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We present a theory of the frequency spectrum of orientational fluctuations of molecules
in a liquid which are near a solid interface at which the molecules are rigidly pinned, with
the consequence that there will be orientational order induced in the fluid in the vicinity of
the solid interface. It is argued that the fluctuations in orientation in this region may be
probed by light scattering spectroscopy, under conditions where the incident light suffers to-
tal internal reflection from the boundary. Our theory is based on a time-dependent
Landau-Ginzburg equation for the fluctuating part 8Q(X,t) of the orientational-order
parameter; the pinning of the molecules at the interface leads to orientational order near the
interface, we assume, is described by an order parameter Q(z) which falls exponentially as
one moves into the liquid. We have carried out a series of calculations of the light scatter-
ing spectrum, in the reflection geometry, for the liquid crystal p-methoxybenzylidene-p-(n-
butyl)aniline in contact with a dielectric substrate. As the temperature of the nematic-
isotropic phase transition is approached from above, pinning of the order parameter can
lead to a substantial enhancement in the strength of the central peak in the light scattering
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spectrum observed in this geometry.

I. INTRODUCTION

In the past few years, light scattering spectros-
copy has been employed to study a variety of ele-
mentary excitations on solid surfaces, and at inter-
faces.! Raman signals from surfaces are generally
weak and hard to detect, though surface polaritons
on semiconductors have been studied by this
method,? under conditions where there is no sub-
stantial enhancement of the electric field of the in-
cident and scattered photon. There have been major
advances in Brillouin spectroscopy which allow sur-
face phonons and surface spin waves to be studied in
thin films, and in layered media.

Since light scattering signals from liquids can be
quite strong, this spectroscopy may prove to be a
powerful probe of the dynamics of the liquid state,
in the near vicinity of an interface with a solid.
Such studies may be carried out in the geometry il-
lustrated in Fig. 1. One has a liquid with dielectric
constant €; placed over a nominally transparent
dielectric substrate with dielectric constant €, and
€ > €. The incident photon thus has a field which
decays exponentially as one moves into the liquid,’
if its angle of incidence is greater than the critical
angle 6, and as a consequence the wave serves as a
probe of the near vicinity of the interface. In the
scattering experiment, the scattered photon can also
exist with angle to the normal, 6;, greater than the
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critical angle 6,. Thus both photons have fields lo-
calized near the interface. For typical liquid-solid
interfaces, one estimates the penetration depth of the
fields to be in the range of a few hundred angstroms.
In this geometry, Dil and van Hijningen have ex-
plored the Brillouin spectrum produced by density
fluctuations in a liquid in the vicinity of a solid in-
terface.*

In addition to the phononlike features produced
by scattering from density fluctuations, the light
scattering spectrum of a liquid contains a central
peak dominated by scattering from fluctuations in
molecular orientation, in fluids of complex mole-
cules. While the liquid may be isotropic on the time
average, dynamic fluctuations produce local orienta-
tional order which subsequently decays in a charac-
teristic time. This leads to a central peak in the
light scattering spectrum. This paper explores the
way in which the frequency spectrum of such orien-
tational fluctuations can be affected by the proximi-
ty of molecules to a solid interface.

The basic notion is the following. While the
liquid may be isotropic, right at the interface with
the solid, the molecules can in general be assumed to
be oriented in some fashion. If the correlation
length associated with orientational fluctuations is &,
the orientational order forced upon the liquid at the
boundary will extend a distance the order of £ into
the fluid. In this “selvedge region” between the
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solid and the isotropic bulk fluid, the frequency
spectrum of the orientational fluctuations may
differ substantially from those in the bulk fluid, and
the light scattering method outlined earlier, at least
in principle,’ can serve as a probe of those differ-
ences. Liquid crystals should prove to be of particu-
lar interest, because near the phase transition (weak-
ly first order) from the isotropic to the nematic
phase, the correlation length £ becomes quite large,
comparable in magnitude to the optical penetration
depth into the fluid. Furthermore, from a good ex-
perimental study® of the liquid crystal pentylcyano-
biphenyl (5CB) in contact with a solid substrate
[hexadecyltrimethylammonium bromide (HTAB)], it
is clear that orientational order is indeed present
near the interface, and extends over a region with
spatial extent that increases dramatically as the tran-
sition to the nematic phase is approached from
above.

The aim of this paper is to develop a model
description of the influence of a solid boundary on
orientational fluctuations in liquids in the vicinity of
a solid boundary, and then explore the behavior of
the light scattering spectrum, when the back-
scattering geometry in Fig. 1 is employed. We have
developed a simple-model description of these fluc-
tuations, based on a continuum theory where the
Landau free energy is expanded as a power series in
the order parameter, and a time-dependent Landau-
Ginzburg description is employed for the dynamics.
The basic approach is thus a generalization of the
methods which have been found to provide an excel-
lent description of the physics of bulk liquid crystals
though, as the reader shall appreciate, it will be
necessary for us to introduce simplifications at vari-
ous stages, to keep the analysis tractable.

While our primary emphasis is on the dynamics
of liquid crystals in the vicinity of an interface
which provides orientational pinning, the basic
model may be applied in other physical situations
where a surface or interface induces order. For ex-
ample, Hochli and Rohrer’ have argued that in
SrTiO;, the surface induces a low symmetry phase
of D4, symmetry, at temperatures above the bulk
transition temperature. The approach used here
may also provide a Landau-Ginzburg description of
the dynamics of this spatially inhomogeneous phase;
in this system, the light scattering method discussed
here may not prove to be a suitable probe, but sur-
face acoustic-wave attenuation may offer access to
the dynamics of the surface region.

In the model presented here a Green’s-function
method is used to determine the frequency spectrum
of thermal orientational fluctuations in the liquid
near the surface. By the Kubo or fluctuation-
dissipation theorem, this information enables us to

construct the response of the surface region to the
external electric field of the electromagnetic wave.
Numerical applications are made for the particular
case of p-methoxybenzylidene-p-(n-butyl)aniline
(MBBA) because many experiments have been per-
formed on this particular liquid crystal, which pro-
vide us with the experimental values of all the bulk
parameters required for such calculations.

The two main parameters which determine the
scattering efficiency are the temperature and the an-
gle of incidence of the light on the surface. The
reason is that the temperature determines the corre-
lation length, while the angle of incidence deter-
mines the penetration depth of the light inside the
liquid crystal.

The outline of the paper is as follows: In Section
II, we present a Green’s-function description of light
scattering by the orientational fluctuations near the
surface. In Sec. III the response of the molecules of
the liquid crystal close to the surface is derived in
the time-dependent Landau-Ginzburg formalism.
In Sec. IV, the calculation of the correlation func-
tion is presented in the limit of a small order param-
eter at the surface, which is a simple case that al-
lows one to discuss the frequency dependence of the
spectral density. This special limit incorporates a
number of features present in the general spectrum.
In Sec. V, the Green’s function associated with the
thermal fluctuations and the scattered light intensity
is derived in the general case, while the numerical
applications are reported in Sec. VI. In Sec. VII, the
results are discussed and analyzed. It is shown in
particular that the results can be simply interpreted
by introducing at the surface an effective potential
of the Morse form, which admits one stable bound
state.

II. LIGHT SCATTERING
FROM ORDER-PARAMETER FLUCTUATIONS
IN THE REFLECTION GEOMETRY

We shall begin with a summary of the theory of
light scattering geometry illustrated in Fig. 1. Our
aim is not to provide a complete description of this
phenomenon for a general scattering configuration,
but rather to carry the discussion through to the
point where it is clear what correlation function is
probed in such studies.

Following de Gennes,® we describe the liquid crys-
tal by the order parameter

Qup=3(Rahg—38ap) , 2.1)

where 7(X), the director, is a vector that describes
the net alignment of the molecules in the fluid. At
temperatures above the transition to the nematic
phase, the time average (Q,g) of each component
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of the order parameter vanishes. Near the interface,
however, all the components of the tensor (Q,g) do
not vanish when the wall imposes some orientation
of the molecules of the liquid crystal, which is the
common experimental situation.®® For simplicity,
let us consider the case of the pinning at a liquid-
solid interface where the fluid retains the cylindrical
symmetry about the z axis in Fig. 1. From an exper-
imental point of view, this is the configuration met,
for example, in homotropic textures where the easy
axis is perpendicular to the surface. In that case,
near the interface, we can write

(Qxx)"_—(ny):_%(sz):Q(Z), (2.2)

where Q(z) will decay to zero as one moves into the
fluid. There will be fluctuations 8Q,p(X,t) in the
parameter not only near the interface, but also in the
fluid, and these fluctuations modulate the dielectric
constant €,p of the fluid, to produce light scattering.
We have, separating the dielectric tensor into a stat-
ic part €,4(z) and a fluctuating part 8e€,4(X,1),

Eaﬁ=?aﬁ(z)+5€aﬁ(i,t) , (2.3)
where
8eaﬁ(i',t)=EI‘aﬁ;Y§8Q,,5(X’,t) . (2.4)
70

If light propagates in the fluid, one may obtain
descriptions of the inelastic scattering produced by
the fluctuations by solving the Maxwell equations'

- o 92 QZ
[VX(VXE)g—€(2)—5Eq=—5 2 8€6Ep ,
¢ B

)
(2.5)

where () is the frequency of the light and €y(z) the
static dielectric constant of the structure in Fig. 1,
i.e., €y(z) equals the dielectric constant €, of the solid
for z <0, and that €; of the liquid (assumed isotro-
pic) for z > 0. Here c is the light velocity in the vac-
uum. In principle, the static order induced near the
solid-liquid interface, as described by Eq. (2.2), will
lead to spatial modulations of the static piece €,4(z)
of the dielectric tensor. We ignore these terms with
our use of the simple form of €y(z), since they will
only lead to small modification of the field profiles
of the incident and scattered photons near the inter-
face.

