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Renormalization-group methods for the spectra of disordered chains
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A family of real-space renormalization techniques for calculating the Green s functions of
disordered chains is developed and explored. The techniques are based on a recently pro-
posed renormalization method which is rederived here and shown to be equivalent to a
virtual-crystal approximation on a renormalized Hamiltonian. The derivation suggests how

other conventioral alloy methods can be coupled to the renormalization concept. Various

examples are discussed. Short-range order in the occupation of alloy sites and very general
disorder in the Hamiltonian —diagonal, off-diagonal, and environmental —are readily incor-

porated. The techniques are exact in the limits of high and low concentration and of com-

plete short-range order and for the Lloyd model. All states are found to be localized, in

agreement with exact treatments. Results for the alloy density of states are presented for
various cases and compared to numerical simulations on long chains (10' atoms).

I. INTRODUCTION

One-dimensional systems are increasingly of prac-
tical as well as theoretical significance. Quasi-one-
dimensional materials of current interest' include
polyacetalene, charge-transfer salts [tetrathia-
fulvalene-tetracyanoquinodimethane (TTF-TCNQ),
etc.], and biological macromolecules. Alloy tech-
niques for calculating the effect of disorder in such
systems are of interest in their own right and also
provide an approach for treating certain many-body
problems. In this paper we develop a family of re-
normalization methods for calculating the Green's
functions of disordered chains and present results
for several cases.

The low connectivity of one-dimensional systems
has striking consequences for the properties of their
eigenstates. Mott and Twose's suggestion that all
states should be localized by any disorder has been
proved for very general cases. ' As might be expect-
ed from this result, the density of states (DOS) of
disordered chains can be highly structured. In the
important case of a binary alloy there is an infinite

set of exact gaps in the DOS for sufficiently large
diagonal disorder. Numerical solutions of
Schmidt's exact functional equations for the total
integrated DOS and simulations on very long
chains reveal an intricately detailed spectrum. Both
methods give histograms of the number of states in

a given energy range h. As 6 is decreased, new

structure is continually revealed in the DOS.
Although solutions of Schmidt's equations pro-

vide a valuable test of analytic approximations, they

are difficult to solve numerically, and give little in-

formation about the nature of the eigenstates. Lo-
calization lengths and the partial DOS on individual

species, which determine charge transfer, are not ob-
tained. To our knowledge, Schmidt's exact equa-
tions have only been solved in the case of purely di-

agonal disorder. Numerical simulations in their
simplest form give no further information and be-
come expensive if localization lengths and the par-
tial DOS are calculated. These considerations have
motivated a great deal of effort towards finding ap-
proximate analytic schemes. '

Traditional single-site approximations' ' for
the DOS of disordered systems fail badly in one di-
mension (1D), producing featureless spectra quite
unlike the results of numerical simulations. ' The
best conventional single-site method, the coherent-
potential approximation' (CPA), is a mean-field
theory which is correct to lowest order in the re-
ciprocal coordination number Z '. The CPA is
successful in three dimensions where Z-10, but not
in 1D where Z =2.

Previous attempts' ' to improve single-site
methods have been aimed at incorporating coherent
scattering by small clusters of atoms. This builds in
the effect of short-range compositional fluctuations.
The resulting spectra correctly capture more of the
gross structure in the exact DOS, in particular those
peaks corresponding to eigenvalues of clusters of the
chosen size. The correlation between the range of
fluctuations included in a technique and the degree
of structure in the calculated spectrum led
Gonqalves da Silva and Koiller' to suggest a quali-
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tatively different approach. The method, based on
the renormalization group (RG), treats composi-
tional fluctuations at all length scales equally. The
results are striking, all states are localized in the
presence of disorder, and the DOS of binary alloys
appears to become a set of delta functions with in-
finitesimal spacing. Subsequent work ' has re-
vealed the versatility of the approach. Short-range
order and diagonal, off-diagonal, and environmental
disorder in the alloy Hamiltonian can be included '

without extra computational effort. The method is
exact in the limits of complete short-range order
(SRO) and high and low concentrations and for the
Lloyd model.

