence
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through the Jastrow pseudopotential u. Then the
equation Bg looks like the ordinary BGY equation

81g ( «12) g ( «12) 7 1 u ( r»)

+p g3( I t2 r 23) '7tu( r j3)d «3 ~ (4)

Using Eq. (2) we obtain

and N(r) is the nodal function defined by the equa-
tion

where X(r) is the direct correlation (or non-nodal)
function satisfying the nodal equation

T'2+ T3 p J d'«12 71u ( «12) ' t) lg ( «12)
8m

g(r) —1=X(r) +N(r)

Then if we define the auxiliary functions
7i(r), g(r) by

(8)

which is a natural generalization of the boson
Jackson-Feenberg kinetic energy. 4

We shall refer to an approximation as self consis-tent

if it uses the same approximate functional relation-
ship between g and u to generate the approximation
for Bg.

'7q(r) = 8N(r),
'7((r) = t'iX(r),

the equations for Bg generated by Eqs. (6)—(8) are

Bg(r) = '7g(r) +g(r) 0

III. APPROXIMATION
where

x [rt(r) —w(r) —N(r) ] (10)

A simple but useful application of this result is ob-
tained by using the effective-correlation (i.e., Lado)
HNC approximation for g(r) (Ref. 1): and

'Fat(r) = p „Vg( r —r ') [g(r') —1]d'r' (ll)

g(r) =exp[u(r) +w(r) +N(r)] (6) Bg(r) = '7$(r) +'0 rt(r) (12)

where w(r) is chosen to reproduce the noninteracting
fermion radial distribution function when u(r) =0,

Note that Eq. (10) may be used to express the kinetic
energy in the following form:

T2+ T3= p d r 'Vu(r) Vg(r) +p d'r g(r) '7u(r) '7[q(r) —w(r) —N(r)]
8m 8m

(13)

The second term is the fermion correction to the bo-

son JF form; it vanishes in the boson limit, where

w =0 and rt(r) =N(r).

The resulting Euler-Lagrange equation,

5

() (H)=0 (14)

IV. ELECTRON FLUID

Special care must be taken with the large-r proper-
ties of any approximation used with the electron
fluid. For this reason the convolution approximation
(CA) was used in the CW kinetic energy in Ref. 1.

is well-behaved, and the solutions satisfy the perfect
screening long-wavelength limit. Adding low-order
HNC-type corrections to T3 made only small shifts in

the energy (see below), though incorporating these
corrections in the energy before deriving the Euler-
Lagrange equation introduces improper long- wave-

length behavior. To facilitate comparison between the
CA results of Ref. 1 and our self-consistent (SC) ap-

proximation using Eq. (13), we define the energy shift

tt, T=—T3sc —T3c" = J d3k dp
&

dq C~k[S(k) —1]u(p)S(p)[y(q) —u(q)S(q)] (15)

where S(k) —1 and u (k) are the dimensionless Fourier transforms of g (r) —1 and u (r), respectively, C~ is a

phase-space factor defined in Ref. 1, and y(k) is the dimensionless Fourier transform of rt(r) + u(r) satisfying
Eqs. (10)—(12) which can be rewritten as a linear integral equation:

t'a+k
k~y(k) =k2u(k)S(k) + Jl dp I dq~(k2+p' —q2) [S(p) —1]y(q)

gm'p
(16)
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TABLE I. The correlation energy per particle of the electron fluid at several densities (measured by r,) and spin degeneracies

v, in millirydberg units. E: Results of Ref. 1 using the convolution approximation in the CW energy. b T: The energy
difference between the self-consistent approximation and the convolution approximation. AT": Lowest-order HNC correc-
tions to the convolution approximation (Ref. 1).

ECA g TSC g TLo ECA b Tsc 6 TLO EcA
v=4
g TSC g TLo

1

2

4
6
8

10
14
20
30
40
50

—53.9
—41.0
—30.0
—24.4
—20.9
—18,4
—15.1
—12.1
—9.18
—7.50
—6.38

—0.75
—0.62
—0.48
—0.40
—0.34
—0.29
—0.23
—0.17
-0.11
—0.08
—0.06

—0.31
-0.28
—0.24
—0.20
—~, 17
—0.14
—0.09
—0.04

0.02
0.05
0.07

-113
—85
—60.4
—48.1
—40.4
—35.0
—27.9
—21.6
—15~ 9
—12.7
—10.6

—0.72
—0.69
—0.60
—0.51
—0.43
—0.37
—0.28
—0.20
—0.12
—0.08
—0.05

—0.62
—0.67
—0.65
—0.59
—0.52
—0.46
—0.35
—0.23
—0.11
—0.04

0.00

—182
-132
—90.4
—70.3
—58, 1
—49.8
—39.0
—29.7
—21.6
—17.0
—14.1

—0.55
—0.63
—0.62
—0.55
—0.48
—0.41
—0.31
—0.22
—0.13
—0.09
—0.06

—0.51
—0.63
—0.68
—0.64
—0.57
—0.51
—0.39
—0.26
—0.13
—0,05
—0.01

ECA g TSC g TLo EcA ATsc

1

2
4
6
8

10
14
20
30
40
50

—261
—181
-119
—90.7
—74.0
—62.8
—48,6
—36.6
—26.3
—20.6
—17,0

—0.52
—0.64
—0.66
—0.59
—0.51
—0.44
—0.34
—0.23
—0.14
—0.09
—0.06

—0.47
—0.62
—0.69
—0.65
—0.58
—0.52
—0.39
—0.26
—0.13
—0,05

0.00

-775
—449
-257
-184
-144
-119
—89,3
—65.2
—45.4
—35.0
—28.5

—0.59
—0.73
—0.72
—0.64
—0.55
—0.47
—0.36
—0.25
—0.15
—0.10
—0.07

—0.45
—0.61
—0.68
—0.64
—0.57
—0.50
—0.38
—0.25
—0.12
—0.04
—0.00

Note that approximating the solution of this equation
for y by the inhomogeneous term causes 6 T to van-

ish, thus reproducing the convolution approximation.
At small k, the integral term in (16) is proportional
to k'. Since u(k) is negative, y will be predominant-

ly negative, and thus also the integral term. Conse-
quently 4T (0.

Using Eq. (15), the Euler-Lagrange equation
resulting from the self-consistent approximation is
derived and analyzed precisely as in Ref. 1. The
solutions will satisfy the perfect screening condition
and appear to be otherwise well behaved.

Instead of actually solving this Euler-Lagrange
equation, we took the simpler course of using the
solutions from the convolution approximation Euler-
Lagrange equation to evaluate the energy shift 5 T,
Eq. (15). The results, shown in Table I, are of the

order of a millirydberg or less, and are quite similar
to the lowest-order HNC shifts obtained in Ref. l.
The table includes several values of the spin-
degeneracy factor v. v =1 corresponds to the com-
pletely polarized electron fluid, v = 2 to the paramag-
netic fluid, and v = ~ to the charged boson fluid.

We conclude that the Clark-Westhaus expression
for the kinetic energy with the convolution approxi-
mation is a very good approximation in the Coulomb
fluid, comparable to the Jackson-Feenberg kinetic en-
ergy in the short-ranged systems.
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