The geometry illustrated in Fig. 1, where the in-
cident beam, the scattered beam, and the normal to
the interface all lie in one plane, is particularly sim-
ple. If we suppose further that the incident and
scattered light is s polarized (E parallel to §), only
8¢, enters. Then the only nonzero coupling con-
stants which enter Eq. (24) are I'),.,,, T,.,,, and
Iy, s0 in this geometry one couples to fluctua-
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FIG. 1. Scattering geometry which forms the basis for
the discussion in the present paper. A photon strikes the
liquid-solid interface at an angle 6., as its field penetrates
only a short distance into the liquid. Similarly, the scat-
tered photon emerges with angle greater than 6., as its
field is also localized near the interface. X is in the plane
of incidence.

tions in only the diagonal elements of the order
parameter. One may remark that the experimental
work of Dil and van Hijningen'* shows that scatter-
ing from fluctuations in the liquid are in fact strong
enough to detect, unobscured by signals from the
substrate.

We now introduce one assumption not particular-
ly crucial to the presentation, but which will greatly
simplify the subsequent discussion. This is that the
dominant fluctuations near the interface have the
same symmetry as the static order parameter itself,
30 8Q =80, = — 360, =8Q(%,7). This reduces
the problem to the study of a single fluctuating
coordinate, in the presence of the inhomogeneity
near the interface. We are exploring the possibility
of incorporating fluctuations of lower symmetry in
the analysis, and the present model is the simplest
picture which includes the physics we believe essen-
tial to the problem. We may then write

Oe

0Q

It is possible to estimate the magnitude of the
coupling constant (e /0Q) in Eq. (2.6), from data on
the anisotropy of the refractive indices n;—n, in
the nematic phase of the liquid crystal. Measure-
ments on the material MBBA show that nj—n,
varies linearly with the order parameter Q in the
nematic phase, even when Q is 0.4 or larger.’ From
this data, and Eq. (2.6) with 8Q(X,t) replaced by the
static order parameter Q, we estimate (d¢/9Q )~1.0.

One may solve the differential equations for the
scattered fields in the substrate by using a matrix of

- 5Q(%,1) . 2.6
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Green’s functions for the Maxwell equation. These
satisfy, for the case where the scattering is quasielas-
tic

2

3 17Xl wieo2) 5 |Gagl X, X 5t 1)
=8p0(X—-X")8(t —1'), (2.7)

where in the present geometry these may be Fourier
transformed as follows:

d k]|d9' lk”(x”—x ”)

Gaﬁa,i’;t—t')=f (2m)?
T
Xe_imt—t’)Gap( EH,Q;Z,Z!) ,

(2.8)

where the subscript || denotes a vector (or com-
|

E(S)(

a9 |- ],

with Eo(X’

O (X, X5 —1"18Q(X

ponent of a vector) in the plane parallel to the inter-
face. For the two-layer geometry of present interest,
these functions may be found in the literature.' We
need only G (k“,Q z,z') in the present application,
forz'>0 and z <0. This function has the form

eikzze —1/(0 'z’
BV (2.9)

G, (k ,0;2,2")=
» I Yo +ikz

where for a wave incident on the interface, with the
angle of incidence =6, the quantity

Yo= %(essin26~q )172 (2.10)

is the inverse of the penetration depth of the elec-
tromagnetic field into the liquid, and k, is the z
component of the wave vector of the wave in the
substrate.

The scattered electric field may then be written

L UEN(X',t'), (2.11)

,t') the electric field of the incident photon in the liquid. This expression is valid only in the first

Born approximation, which is valid here since the intensity of inelastically scattered light is, at best, very weak.
If T is the transmission coefficient of the field through the interface, and E'© its amplitude in the substrate,

then

Eo=ET exp(ik /"X | Jexp—(152") .

(2.12)

The upper index on ¥y has been added to distinguish this parameter given by Eq. (2.10) with 0 equal to the an-
gle of incidence of the light 6;, from the extinction coefficient 7 for the scattered photon, given by Eq. (2.10)
with 6 equal to the angle of emergence 6; of the scattered light in the substrate.

We can now calculate the scattered light intensity I from Egs. (2.8)—
greater than the critical angle of total 1ntemal reflection 6,, illustrated in Fig. 1 (y§

(2.12). When the scattermg angle 6, is
% and 7Y’ are real), one has

4 (s)
d%*{Pdw 1
I=|Ef|*= Eo|*|T|? “
| E*| |Eo|*|T | Q QmP |79k |2
xfd2x||e f “dz [ “dze e+ (50(0,2)80(%,2")),

1, (0) :

(2.13)

where G| = ki ” —k " is the difference in wave vector of the incident and scattered photon, prOJected onto the

plane of the interface. Also, w is the frequency shift of the scattered light, and y=y"+ 7, with ¢ and 7¥’
the extinction coefficients of the incident and scattered light in the liquid as discussed above. In Eq. (2.13), the
angular brackets denote a thermodynamic average, and

(80(0,208Q(%,2")) o= [ j:dtei”’<8Q( 0,2;008Q(%,z'5t)) (2.14)

|
with dQ the solid angle, and we also have the dif-
ferential relationship

d* | Q2
1 dZI 7(’)?=€s_20059s ) (2.16)

= ) (2.15) c
|Eq|* dodQ; which may be derived from the Jacobian of the

It is now straightforward to evaluate the fraction of
the light scattered, per unit solid angle, per unit fre-
quency range. We have for this quantity &
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. —(s)
transformation between kHS and the polar angles 6
and @, that specify the direction of the scattered

beam. o ) '
The transmission coefficient 7" which appears is

simply the appropriate Fresnel coefficient, which

may be written
(0).
T—— 2 (2.17)

70 4 ik
with k% the z component of wave vector of the in-
cident light in the substrate.

After some algebra, the scattering efficiency per
unit solid angle per unit frequency may be written

o cosds € | de ? [ sin%6, —sin26,
2m €, | 0Q cos*6,
ol
X T] Aqp) , (2.18)
where

S (@)= [ e I
Xfowdzfowdz'e —Nz+2)
X (8Q(0,2)8Q(%),z")),, -
(2.19)

The last step is to break down the spectrum of
fluctuations into spatial Fourier components parallel
to the interface. We shall see that, for parameters of
interest to us, we can neglect the a” dependence of
#(q|,@). This implies that the Fourier transform
# (X)) falls off rapidly with X), and thus may be
approximated, by a Dirac function 8(7{'||), or, ac-
cording to Eq. (2.19):

(80(0,2)8Q(X1,2')) o =(8Q(2)8Q(2")) , o/ 8(%))) ,
(2.20)

where ./ is a quantization area which we shall take
as unity, and we have written

(80(2)8Q(z')) =(80(0,2)60(0,z")), . (2.21)

It follows that the neglect of the G dependence of
#(q),®) amounts to neglecting correlations of
orientational motions in the xy plane. We shall re-
turn to this point later. Then we are reduced to a
one-dimensional problem, with

Fq)p0)=r7(0)
= fowdz fowdz’e —nz+z')

X (8Q(2)8Q(z")),, .
(2.22)

III. THE DESCRIPTON OF THE NEAR
VICINITY OF THE BOUNDARY

As in the preceding section, we consider the liquid
crystal described by the scalar order parameter Q,
and for the moment we suppose it depends possibly
on the time, and only on the coordinate z normal to
the surface. For the purpose of contact with light
scattering studies, we shall see that the latter as-
sumption is well justified. The very first monolayer
of molecules is supposed tightly bonded to the solid
surface, and our attention is directed to the fluid
outside this layer within which orientational order is
induced.

The Landau—de Gennes free-energy density may

be written!!
2
99
0z

+V0b(2)Q , (3.1

where in the model, the coefficient 4 (T) is taken to
be

A(T)=a, (T —T*). (3.2)

F=74(T1Q*— $BQ*+1CQ*+ 5D

If the coefficient B were zero, the system would un-
dergo a second-order transition to the nematic phase
at T=T*. However, the cubic term in Eq. (3.1)
does not vanish,® which means that the isotropic-
nematic phase transition is a first-order transition at
T,=T*+2B?/3a;C. At T,, the order parameter
jumps discontinuously from 0 to Q,=2B/3C. The
next to last term is the deformation energy, which is
approximated by the simple form displayed in Eq.
(3.1). This form is used commonly in the literature
on liquid crystals®!? although the full form of the
deformation energy is more complex.”® Finally, the
last term in Eq. (3.1) represents the pinning force ex-
erted on the molecules in the liquid, by the layer
tightly bound to the substrate.

Within the framework of a time-dependent
Landau-Ginzburg description, the time variation of
the order parameter is given by'*

a0 oF

v ar +2uAd,= 20 °
Here v and p are viscositylike coefficients, and 4; is
the shear rate tensor. In the regime of frequency
and wave vector of interest to light scattering (small
wave vectors), the hydrodynamic motions which
contribute to 4; are slow compared with those of Q,
so that the influence of the shear rate tensor is negli-
gible.® We thus drop this term, and Eq. (3.3) then
becomes

(3.3)

2
A(DQ—B*+0Q —p3L 1,92 _ 5 34
dz at
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where ¥ =% +8% with F,=V,8(z) the pinning
force. We have added a second driving term for Q,
0F (z,t), whose precise form we shall not require.
We then write Q(z,t)=0Q(z)+8Q(z,t) and separate
Eq. (3.4) into a time-independent and time-
dependent piece, and we then linearize the time-
dependent portion with respect to 8Q(zt¢). The
time-independent portion determines the static pro-
file O(z):

.
AD—BO?+CO %g—zVoS(z), (3.5)
Z

while the time-dependent fluctuations are controlled
by

v8Q +A4 (T)8Q —2BQ(2)8Q +3C[0(2)]26Q

2
0L s0=870z0). (36
oz

A. Static effects

Over most of the “selvedge region” within which
Q(z) is nonvanishing, Q(z) will not be large, and the
Q0?2 and Q° terms in Eq. (3.5) will have a modest in-
fluence. If we ignore these, then Eq. (3.5) is readily
solved to yield

Q(z)=Qpexp(—2z/§), (3.7

where £=(D/A)"*={D/[a (T —T*)]'/?, and
Qo=Vy/[2(4D)"?]. The correlation length £ can
be quite large. For MBBA, £~200 A, when T =T,
the temperature of the first-order phase transition.
Note that Q,, the magnitude of the order parameter
close to the solid, grows with temperature as T, is
approached from above.