The purpose of this paper is to show how conven-
tional alloy averaging techniques can be applied to
the renormalization approach of Refs. 19 and 21.
Note that this approach is conceptually different
from that used in other recent real-space RG calcu-
lations for quantum-mechanical systems. These
calculations involve projecting the Hamiltonian onto
subspaces spanned by eigenvectors of lowest energy.
Our method is more closely related to RG decima-
tion techniques ' for classical systems, where de-
grees of freedom at different length scales are elim-

inated successively.
The goal of our renormalization procedure is to

calculate the Green's function at one length scale,
given the Green's function at a shorter length scale.
At the initial length scale, sites along the chain are
labeled by consecutive integers. The Green's func-
tion G for a particular configuration of species on
the chain is expressed in terms of an auxiliary opera-
tor 0: 6 =P(0 ). In the examples explicitly
developed here, 0 is the Hamiltonian (Sec. II C) or
the scattering t matrix (Sec. IID). An ensemble of
chains, specified by a given probability distribution
function, is considered. The renormalization
proceeds as follows.

(iii) The remaining sites are relabeled by consecu-
tive integers to complete the cycle.

These steps may be iterated to their fixed point for
each energy. The alloy DOS is calculated from the
fixed points, and localization lengths can be calcu-
lated from the asymptotic approach to the fixed
points.

The approximation involved in step (ii) of the re-
normalization procedure is analogous to the approx-
imations made in conventional alloy methods. The
Herglotz character of the renormalized Green's
function is preserved as it is in the corresponding
conventional methods, i.e., the DOS is always posi-
tive definite. The difference between the conven-
tional and the RG approaches is that in convention-
al methods all site occupations are averaged simul-
taneously, while in RG methods the average is per-
formed sequentially at different length scales.

In Secs. II A and II B of the paper we describe the
tight-binding alloy Hamiltonian and the configura-
tion probability distribution function. In Sec. II C
we derive a renormalized analog of the virtual-
crystal approximation (VCA) and show that it is
equivalent to the method of Refs. 19 and 21. A re-
normalized version of the average —t-matrix approx-
imation (ATA) is developed in IID. The accuracy
of conventional alloy methods and their renormal-
ized analogs is compared in IIE by examining mo-
ments of the calculated DOS. Extensions of the re-
normalization method and applications of further
conventional approximations are briefly discussed in
II F. In Sec. III results are presented for the renor-
malized VCA and ATA. They are compared to the
conventional CPA and exact histograms of the DOS
of long randomly generated chains (10 atoms). Fi-
nally, Sec. IV presents a summary and conclusions.

II. FORMALISM

(i) The operator 6 is projected onto even-
numbered sites, which are the only sites kept at the
new length scale. A new auxiliary operator 0' is
calculated that gives the projected Green's function
6' through the same functional expression connect-
ing 6 and 0: O'=P(0'). No approximation is
involved in this step, but the projected quantities
still depend on the species at the odd-numbered
sites.

(ii) The dependence of G' and the probability dis-
tribution function on odd-numbered sites is elim-
inated by configuration averaging over the occupa-
tions of these sites only. The configuration average
of 6' is approximated by (6')~d=G'"=P(0"'),
where 0"'=—(0')~d defines a renormalized auxili-
ary operator.

A. Hamiltonian

The equations presented here refer to electronic
states. They can be easily modified' to treat pho-
nons or magnons. For simplicity, the tight-binding
Hamiltonian H is assumed to contain only nearest-
neighbor hopping matrix elements and a single orbi-
tal per site. Sites are labeled by an integer n, and the
species and orbital at site n are denoted by a„and

~

n ), respectively. The Hamiltonian is then

H =g U (a„~a„a„+~)
~

n)(n
~

n

+ g V (a„a„+J)~n)(n+j
~
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Matrix elements U and V depend only on the
atomic species at the relevant sites. Off-diagonal
elements V are chosen to be real.