We are now in a position to compare our model of
Q(z) with the data reported by Miyano.® First no-
tice that as the temperature is increased well above
T,, the birefringence does not vanish, but decreases
substantially to assume a temperature-independent
value. In our picture, this residual effect has its ori-
gin in the first monolayer, bound to the surface so
tightly that it remains oriented well above T,. The
strongly temperature-dependent excess birefringence
which sets in as the temperature is lowered has its
origin in the fluid outside this innermost sqlid layer.
Miyano argues that this is controlled by f o dz Q(z),
which in our model should vary with temperature as
(T —T*)~!, when the temperature variation of Q is
noted. We have subtracted the background pro-

82
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FIG. 2. We plot the signal observed by Miyano (Ref. 6)
as a function of (T —T*)~!, after the background signal
has been subtracted off, as described in the text. One sees,
the linear variation with (T — T*)~!, as expected from our
model.

duced by the solid layer from the total amount of
birefringence, then inverted the results and plotted
the inverse as a function of temperature in Fig. 2.
We indeed find a straight line, with a small negative
intercept. This suggests our model of Q(z) is
reasonable. There may be some uncertainty in
Miyano’s assignment of the value of T*, due to the
fact that his T* was calculated rather than experi-
mentally determined. In another study, Lister and
Stensen'’ experimentally determined 7, and T* in
MBBA. There is in fact a variation of T, — T* from
sample to sample. This difference may range from
0.8 to 1.2 K, so any uncertainty in a calculated value
of T* can be in the range of +0.2 K. Since a shift
of T* by 0.1 K is sufficient to eliminate the negative
intercept in Fig. 2, we do not regard this discrepancy
between our model and the data as serious.

B. Dynamic fluctuations near the interface
above T,—general remarks

In Eq. (3.7), we give the equation which describes
time and spatial variations of the order parameter
produced by coupling the system to an external
force. From the fluctuation-dissipation theorem, we
know the Green’s function associated with this dif-
ferential equation may be used to generate the fre-
quency spectrum of the fluctuations probed by the
light scattering method. Thus we are led to intro-
duce the Green’s function G (z,z’;t —t’) which is the
solution of

w3 +A4 —2B0(z)+3C[Q(2)]*—D— |G (z,2';t —t'=8(z —z")8(t —1') . (3.8)

ot dz?

From Sec. II, we see that we require the time Fourier transform of this equation, which takes the form
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2
A —iov—2BQge ~*/¢ +3CQ5e“2‘/5—D—aa;; G(z,2';0)=8(z —2') . (3.9)

The quantity {8Q(z)8Q(z’)),, which enters the light
scattering cross section in Eq. (2.22) is then correlat-
ed to the Green’s function by the fluctuation-
dissipation theorem.!® Since we shall always be in-
terested in frequencies so low that #iw << kT, only
the classical form of the fluctuation-dissipation
theorem need be used. We then have

2kyT

(80(2)6Q(z")) = ImG (z,z';0) .  (3.10)

Let us define the quantity % by the relation
— 1, —H ") .
Hlw)= . fo dzfo dz'e "*+G (z,2";0) .

(3.11)

According to Egs. (2.16)—(2.22), the imaginary part
of 7,

S=Im[#(0)], (3.12)

gives the Brillouin scattering efficiency &, except
for a scaling factor independent of Q,, w, and T.
The quantity #(w) defined in Eq. (2.22) is equal to
2S.

Equation (3.9) is not by itself sufficient to deter-
mine the form of the Green’s function. The dif-
ferential equation must be supplemented by suitable
boundary conditions. If z’ is held fixed at a finite
value, then since fluctuations are correlated over
only a finite distance, quite clearly we must have

lim G(z,z';0)=0 (3.13a)
Z— o0
If z is fixed, a similar statement applies to the
behavior of G (z,z';w) considered as a function of z'.
Now as argued above, we expect the first mono-
layer of liquid-crystal molecules to be tightly bonded
to the substrate, and this implies orientational fluc-
tuations in the near vicinity of this layer will be
strongly suppressed. In essence, we require 8Q(z,7)
to vanish as z—0 as a consequence, and for fixed z’
this translates into a second boundary on G (z,z";0);

limG(0;z';0)=0 . (3.13b)

Z—>!
A similar boundary condition applies to the z’ varia-
tion of the Green’s function, if z is held fixed. There
would be no great difficulty carrying through the
analysis presented below with a more general boun-
dary condition, in which a linear combination of
8Q0(z,t) and 98Q/dz were required to vanish at
z=0. Such a boundary condition would then intro-

-
duce an additional parameter into the anlaysis. We
believe the boundary condition in Eq. (3.13b) is quite
reasonable from the physical point of view, and in
the absence of data we see little reason to complicate
the discussion in this fashion, at the present time.

The next step is to carry out explicit construction
of the Green’s function, then evaluate the integral
on z and z’ in Eq. (2.22). We first consider the case
0, =0, where the solution may be expressed entirely
in terms of elementary functions. Then we turn to
the general case with Qy=40 and arbitrary in value.
The special case Q=0 is worth consideration, since
a number of features in the spectrum produced by
the full theory do not depend on Qg and are con-
tained in this special case.

IV. AN ASYMPTOTIC LIMIT; THE CASE Q,=0

At first sight, to take the limit Qy—0 seems not
reasonable, since the whole point of the present
analysis is to explore the influence of orientational
order near the surface on the light scattering spec-
trum. By studying this special case, and comparing
the behavior of the spectrum when Q,=0 with the
general case in the next section, we shall come to ap-
preciate that a number of features of the spectrum
are in fact weakly affected by the orientational order
near the interface.

When the Qy=0, the equation satisfied by the
Green’s function becomes simply

2
U —ievGlaz)-DS T =8z 2, @)
z

and it is an elementary matter to solve this equation.
We phrase the result in language similar to that used
in the next section’s discussion. We introduce two
functions ¥ > (z) and ¥ <(z) which are linearly in-
dependent solutions of the homogeneous version of
Eq. (4.1). These functions are constructed to obey
the boundary conditions

lim ¢¥>(z)=0, (4.2a)
lin})¢<(z)=0 . (4.2b)

We have the explicit forms

P> (z)=e~ %, (4.3a)
1 <(z)=sinh(kz) , (4.3b)
where
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172
, Rek>0. (4.3¢)

The Green’s function may then be written'’

G(zz)-———[¢>(z Y<(z')0(z' —z)

+y<(2)¢>(z")6(z —2")], (4.4)
|

and after integration, we obtain the very simple ex-
pression

Fr=gi—d @
2yDo (y+k)
The imaginary part may be arranged to read
kT
S(w)= 2o (m)(—:)lzz(w) (4.8)
where
a(w)=wv+yV2D [(A2+ ™) 2 — 411/
(4.9a)
and

b(@)=Dy'+A+yV2D [(4*+e™)' 2 +4]'2 .
(4.9b)

There are several special limits of the above expres-
sions worthy of attention. We consider them in se-
quence.

(1) wv<<A (low-frequency limit; y£ general).
Here one has

a(w)=wov(1+7§) (4.10a)

and

b(w)=A(14+y€)?>>al0), (4.10b)
where £=(D/A)'? is the coherence length intro-
duced earlier, in Sec. III. Thus we have
S=—2T Y (e, @.11)
O)=——-"—7— (v .
27(1+7E)® 42

We find a finite limit as ©—0 for S (w) by virtue of
the restoring force for orientational fluctuations pro-
vided by the constraint A4.

Now consider two opposite limiting cases.

(2) 4 >> Dy (equivalent to y€ <<1). To good ap-
proximation, we may set D =0 in the forms for a(w)

where W is the Wronskian of 4> and ¢<:

W= ¢<—L ¢<§éd;izk. 4.5)

As expected, the Wronskian is independent of z.!
According to Eq. (3.11), the quantity of central in-
terest is then

_(7’+k)‘f dz'e ~"sinh(kz’ )+f dze™ ”smh kz) f dz'e —rtkz (4.6)

[
and b (w). Then

kpT v
2y A%+ (ov)?’

and the light scattering spectrum is a Lorenztian
central peak, with width controlled entirely by 4. In
this limit where y—O0, the light penetrates deeply in
the liquid and the spectrum is reduced to the bulk
expression of the scattering of the light by bulk
liquid crystals.!! In particular, we find the expres-
sion of de Gennes'! for the relaxation time 7 defined
by the linewidth of the Lorentzian 7(T)~!

(3) Dy*>>A (equivalent to y£>>1). Here the
penetration depth of the light is very small com-
pared to the coherence length. One has

a(w)=(v)"*[(ov)!/24+(2Dy*)'/?]

S(w)= (4.12)

(4.13a)
and
w)=(Dyz)m[(Dyz)l/z-}—(2aw)1/2] .

There are two special cases here:

(4.13b)

(a) wv << D7,
kT 172
S(w ):72;377 —:; (A <«<wv<<Dy?) .

(4.14a)

(b) wv>>Dy?, where again a simple limiting form
applies,

8T 1
>

(4.14b)

which is the bulk expression [see Eq. (4.12)].

We now turn to a discussion of the significance of
the above results. In the limit 4 <<D1/2, we then
have the following picture of the spectrum. As the
frequency approaches zero, S(w) approaches the fi-
nite limit given in Eq. (4.11). Then when ov>>4,
but is small compared to Dy?, Eq. (4.14a) applies.
Evidently we have a central peak, which is flanked
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by a very broad, slowly varying wing, which falls off
as @~ 1/2, Then finally, at large enough frequencies,
when wv exceeds Dyz, the @~ !/2 behavior rolls over
the =% the crossover from the »~'? to o2
behavior insures that f o dw S(w) is finite.

It is now useful to examine some parameters
characteristic of the liquid crystal MBBA. All of
the parameters which enter our model have been de-
duced from light scattering studies of the bulk
liquid.’® Recall that 4 =a; (T —T*), and we have
a; =6.27x10"2Jem—K~!, with T*=314 K.
Then B=0.47 Jem™? C=0.79 Jem™>, and
D=4.43x10"" Jcm™!. These numbers imply
T.=315 K. The friction coefficient v has a tem-
perature dependence of the activated form,
v=v,exp(2800/T), with vo=1.76 10"
Jem™3sec, so when T =315 K we have
v=1.3%x10"7 Jem~3sec near 315 K. Finally, for
scattering geometries such as those discussed earlier
in thle paper, Stegeman® estimates that y~S5X 10’
cm” .

These numbers give Dy?/4 ~2 near the phase
transition when T'~7,. Thus the discussion of the
limit Dy*>>A provides a qualitative picture of the
nature of the spectrum, though D¥? is not so large
for this limit to be fully appropriate. Note that,
again near T~T,, we have 4/2mv=10° Hz. Fre-
quency shifts the order of 4 /v are thus too small to
be accessible by Brillouin spectroscopy, and beating
spectroscopy will be required for full access to the
central region of the spectrum. Of course, the in-
tegrated strength of the central peak is measured
much more easily, and this quantity contains valu-
able information also.

We shall see that the temperature dependence of
the integrated central peak, f o do S(w), is a quan-
tity of considerable interest. We would like to see
the temperature dependence of this quantity ex-
plored in the reflection geometry, and compared to
its bulk behavior. One may infer the behavior of
this quantity from data on the total amount of light
scattered diffusely from the surface, without the
need for obtaining the complete frequency spectrum.
We comment on this further, when the results of our
full calculations are presented in Sec. VI.

At the end of Sec. III, we remarked that to good
approximation, one may ignore the variation of the
scattering cross section with ), the wave-vector
change of the photon, projected onto the plane
parallel to the interface. The influence of ¢ on the
spectrum follows if in Eq. (3.6) we replace 3°/9z>
by the full Laplacian V2. Then all of the analysis
above goes through unchanged, except 4 is replaced
everywhere by the combination A4 +Dq|2|. Typical
values of g are g =10° cm~!, since g||' has the
order of magnitude of the wavelength of the light

T=T,, the ratio Dq|2| /A is the order of 0.1. Thus
for the particular example that is the primary focus
of the present paper, to good approximation we may
set G =0. Note that the expression Dqﬁ <<A can
be read §q|| << 1, which means that £ is too small to
induce a significant amount of correlation of motion
between molecules separated by the distance of in-
terest q | Uin the xy plane. We then meet again the
fact that correlations can be neglected in the xy
plane.

The special limits explored in this section bear a
close relationship to earlier work of Oliveros and
Tilley.'* These authors consider the backscattering
of light from entropy fluctuations near a surface.
The basic equation they study is thus a diffusion
equation, and in fact when we set 4 =0 (and also

0=0 as everywhere in this section), then our
theory is based on a simple diffusion equation also.
Oliveros and Tilley obtain an o ~!/? behavior of the
cross section, and in their case the divergence ex-
tends right down to zero frequency. This w~!/?
behavior is characteristic of scattering from two-
dimensional fluctuations. The condition ve << Dy?
which delineates the o~ '/? regime means that the
diffusion length (D /vw)'/? of fluctuations of fre-
quency o is very large compared with the penetra-
tion depth of optical fields into the liquid, so the
fluctuations appear two dimensional to the light.
When vo >>D7/2, the converse is true, and the fluid
appears as a thin layer (effective thickness y~!) of
three-dimensional fluid. Equation (4.19b) just de-
scribes the high-frequency tail of a diffusive central
peak in a three-dimensional fluid. The scattering ef-
ficiency is proportional to y~!, as the above con-
siderations require.

The other crossover, between the w-independent
and the ©~!/? behavior of the spectra outlined by
Egs. (4.11) and (4.14a), takes place at o ~4 /v. We
have already mentioned that this frequency is the in-
verse of the relaxation time for long-wavelength
fluctuations in the bulk liquid crystal. However,
when o >>A4 /v, the relaxation of spatially nonuni-
form orientational fluctuations is controlled by dif-
fusion rather than local restoring forces, and one
then finds the w~!/? behavior discussed above. In
Fig. 3, we present calculations of S(w) for the model
of MBBA described here, with Q,=0. This cross-
over is illustrated in Fig. 3(a).

It follows from the above discussion that the part
of the spectra w >>A4 /v is insensitive to the orienta-
tional order induced by the boundary. From a
mathematical point of view, this results from the
fact that the parameter 4 has dropped out in Egs.
(4.14). Then in what follows, we shall only focus
our attention to the lower-frequency part of the
spectra, typically o < 107 sec.™!
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(a)

10 T*«314K T
r Te =315K ]
0.8 y =5x10% .

S(w) (10%cm? s)

InS(w)

FIG. 3. For the case where Q,=0, we plot (a) the func-
tion S(w) defined in Eq. (4.8), and (b) the Neperian loga-
rithm of S(w). This is done for parameters characteristic
of MBBA. The dashed line in (b) is the behavior expected
from the w~!/? law in Eq. (4.14a). Crosses indicate the
points of the curves where 0 =A4(T)/v.

We are now ready to consider the general case
with Qy£0. Since this study leads us into rather
complex algebraic formulas, the present section
should provide orientation on the key features of the
phenomena.

V. THE SOLUTION FOR GENERAL Q,

We now turn to the general solution of Eq. (3.9),
for Qyp=£0. We shall see that it is possible to obtain
a closed-form expression for the integral in Eq.
(2.22), which is in the central expression in the
theory. While we cannot express the integral in
terms of elementary functions, nonetheless the final
form is suitable for evaluation on a computer, with a
modest expenditure of computer time. We remark
that this section is devoted principally to an exposi-
tion of the mathematics of the full solution to the
problem. The reader not interested in the rather
complex formulas presented here may wish to

proceed directly to Sec. VI, where we present the re-
sults of our numerical calculations, and discuss the
physical reasons for the trends evident in them.

We first consider the case w0, and we begin
with the change of variables

y=2dexp(—z/§), (5.1a)
172
y /

= == ; 5.1

w >d G(z,z';0), (5.1b)
where in these expressions
3C 172

= — (5.2)

d=Q0§ D

With this charge of variables,

8(z—z')= @ Sy —y’)-——lZS(y -y, (5.3)
dz &
so that Eq. (3.9) becomes, with 4'=4 —iwv,
d2W+ 1 A48 1. B 1 11,
dy? 4 D |y? V3D y 4
N 1/2
Yy /
= L sy—y). (54
Dy | 2d (y —y') (5.4)
Upon defining a new function H (y,y";w)
D ni/2
H(y,y’;w)=-——(£?)—W(y,y’;w)
"2
2_%6(;2';@), (5.5)

and then interchanging y and y’ on the right-hand
side of Eq. (5.4) one has

1oga]a, Be 11
4 D y2 (3CD)1/2y 4

=8(y —y"). (5.6)

The homogeneous version of Eq. (5.6) is in fact
Whittaker’s standard form of the confluent hyper-
geometric differential equation.!® There are two
linearly independent solutions, written as'®

d’H
dy2

M (y)=y°"%e?"2®(a,c;y) (5.7a)
and
N(y)=yp% 7" W(a,c;y) . (5.6b)
Here the parameters a and c are given by
172
c=142¢ |42 (5.82)
and
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azlc———BL R (5.8b)
2 (3CD)'?

while ®(a,c;y) is Kummer’s hypergeometric series

v = _Ia) T(c+n)y"
<1>(a,c,y)—zor(a+n) T a1’ (5.9)

with " the usual gamma function. While ¥(a,c;y)
is chosen so N(y) and M (y) are linearly indepen-
dent, this condition alone does not specify ¥(a,c,;y)
uniquely. In Appendix A, we show that stability
criteria applied to the thermodynamic fluctuations

|

1

H(y,y ;w)=—m

imply that W(a,c,;y) is the function defined by Tri-
comi.?’ If ¢ is not an integer (i.e., if w=£0), the
W(a,c;y) is given by
I'(l—c)
IN'a—c+1)
I'(c—1)

= 2l yl=ep(g — —cy).
+ ra (@ —c+1,2—c;y)

Y(a,c,;y)= D(a,c;y)

(5.10)

Then the Green’s function which satisfies the boun-
dary conditions stated in Eq. (3.11) has the form!”

[M(y)N(y")Oy —y" )+ My )N(p)O(y' —y)+aly )M (y)+By )N(], (5.11)

where ©(x) is the Heaviside step function, which is equal to unity for positive values of its argument, and
which vanishes for negative values. We have for the Wronskian W =M dN /dy —N dM /dy, a quantity in-

dependent of y, !