If there is environmental disorder (ED), the diago-
nal element for site n also depends on the occupation
of neighboring sites,

U (a„ ia„a„+,) =e(—a„)+s(a„a„))
+s (a„a„+1)

In the electronic problem ED can result from chem-
ical shifts or lattice distortions. In phonon and
magnon Hamiltonians the diagonal element neces-
sarily' depends on the types of atom on adjacent
sites (except for phonons in the simple case of mass
disorder, e.g., two isotopes of the same species).

yzz ——x +x(1—x)o2 0

y~a =y~~ =x (1—x)(1—a'),
yi)2) =(1—x) +x(1—x)o

where x =cz, and cr is a parameter describing the
degree of SRO. As cr varies from + 1 to —1, the
arrangement of atoms on the chain changes from
completely segregated, all atoms surrounded by like
neighbors, to alternating, all atoms surrounded by
unlike neighbors. For the random alloy o. =O.

The renormalized pair probabilities for the binary
alloy are particularly simple. The summation in (3)
yields equations for y & with the same form as (5),
but with a renormalized SRO parameter o'"=[a ] .

At the loath renormalization step

B. Configuration probabilities

We treat the case of Markovian' SRO. The
probability distribution for different arrangements
of species on the chain is determined completely by
pair probabilities y ~. These give the probability
that adjacent sites n and n + 1 are occupied by o, and

P species, respectively. By symmetry, yatt ——y~.
Any number of species may be considered. In a ran-
dom alloy, sites are occupied independently, thus

y ~
——c cp, where c and cp are the concentrations

of the given species. Other values of y~p imply
differing degrees of correlation in the occupation of
neighboring sites, or SRO. For example, y~ =c
implies segregation of species a, and y p

———, corre-
sponds to a strictly alternating chain of a and P
atoms.

Markovian SRO is appropriate for a RG method
because the distribution function of the chain after
decimation of alternate sites remains Markouian.
The new renormalized pair probabilities y "z are cal-
culated by summing over possible occupations P of
the decimated site between an a and a y atom:

yar =g(y pyap&/cp)=R&[y ]
(1) 0 0 0

P

The concentrations are unchanged. To perform con-

figurational averages over decimated sites in later
sections, we need the probability p ~r that a P atom

occupies a site given that the neighbors are an 0.' and

a y atom. This is just
0 0 0 —1 (1)

c)i )/y

In the results presented in Sec. III we specialize to
the case of a binary alloy, o.=A or 8. Then only
two parameters are needed to determine y p because
of symmetry and normalization constraints. A con-
venient parametrization is as follows:

(N) [ (N —1)]2 R [ (N —1)]

For
~

o
~

&I the SRO parameter goes to 0 for large
X. Correlations at long length scales go to zero pre-
cisely because of the short-range character of Mar-
kovian order.

C. Renormalized virtual-crystal
method (RVCM)

The simplest alloy technique is the virtual-crystal
approximation. ' ' The configurational average of
the Green's function, G (z) =(z H) ', is a—pproxi-
mated by

Gvcp(z) =(z —(H ) 11)

where the indicated configuration average is over all

sites. The corresponding renormalization technique
is generated by taking the Hamiltonian as the auxili-

ary operator discussed in Sec. I.
The equation for the Green's function at the origi-

nal length scale can be expanded as

G'(z) =z-' g (H'/z)
j=0

The projected Green's function and the auxiliary
operator H' are related in the same way:

G'=P„,„G =z ' g (H'/z)J
j=0

w erhe P„,„=+„~2n ) ( 2n
~

.
To calculate H' it is convenient to introduce a di-

agram notation. The identity, g„~ n)(n ~, is in-

serted around each factor of H /z in (8). The ma-

trix elements of 6 are then expressed in terms of a
series of products of matrix elements of H:
H „=(m ~H ~n). Successive matrix elements of
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H in a product must share a common orbital,
e.g, H „H„pHpq . As a bookkeeping mea-
sure, each matrix element H „ is associated with a
step along the alloy chain from site m to site n.
Then each. contribution to (H /z) corresponds to a
continuous j step path or "diagram" on the chain.
The magnitude of the path's contribution to (H /z)J
is the product of the matrix elements associated
with each step, divided by zj. For a tight-binding
Hamiltonian with nearest-neighbor hopping, each
step can only change the index by 0 or +1. The
paths contributing to (2n

~

G ~2n) from (H /z)
are illustrated in Fig. 1.