I'(c)

WMNI=—Fa) -

(5.12)

Equation (5.12) may be obtained from the behavior of M and N near y =0. The two functions a(y’) and B(y')
are determined by requiring the Green’s function to obey the boundary conditions, which in terms of the coor-

dinate y read

lim G =0
yory —0
and
lim G=0.
yory' —2d

It follows that the full expression for the Green’s function is then

G(z32'30) = — L@ & (o ye=172 =126+ | () W(»")O(y —p') + Dy (1)’ —p)

I'(c¢) D

(5.13a)
(5.13b)
V(2d)
— ! — ! —_— ! .14
Y(y" )P(y)—D(y")\V(py) + ®(2d) O(y)®(y’) |, (5.14)

where for simplicity we drop explicit reference to the parameters a and ¢ in ® and W.

Now we must turn our attention to the integration on z and z’ in the expression for the light scattering cross
section. While these integrals may be evaluated by numerical methods through resort to Eq. (5.14), it also
turns out that one may obtain closed-form expressions for these objects, as remarked earlier. After some alge-

bra, one may show that

T kT 1
Ho)= I'(c) Do (2d)*

@(2d)

v(2d) [fodyy[y§+(c—3)/2]e—y/2q)(y) ]2

2d y .
_2f0 dyy[7§+(c_3)/2]e—y/Z\I,(y)fo dy'y' s+ =321,=y' 2,7y | | (5.15)

The explicit evaluation of the integral in Eq. (5.15) is reported in Appendix B. Here we only quote the result:
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_ %57 T(c)
" Do Tla)
Y(a,c;2d)
®d(a,c;2d)

( )0—3 —2d

(2d)?

i I'(a +n) 2d),,q)(l,}/é’—t—(c——3)/2-}-n+2,d)
—o n'l'(c +n) yE+(c —3)/2+n +1

_ 1—e & Ila+n) _ 2d)"
2(2d) n§0———-——n!r(c+n)l‘(7§+(c 3)/2+n+1)(2d)
0 dm

X2 T

L(yé+(c—3)/24n+m +2)

X

1 Y(1,2yE+n +m +1;2d)
c—1 2yE+n+m

(@ —c+1) 2d®(1,2yE+n +m +2;2d)
(2—c¢) 2v6+n +m +1

+

(2d)’T'(1—¢)
I'a—c+1)

Xi 2d)”

[(a +p) ©(1,2y6+n+m +p +c;2d)
Llc+p) 2¥6+n+m+p+c—1

(2d)—3

_ I'a—c+3+p)
I'4—c+p)p+1)p+2)

D(1,2yE+n +m +p +3;2d)
2yE+n+m +p+2

} (5.16)

We now turn to the calculation of the Green’s function for the limit w =0. As remarked earlier, in this case,
¢ becomes the integer 3 and the ¥ function acquires a logarithmic singularity. The case w=0 is of consider-
able interest, because it is correlated to the integrated strength of the central peak. In effect the Kubo’s
theorem derived in Eq. (A3) leads to

SE=—f Imf(w)dm_hmowkef( ®) (5.17)

since #(w) is proportional to G(z,z';w)/®. The quantity Sy defined in Eq. (5.17) is directly proprotional to
the scattering efficiency per solid angle, f & (w)dw, where &(w) has been defined in Eq. (2.18). To calculate
this expression, we can generate the Tricomi function for ¢ =3 from its general integral representation, and we
use this result to recalculate Re.” when w—0. This is done in Appendix B. We may arrive at the same result
by directly taking the limit of Eq. (5.16) when ¢—3. We let ¢ =3+¢€ and take the limit of various singular
quantities as -0, by the use of their Taylor’s expansion as a function of €. We can write

(2d)f=14+€ln2d+ --- ,
d 1 _ 1
dc T'(c +p) T(c+p

)J(%-FC) , ) (5.18a)

and from Eq. (B16),

o~ (—1)"2d)"
ne1nlla+c+n —1)?

—2d, .
i‘e ®(1,a +c;2d) (5.18b)

dc atc—1

where ¥ is the logarithmic derivation of the gamma function, or the digamma function. Equation (5.18a) is
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used to take the limit of various quantities appearing in Eq. (5.10), to derive the expression of the Tricomi
function

may 2d)72 (2—a) .,y 1
Y(a;3;2d)= @) + @) (2d) —-—21"((1 Y ®(a,3,2d)In2d
1 &~ . 5 F(a +r) r
~Tere—2 _Z)rgo[zlf(a +7)—P(1+7r)— (3 +7) ]—(Hm! (2d)" . (5.19)
Also, since I'(1—c¢)=T(4—c¢)/[(3—c)(2—c)(1—c)], we have
limel'(1—c)=— . (5.20)
€—0

Then Egs. (5.18a) , (5.18b), and (5.20) are used to evaluate the terms of the summation over p in Eq. (5.16), via
I'Hospital’s rule, to give

S — EkpT 20— Y(a,3;2d) (2d)? i I'(a +n) 2d)"®(1,7E+n +2;d)
E” D T() | ®la,3;2d) Zonln42)! yE+n +1
< I'(a+n)
- —— T 1)(2d)"
2 i 42! (Yé€+n +1)(2d)
X
m2=0 L(y§+n+m+42)
O(1,2¢E+n +m +1;2d) +(2—a) 2dP(1,2yE+n +m +2;2d)
2v6+n+m 2vE+n +m +1
i d? T(a+p) (2dP
s=ol(a —2) F(3+p) p!
Q(1,2yE+n +m +p +3;2d)
2v€+n+m +p +2
X[$(3+p)+U(p +1)—Pla +p)—In(2d)]
© q,2d, q
+ 3 —D?e2d) . (5.21)
‘(27/§+n +m +p +q +2)?
r
The limit of the imaginary part of .*(w), when From the general expressions given in this section,
=0, i.e., $(0) is also a useful quantity, since it we can also recover the simple results in Sec. IV, in
gives the amplitude of the central peak, at zero fre- which we have Q,=0. For this purpose, we note
quency drift. We can also derive the explicit expres- from Eq. (5.2) that to achieve this limit, we want to
sions of S(0) by analyzing the limit of .#(w) when let d—0 in the final expression given by Eq. (5.16).
®w—0, as in the derivation of Sg. The method, how- Thus all the @ functions are replaced by unity, and
ever, becomes clumsy, because ImG (z,z";w) vanishes from Eq. (5.10)
as w—0, so that the series in Eq. (5.16) must be Tlc—1)
developed up to the first order in w or in € to evalu- limW¥(a;c;2d)=——"—" €= (2d)'—¢ . (5.22)
ate the singular ratio ImG (z,z";w) /o, although the -0 Ia)
zeroth-order terms were sufficient to evaluate Sp. Then the only two terms in Eq. (5.16) which contri-
So, the full expression of S(0) is complex and we do bute are those with n =m =0, and all terms with in-
not report it here. Moreover, it is easier to compute dex p vanish. It then follows that
S(0) directly from Eq. (5.16), because S (w) tends to 2T
a constant at small value of w, according to Egq. lim #(w)= §7ks 1 (5.23)

(4.11). Q,—0 2Dyw [y§+(c_3)/2+1]2 ’
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a result quite identical to Eq. (4.8).

In Sec. VI, we use the general expressions in this
section to examine the influence of orientational or-
der on S(w).

VI. RESULTS AND DISCUSSION WHEN Q50

In Sec. IV, we discussed the nature of the light
scattering spectrum when Q(=0, and here we turn
to the case where orientational order is present near
the interface, so Qy50. All calculations are per-
formed with the material MBBA in mind, and the
parameters we have used are those quoted near the
end of Sec. IV. The calculations are presented for
various values of the temperature, and for the pur-
pose of presentation, we suppose Q, is fixed in-
dependent of temperature. We have seen that
Miyano’s data is consistent with the model presented
in Sec. III, which gives Qg ~(T —T,)~ /2, but mag-
nitude of the prefactor is not known, so we regard
Qo as a parameter that may be varied independently
of temperature. If the results presented here were to
be compared with data, it would then be possible to
obtain a second source of data with the temperature
variation of Q,. As we have remarked earlier, esti-
mates give y=5X10° cm~!; we have allowed y to
vary between 2 10° cm~! and 10® cm ™! in the cal-
culations reported below, to illustrate the influence
of variations in the optical penetration depth on the
spectra.

We begin with a series of figures which show gen-
eral trends in the calculated spectra. In Fig. 4, we
plot InS(w) against In(w) for two values of Q,, for
values of ¥ in the range outlined above and for the
case where the temperature equals 7.. As ¥ in-
creases, and the penetration depth of the light de-
creases, we expect S(w) to decrease as illustrated,
but in fact the decrease is much more dramatic than
that caused by the decrease in scattering volume
alone, proportional to y~!. The reason is that in
this range of frequencies, the spectrum is propor-
tional to this scattering volume only in the limit
v€ << 1. This can readily be seen from Eq. (4.11).
This condition is not fulfilled for the values of y in-
vestigated, since yé=1. When y£>>1, one has
S ()« y~* at low frequencies, so the dramatic vari-
ation of S(w) with y in Fig. 4 is not surprising. At
frequencies larger than those shown in the plot,
S(w) settles into the w~!/? behavior described in
Sec. IV. In our case, this occurs well out in the wing
of S(w), where the scattering intensity is orders of
magnitude smaller than in the central peak. For
later purposes, notice that when Qy=1, S(w) has
decreased, compared to the case 0y =0.6.

Figure 5 shows the behavior of S(w) as a function
of temperature. In the region of the central peak

T=T=3I5K

® y=2x10%
@ y=5x108
®@y-=10€

——Qp=06
= Qg

10 * 12 14 16 8
Inw

FIG. 4. When T =T,, we give a Neperian logarithmic
plot the spectral density function S(w), as a function of
frequency, for two values of the surface pinning parame-
ter Qp, and attenuation constant y of the light. Parame-
ters appropriate to MBBA are employed. ¥ is expressed
incm~!.

and with Q,=0.6, the scattering intensity increases
dramatically as T, is approached from above, and
the central peak narrows. It is useful to note that
right at T, the correlation length is equal to 200 A

-79

-77

75

InS(w)

@© T=T,=3I5K
@ T=3155K
® T=3I7K
@ T=320K 1

73

0 ’ 12 4 16 8
Inw

FIG. 5. For several temperatures near T,, and
Q0=0.6, we show a Neperian logarithmic plot of S(w) vs
frequency. Parameters are those appropriate to MBBA
with y=5X10° cm~™!. The plot shows the o~ '/?
behavior, at frequencies sufficiently high that the various
curves have coalesced.
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for our choice of parameters, so y§=1 right at T,.
Figure 5 extends far enough in frequency for the
»~1/? behavior to become apparent in the wing of
the central peak. This is the frequency regime
where the various curves coalesce.

In Fig. 6, for Q, =0 and Q,=0.6, we compare the
temperature variation of S(w=0), which measures
the intensity of the central peak at =0. It is evi-
dent that the substrate induced orientational order
can have a dramatic effect on the temperature varia-
tion of the total amount of light scattered diffusely
from the substrate. It should not be too difficult to
measure the integrated strength of the central peak
of light back scattered from the interface, and com-
pare its temperature dependence with that of the
central peak in the bulk liquid. Such data would
provide useful evidence for central peak anomalies
in the back-scattering experiment of interest here,
without the need of examining small frequency
shifts the order of 4 /v. It is perhaps surprising that
by pinning the order parameter at the interface
(Qp=0.6 rather than Q;,=0.6), one enhances the in-
tensity of the central peak, i.e., one enhances the am-
plitude of the order-parameter fluctuations near the
boundary. We shall appreciate the reasons for this
shortly.

When Q, is increased from O to 1, at T, the in-

8 T T
6 -
«
<
5 y=5x10%
o ® Q=0
'9 o
Tar @ Q=06 .
3 @
t
3
(72}
2_ —
NO) J
1 L
o | 2 3
T-Te

FIG. 6. Plot of S(w=0) vs (T’ —T,) for two values of
Qo. This function is the intensity of the central peak at
©=0 in the light scattering spectrum. Parameters ap-
propriate to MBBA have been used with y=5x10%cm~".

tensity of the central peak at @ =0 first increases, to
reach a maximum when Qy~0.6, then decrease as
Qo is increased to unity. In Figs. 7(a) and 7(b), on
logarithmic and linear plots, respectively, we show
the dependence of the central peak intensity at @ =0
on Q,, for 0<Q,<0.6. It is evident from Fig. 4, as
remarked earlier, that for the parameters we use, the
intensity of the central peak first grows with Q,
then decreases.

The effect of Q, on the temperature variation of
S (w) is most pronounced very near the critical tem-
perature. This is illustrated in Fig. 8, where for

—
79 ]
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3
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£
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FIG. 7. For several values of Qg in the range
0<Qy<0.6, we plot the frequency variation of S(w). We
give (a) a Neperian logarithmic plot, and (b) a direct plot
of S(w), in the case y=5x10° cm ™.
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FIG. 8. Frequency variation of S(w) for parameters
relevant to MBBA, with y=5x10° cm~! and for several
values of Q,, at a temperature somewhat above 7.

three values of Q,, we plot the frequency variation
of S(w), at a temperature two degrees above T,.
There is quite clearly a variation with Q, but it is
modest in comparison to the calculations right at
T,.

We now pause to present a discussion which pro-
vides insight into the physical origin of the trends
displayed in Fig. 4 through Fig. 7. The equation
obeyed by the Green’s function has the form

oG 9’G

Var +V(2)G —D—a—27 =6(z —z')8(t —1') .

(6.1)

The function I';(z)="V(z)/v may be viewed as a lo-

cal relaxation frequency which varies from point to

point near the surface, and the third term on the

right-hand side allows the fluctuations to diffuse.
One may write

V(z)=Vo+V,(2), (6.2)
where
« 1 B?
= —T*)——— 6.3
Vo=A(T —T%) 3 C (6.3)
and
2
2 1
Vi(z)= 3C 1—exp ——E(z——zo) (6.4a)
: 2
=V{®) |1—exp —E(z~zo) , (6.4b)

where
3CQ,
=£1
zo=§In 3 (6.5a)
and
(w)_ B?
Vi® =—. .
1 iC (6.5b)

With the equation cast into this form, the homo-
geneous version of Eq. (6.1) is virtually identical to
the Schrodinger equation of a particle with mass
u=*/2D which moves in under the influence of the
Morse potential?!; the difference is that to generate
Eq. (6.1), one must allow the time variable to be-
come pure imaginary. We may use this analogy to
obtain an alternate representation of the Green’s
functions. If g,(z)e ™ is the eigenfunction
(chosen real) of the Morse potential problem just
outlined and #w,, =vA,, the eigenvalue, then we
have

kBT qm(z)qm(zl)

3 = 6.6

o Am—io

Gl(z,z";0)=

The eigenvalue spectrum of the Morse potential

i821’22

wy=0,(n+3)[1—AMn+7)], 6.7)
where, in terms of our parameters
hme__ﬁ 3@ 1/2zz DB 172 .
§| u £ | 3C
and
potoe_ [ am |7 6.9
avi=) "~ 6A(T,) |

where A4 (T,)=2B?/9C is the value of the parameter
A(T)=ap (T —T*) which enters the Landau-
Ginsburg free-energy functional, evaluated at the
temperature T =T,.

Quite clearly, at T=T,, A=1/V'6, and under
these conditions the Morse potential admits only a
single bound state. The maximum quantum number
nys for which the eigenstate is bound?! is the first in-
teger smaller than (1—A)/2A, and in our case the
inequality is satisfied only by n=0. Under cir-
cumstances which will be detailed below, it is this
single bound state which dominates the Green’s
function in Eq. (6.6) at low frequency, since A is the
lowest value of the A,, in the denominator of the
series terms. Thus, upon form S(w), we have

kBT © @ , v
S(m)=—w—fo dzfo dz'Im[G (z,z";0)]e ~"2+%)
(6.10a)
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kgT 1 2

v @ Al

[ S dze~7q5(2) (6.10b)

and the frequency A, is given by vAy=Vy+%w,
which may be written

172
B2
3C

2
VAg=A(T)— _g[Am]m] .

(6.11)

It is clear that Aq is lower than the characteristic
fluctuation frequency of the bulk liquid. In fact, we
must have Ay>0 for stability of the system, and
after some algel;ra one may show that this requires
A(T)/A(T,)> 5, a condition that is obviously satis-
fied for all temperatures T greater than 7,. As ex-
pected from Appendix B, our system is always
dynamically stable.

The reason why A is less than 4 (7)/v may be
appreciated by examining the variation with z of the
local relaxation frequency I'j(z). There are two pos-
sible behaviors. Let Q, sufficiently large that
Qo>B/3C, so z, in Eq. (6.5a) is positive. Then as
the point z moves from the bulk liquid toward the
interface, I';(z) decreases, to pass through a
minimum at zy; at the minimum, I';(zy) < (0 ), SO
there is a region around the minimum where the lo-
cal fluctuation frequency is lower than that in the
bulk liquid. In the near vicinity of z,, the amplitude
of the fluctuation is then necessarily larger than in
the bulk. This can be regarded as a direct conse-
quence of a Heisenberg principle which applies due
to the analogy between Eq. (6.1) and a Schrodinger
equation. If Q, < B/3C, the minimum in I';(z) is at
the interface z=0. We conclude that pinning the
order parameter at the interface necessarily always
produces a local region near the interface where
I'j(z) <Tj(w). Thus we have a region of enhanced
fluctuations near the interface, and at the same time
a narrowing of the central peak.

The behavior outlined in the previous paragraph
requires B=+£0, i.e., we obtain a lowering of I';(z)
near the interface only when the phase transition is
first order. With B=0, T(z)=A4(T)+3Q}
xexp(—2z/€), and I'j(z) is a monotonically de-
creasing function of z, so here pinning of the order
parameter can only stiffen the response of the sys-
tem near the interface. Thus had we applied our
model to a magnetic surface or interface, where
time-reversal symmetry requires B=0, then we
would have found qualitatively different behavior.

We next examine the conditions under which the
region of enhanced fluctuation dominates the light
scattering spectrum, i.e., the conditions under which
the matrix element in Eq. (6.10b) is sufficiently large

for the bound state eigenvalue to dominate the low-
frequency behavior of the Green’s function. If
Qo >>B/3C, we shall find z, >> £, and we have seen
Ey~1. For very large Q,, the regime of enhanced
fluctuations lies too far into the fluid for them to be
probed by the light. Thus if we begin with very
large Q,, and decrease this parameter, z, moves to-
ward the interface, and when zyy~ 1, the regime of
enhanced fluctuation contributes strongly to the
spectrum. For small Q, the minimum in I';(z) is at
z=0 since z;<0, but is a very shallow feature
which extends far into the fluid. The bound state is
now very spread out, with little integrated strength
inside the optical penetration depth, and does not
dominate the behavior of S(w). Thus we expect as
Qo is increased for the central peak to increase in
strength and narrow down, when compared to the
bulk, but then for large Q, the regime of enhanced
fluctuation is pushed too far into the fluid for the
light to probe it, and the intensity of the narrow
feature in S(w) drops off. This is precisely the
behavior we find in Fig. 9 through Fig. 7. If we ar-
gue that the maximum occurs when zo =y '~£ (for
y=5X%10° cm™!), then Eq. (6.5a) predicts the max-
imum in the central peak will occur at Qy=0.59, re-
markably close to the results of the full calculations.

We now present results which show how the
above picture may be used to fit systematic trends in
the calculations. Figure 9 shows the variation of
S (w=0), the strength of the central peak at =0,
with Qy when T =T,. The maximum referred to in
each curve is clearly evident, and occurs when yz, is
of order unity, as the preceding paragraph suggests.
In Fig. 10, we illustrate the effects for three dif-
ferent temperatures near T,.

In Fig. 11, we show the full width at half max-
imum of the central peak, normalized to the value
I'y=A/v characteristic of the bulk liquid. The
dashed line is the value A predicted from Eq. (6.11),
and we see that for Q> 0.5, where the minimum z,
in T'y(z) is well away from the interface, Eq. (6.11)
accounts nicely for the width calculated from the
full expression. When Qg > 0.5, the central peak in
the back-scattering geometry is fitted rather well by
the Lorentzian form in Eq. (4.12), with 4 /v re-
placed by the appropriate reduced relaxation fre-
quency Aq given in Eq. (6.11). For Q4 <0.5, we do
not find the simple Lorentzian behavior, and for
reasons outlined above, the low-frequency behavior
of the Green’s function is not dominated by the
lowest eigenvalue, since the condition Qy>>B /(3C)
is no longer fulfilled.

As we noted in Sec. I, the basic model explored
here may serve as a suitable phenomenology not
only for the description of orientational fluctuations
in liquid crystals, but for order-parameter fluctua-
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FIG. 9. For the two values of y indicated in cm~!, we

plot the intensity of the central peak at zero frequency
[S(w=0)] as a function of Q,, when the temperature T
equals T,. Note that a separate scale is used for each
curve.
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FIG. 10. For three different temperatures, and for
y=5X10° cm~!, we show the variation of the strength of
the central peak at zero frequency with the parameter Q.
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Qo
FIG. 11. Ratio I'/Ty as a function of Q, when
T =T,, for y=5%10° cm~!. Here 'y is the width of the
central peak in the bulk liquid, and T is the width, realized
in the backscattering geometry. The dashed line is the
value of the ratio predicted from Eq. (6.11).

tions near boundaries in other physical situations
where a Landau-Ginzburg free-energy functional of
similar form may be applied. Through use of the
Morse-potential analogy, it may be possible to ap-
preciate the key feature in the profile of order-
parameter fluctuations without the need of evaluat-
ing the rather formidable series provided by the full
theory.

The applicability of the model may also be ex-
tended to study very different surface problems. We
briefly relate our results to those of a recent theory
of the photocurrent conversion efficiency in a
Schottky barrier, since a very similar mathematical
analysis is encountered. Jarrett has solved the dif-
fusion equation for the Schottky barrier illuminated
with band-gap light,”® using the Green’s-function
method. In that case the homogeneous part of the
differential equation satisfied by the Green’s func-
tion is Weber’s equation instead of a confluent hy-
pergeometric equation, but such equations only
differ by a suitable change of variable. In particular
the parabolic cylinder functions E{”(z) and E\"(z)
which, by definition, are solutions of Weber’s equa-
tion are also confluent hypergeometric functions?*:

2
EQ(2)=2"e 0 |+ 2, 52 |

2 (6.12)
EU\()=2"% '/ | 4 7, 552

In his paper, Jarrett has only studied the solutions
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FIG. 12. Variation with Qg of the integrated strength
of the central peak, Sg, as a function of Q,, for the tem-
peratures near T, with y=5X10°cm™".

for special values of v, namely v equal to a positive
integer v= +n where these functions take simplified
forms. If we refer to Egs. (5.7), this condition could
read 2a = +n. In the same way, our numerical cal-
culations are simplified in the particular case
a = —n, which may happen when o =0 according to
Eq. (5.8). In that case, all the terms of the form
I'(a +m)/T(a) entering Eq. (5.21) vanish for m > n,
due to the divergence of I'(a) in the denominator. It
follows that the series in Eq. (5.21) are reduced to
polynomials of order n as a function of d. The
reason is that ®(a,c,x) and ¥(a,c,x) are reduced to
Laguerre polynominals of order n, L)~ '(x):

er_l(x)=r—r(f#’:)®(—n;c;x)
n
_=D W(—n,c;x) . (6.13)
n!

If we refer to the analogy with the Morse potential
in quantum mechanics, we can notice that such
Laguerre polynominals give the radial part of the
wave function,??? while the condition a = —n is
the equation which states the quantization of the
levels 7w, defined in Eq. (6.8).2 The advantage of
the numerical procedure outlined in Appendix C is
that it allowed us to obtain the solution of our prob-
lem for any value of the parameters entering the
model, without the need to look at special limiting
cases.

We conclude with Fig. 12 which shows the varia-
tion of the integrated strength Sg [Eq. (5.21)] of the
cross section with Q,, for several values of the tem-
perature near T,. The variation of Sy is qualitative-
ly similar to that of S (w=0), though changes in the
width of the central peak influence the variation of
the integrated strength of the cross section. We
find, for the parameters characteristic of MBBA,
that Sy =10"2° cm*. When this value is used in Eq.
(2.18), we find the estimate of 108 for the integrat-
ed strength of the central peak per unit solid angle.
We understand this value is sufficiently large that
one should be able to detect the scattering.
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APPENDIX A: STABILITY CRITERIA
AND THE ¥ FUNCTION

Quite clearly, considerations of thermodynamics
stability require that the function (8Q(z£)8Q(z't))
remain finite for all values of z and z’. From Eq.
(2.14) we have

(8Q(z,t)5Q(z’,t)):f%(SQ(z)SQ(z’))w,
(A1)

which as we have seen may be written

ksT
(80(z;080(z',0)) = —2— [ 42106 (2,2'500)]
o @

(A2)

which, by virtue of the Kramers-Kronig relation
which connects the real and imaginary part of the
Green’s function becomes

(80(2,1)80(z',1)) =kz T Re[G (z,2;0)] . (A3)

Thus we require G (z,z';0) to be finite. From Eq.
(5.7), this requires lim,,_, oW be finite. When c is not
an integer, the two solutions ®(a,c;y)
=yp!=°®(a —c +1,2—c;y) are linearly indepen-
dent.®> However, when w—0,c as defined in Egq.
(5.8) is an integer (¢ =3), and the second of these
functions diverges for all y. According to Eq. (5.9),
we may write

1—¢

y
I'2—c)
_i [a@—c+1+n) yrtl—c 1
B Ma—c+1) TQ2—c+n)n!’

n=o0

®la —c+1,2—c;y)

(A4)
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Consider the case where c—m + 1, where m is an
integer. Then I'(2—c¢ +n)—I'(n —m +1), and all
terms on the right-hand side of Eq. (A4) with n <m
vanish because the gamma function in the denomi-
nator diverges. Then if n —m =q, Eq. (A4) be-
comes

_ePla—c+1,2—c;y)

I'(2—c)

=i Cla+gq) p> 1
7= Ta—m) g! (m+q) ’

lim y!
c—m+41

(AS)

If we make use of Eq. (5.9) once again, we can write
1—ePla—c+1,2—c;y)
I'2—c)
_ ['(a)
" T(a+1—c)(c)

P(a,c;y) . (A6

Thus the requirement that ¥ remain finite at © =0,
when ¢ =3, requires that for the second linearly in-
dependent solution used to form the Green’s func-
tion, we choose the Tricomi function

I'(l1—c¢)

[a@a—c+1) Hac:p)

W(a,c;y)=

T'ic—1)

1—c¢, .
+ T Yy ~®la—c+1,2—c;y).

(A7)

In Eq. (A7), both terms diverge as ¢—3, but from
Eq. (A6), one see that these divergent pieces cancel,
with the consequence that the sum remains finite.
The limit ©—0 is then achieved without difficulty.

APPENDIX B: EVALUATION OF THE GREEN’S-FUNCTION INTEGRALS

The first integral which enters Eq. (5.15) may be evaluated by developing ® in Kummers’ series:

2 _ _ M(a +n)(c) 1
[¥E+(c=3)/2],—y/2 _yila+nitc) 1
Jo @y e W= 2 R a) !

fOdeyy{r§+(c —3)/2+4n],—y/2 (B1)

To simplify the notation, let y§-+ %(c —3)+n=38—1 for the moment. Then let t =y /2 to find

Lop2, sty [%5-1, -t
;gfodyy e’ =f0t e~ 'dt .

(B2)

The right-hand side of Eq. (B2) is the incomplete gamma function y(8,2d) which may be expressed in terms of

the ® functions by the relation?%?’

)
7/(&x)=%<l>(6,8+1;——x) .

Upon making use of Kummers’ transformation®®%’

O(a,c;x)=e*P(c —a;c;—x)
we obtain

M 5—1,-y12 se”’
Jo y*7le ™ dy =24 <~ (1,84 1d)

which, when substituted into Eq. (B1) gives

w —3)/24n+1
foz'idyyﬁﬂc—s)/ze —yn_,-aXle) [(a+n) (2d)76t(e +ntll

(B3)

(B4)

(BS)

I(a) /2y (c+n)n! yE4+(c —3)/24+n +1

P(1,n +1;d) . (B6)

Equation (B1) in combination with Eq. (B6) give the first integral in Eq. (5.15) in terms of a series expansion in

@ functions.
The second integral which enters Eq. (5.15) is

. 2d
szo dy ylre+(c =372, ‘y”\lf(y)foydy’y’[7§+“—3’/2]e“y/2<1>(y') _ (B7)

The integral on y’ has a form identical to that in Eq. (B1), and which we may have already calculated, provided
the upper limit 2d of the integral there is replaced by y. Thus with the explicit form for ¥(y) inserted, we have
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< I'a+n) I'(c) 1 A+ —3)/2]+n+1,— D(L,yE+(c—1)/24+n+1,y/2)
I= 2 2 YE+( )/2]+n + y
“, Tlc+n) I'(a) fO dy v€+(c—1)/2+n
'(l1—c) Tc—1) _.
=g p Tl e 12-c-p | BY)
X Ta—ctD) (a,c;y) ra) y (a —c c;—y)

Once again, if we expand ®(1,¥§+(c —1)/2+n + 15y /2) according to Eq. (5.9), the integral in Eq. (B8) can be
reduced to a sequence of integrals each of which has the form of Eq. (B1). We then find

& T(a+n) T'e) 1
§ (¢ +n) F(a)n'

% i e Y (yE+(c —1)/2+n) T(c)T(1—c)
o T(yéE+(c—1)/24n+m+1) I'(@)T(a —c+1)

(2dY . e_1Tla+p)  ®1,2y+c+n+m+p;2d)
(2d) X
p! I'(c +p) 2yE+c+n+m+p—1

xd™(dEH | 3
p=0

Q2 (2dY T(@a—c+p+1) ®(1,2y6+n+m +p +1;2d) (B9)

p=0 P! I'2—c+p) 2vE+n+m +p

In Eq. (B9), the recursion relation for the gamma function has been used to write
I'c =1 (2—c)=—T(c)I(1—c) . (B10)

It is then straightforward to derive Eq. (5.16) from Egs. (B1), (B7), and (B9) in which the terms p =0 and p =1
are separated from the other terms of the second series in p entering this equation.

In the particular case =0, the parameter c is an integer: ¢ =3, so the standard form of the v function in
Eq. (5.10) breaks down. However, Whittaker and Watson have defined an integral representation of the ¥
function which may be used to extend its definition to ¢ =3. One has?’

1 fr+tw Ia 4+5)[(—s)I'(1—c —s)y*

27i Y y—iw INa)(@a —c+1) yids, (B11)

Y(a,c;y)=

which remains well defined when c¢ is an integer. The residues at the second-order poles which occur when c is
an integer have been evaluated by Erdelyi et al. 26 In our particular case, the result reads

1 2—a 1l 1 .
Ha,3y)= T(a)y? TT@y 2ra—2) ®la;3;y)iny
1 3 _7 T a+r) ,
I‘(a)F(a—r g $la+n—9(l+r) ¢(3+r)](r+2)!r!y ) (B12)

where 9 is the digamma function. The only new integral which enters Eq. (B8) when Eq. (B12) is substituted
to Eq. (5.10) into the parenthesis in Eq. (B8) comes from the logarithmic term. This can be written

2d
J= [y m i, 3y )In(ye ~dy . (B13)

If we develop @ and e ¥ in a Taylor series in y, then integrate J by parts, we find

i Da+p) 2 o poveentmp+2

I'a) (p+2)p!
- (2d)? < (2d)?
In(2d (—1) — > (=1) (B14)
X )EO q!2¥E+n +m +p +q +2) 720 q!2yE+n+m +p +q+2)*
According to Eq. (5.9)
2(_1),1 (2d)? ¢(a+2,a+3;—2d) (B15)

qla+q+2) a+2
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and, taking Eq. (B4) into account, we can write

(=1)42d)¢
09'2YE+n+m +p+q+2)

=e_2d<l>(l,27’§+n +m +p +3;2d) (B16)

2y6+n+m+p+2

which determines the coefficient of (2d) in Eq.
(B14). Then it is a matter of straightforward alge-
bra to derive Eq. (5.21) from Egs. (B1), (B6), and
(B14).

Ms

Il

q9

APPENDIX C: COMMENTS ON THE
NUMERICAL PROCEDURES

In this appendix, we comment briefly on the nu-
merical procedures we have used, since similar series
expansions are encountered in other surface prob-
lems, where sur~face inhomogeneities are modeled.?

The T and V¥ functions in Egs. (5.16) and (5.21)
have been calculated for a particular set of the indi-
cies n, m, and p by use of the Stirling formula:

InI'(z)=(z — +)Inz —z + 5 In(27)

1—2m

kol z
B,, —————— C1
+m2=1 M om(2m —1) (v
and
Fo)=lnz— L1 3 B2
= _— B —_—
z)=Inz > +m2=1 my (C2)

The coefficients B,,, are Bernoulli numbers, and are
tabulated.”® The series have been truncated at
m =10 to compute both functions, and double pre-
cession has been used for |z | >6, with Rez >0. If
|z | <6, we have used the recursion relations

I'(1+z)=zT'(2),
V(14+2)=5+¥(2), (C3)

to map the calculation of the functions into the
domain |z | >6. If Rez <0, we use the functional
relations

W(z)—W(1—z)= —1cot(mz) (C4)
and
N (—z2)=— ——— | (C5)
sin(mz)

so in fact the series are always evaluated in the
domain Rez >0, |z | > 6, where the series represen-
tations are very accurate. The other terms of the
series in Eqgs. (5.16) and (5.21) are deduced from the
recursion relations in Eq. (C3) supplemented by the
following equation:

(I>(a,c;z)=%<l>(a,c +1;2) . (C6)

Even though the series we must evaluate involves
sums over three indicies, the convergence is very
fast. The reason is that all the terms which depend
on the gamma functions are decreasing functions of
the indicies n, m, and p while ®(a,c;z)—1 when
C— . So the series converge more rapidly than
> ,(2d)"/n!=exp(2d). Suppose we consider the
series just stated, and imagine that both n and 2d are
large compared to unity. Then use of Stirling’s for-
mula gives

n

2ed
h

(zd)n _ nl/Z

nt = m'? “

The expression is a maximum for n =2d, and for
this value of n, (2d)"n!=exp(2d)(d /m)'/%. This re-
sult and the earlier remarks in this paragraph show
that the series in the text may be evaluated to better
than one part in 10° if the series is truncated at
n =m =p =N defined by
172

e 2d=10"". (C8)

n

2ed
N

N
2d

The value of N for each value of d investigated has
been computed from Eq. (C8). The largest value of
N encountered is for Qg=1 and T =T, and this is
N =32. The amount of computer time required for
this task is very small.

*Permanent address: Centre National de la Recherche
Scientifique, 1 place A. Briand 92190 Meudon, France.

ISee D. L. Mills and K. R. Subbaswamy, in Progress in
Optics, edited by E. Wolf (North-Holland, Amsterdam,
1981), Vol. XIX, p. 47.

28. Ushioda, in Progress in Optics, Ref. 1, p. 141.

3See J. P. Jackson, Classical Electrodynamics (Wiley, New
York, 1962), p. 220.

4J. G. Dil and N. C. J. van Hijningen, Phys. Rev. B 22,
5924 (1980).

SRather than use the “one-bounce” geometry as illustrat-

ed in our Fig. 1, Stegeman has pointed out that the
thin-film—integrated-optics geometry employed in a
study of phonons in thin films [N. L. Rowell and G. 1.
Stegeman, Phys. Rev. Lett. 41, 970 (1978)] offers
numerous advantages, G. I. Stegeman (private com-
munication).

6K. Miyano, Phys. Rev. Lett. 43, 51 (1979).

7U. T. Hochli and H. Rohrer, Phys. Rev. Lett. 48, 188
(1982).

8P. G. de Gennes, The Physics of Liquid Crystals, (Oxford
University Press, Oxford, 1974).



7758 A. MAUGER AND D. L. MILLS 27

9D. Balzarini, Phys. Rev. Lett. 25, 914 (1970).

10D, L. Mills and A. A. Maradudin, Phys. Rev. B 12,
2943 (1975).

11P, G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971).

12Ping Sheng, Phys. Rev. Lett. 37, 1059 (1976).

13y, L. Ericksen, Arch. Ration. Mech. Anal. 10, 189
(1962).

14P. G. de Gennes, Phys. Lett. 30A, 454 (1969).

15J. D. Lister and T. W. J. Stensen, Phys. Rev. Lett. 25,
503 (1970).

16See, for example, D. N. Zubarev, Usp. Fiz. Nauk 71, 71
(1960) [Sov. Phys.—Usp. 3, 320 (1960)].

17See discussions in B. Friedman, Principles and Tech-
niques of Applied Mathematics (Wiley, New York,
1956), Chap. 8.

18M. C. Oliveros and D. R. Tilley, J. Phys. (in press).

ISE. T. Whittaker, Bull. Am. Math. Soc. 10, 185 (1904).

20For a review, see, for example, F. G. Tricomi, Funzioni
Ipergeometrische  Confluenti (Edizioni Cremonese,
Roma, Italy, 1954).

21P, M. Morse, Phys. Rev. 34, 57 (1929).

22H. B. Rosenstock, Phys. Rev. B 9, 1963 (1974).

23H. S. Jarrett, J. Appl. Phys. 52,4681 (1981). According
to Eq. (6.12) of our paper, the junctions N,(€) and
N;(€) defined in Eq. 12 of the paper of Jarrett could be
read ®(v/2,1/2;€2/2) and W(v/2,1/2;€*/2), with
v=1471,/7R.

24M. Bucholz, Die Konfluente Hypergeometrische Func-
tion (Springer, Berlin, 1953). Note that with respect to
the usual definition of E!" given by Buckholz, we have
replaced ® by ¥ in Eq. (6.12), for homogeneity pur-
poses with Appendix B of our present paper.

25E. Schrodinger, Ann. Phys. (Leipzig) 80, 483 (1926).

26A. Erdelyi, W. Magnus Oberhettinger, and F. G. Tri-
comi, Higher Transcendental Functions McGraw-Hill,
New York 1953), Vol. 1, p. 202.

27E. T. Whittaker and G. N. Watson, 4 Course of Modern
Analysis (Cambridge University Press, Cambridge,
1927), Sec. 16.4.

283ee, for example, Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (Dover,
New York, 1970), p. 180.