From (9), P,„,„H'=H'. For the renormalization
concept to be applicable, H' should have the same
form as H but on a new length scale, i.e.,
(2m

~

H'
~

2n ) should be nonzero only if
~

m n~—=0, 1. The conditions on H' are satisfied
if its matrix elements are calculated by summing the
diagrams indicated in Fig. 2. These are all the paths
in G, associated with factors of H, which contain
only odd-numbered intermediate sites. All other

2n 2n 2n 2n+1 2n 2n+1 2n 2n+1
0

+ ~ ~ ~

2n-1 2n 2n-1 2n

+ ~ ~ ~

2n 2n

+2

2n 2n

+1
+ ~ ~ ~

+2

FIG. 2. Diagrams contributing to the matrix elements
of H'. Upper diagrams: z '(2n

~

H'
~

2n ). Lower dia-
grams: z '(2n

~

H'
~

2n+2).

~g) (x p~ em'

2n —2 2n —1

y 6

2n 2n+1 2n+2

b} Zn 2n 2n+1 2n 2n+1 2n —1 2n 2n —1 2n
0 0 0 paths contributing to G' are incorporated exactly in

(9) through higher-order terms in H'.
The summation, illustrated in Fig. 2, is easily per-

formed by grouping terms into geometric series. We
find

2n-1 2n

(iv)

2n 2n+1 (2n iH'
i
2n) =U (Py5)

+[«rP)]'[z —U'(aPy)] '

+[«y5)] [z —U'(y6~)] ', (10)

(2n —2lH'12n)=V (aP)V (Py)[z —Uo(aPy)]

FIG. 1. Illustration of the diagrammatic notation for
terms in expansion (8). (a) Relevant section of the chain:
Site labels are given below and atomic species above each
site. (b) Paths contributing to (2n

~

G
~

2n ) from
{8/z)'. Movement along the chain is indicated by hor-
izontal displacements while downward displacements
separate successive steps. Site indices are indicated above
each diagram. The contribution of each path to
z(2n

~

G
~

2n ) is as follows: (i) [U (Py5)/z]'; (ii)

[U'(Py5)/z][V'(y5)/z]', (iii) [U'(Py5/z][V'(Py)/z]';
(iv) [V (Py)/z]z[Ue(aPy)/z]; (v) [V (y5)/z]
X [U'(y5e)/z].

where a, p, y, 5, and e are, respectively, the species
at sites 2n —2 through 2n+2 as in Fig. 1(a). At
this point, step (i) of the renormalization procedure
is complete.

The approximate configuration average of 6',
step (ii) in the renormalization procedure, is

(G') ~d-G"'—=z ' g (H"'/z)j, (11)
j=0

with H"'= (H')~d. The configurational average of
H' is easily performed using the results of Sec. II B.
From (4) and (10) the diagonal and off-diagonal ele-

ments, U"' and V"', of the renormalized Hamil-
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tonian H'" are as follows:

U(i)(ay~) +pc~0 UO(Py5)+ [ yP ]V( )

p, 5 z —U (aPy)

z —U (y5e)

—:RU[z,y, U, V ]

site on the right-hand side of (17). In a VCA
scheme these matrix elements are averaged indepen-
dently. The average —t-matrix approximation" '

(ATA) was developed to overcome this deficiency.
In the ATA, all consecutive terms depending on the
same site' occupation are summed exactly into a "t
matrix" before configuration averaging. This ap-
proach can be applied within a renormalization
framework.

V'"(ay)=gp tt„V (aP)V (Py)[z —U (aPy)]
P

=—Rv[z,y, U, V ] (12)

D. Renormalized average —t-matrix
method (RATM)

In the conventional ATA, "' the Hamiltonian is
divided into two components:

The functions R~, RU, and Ri in (3) and (12) de-
fine recursion relations for the renormalization pro-
cedure that may be iterated numerically. For
z =E+irt, rt &0, the fixed point of R„ is Rv" =0.
The fixed point of RU depends only on the central
species y:

H'=H+5H . (18a}

The operator H is independent of all site occupa-
tions (usually H=(H )=Hvc~), and the disor-
dered part of the Hamiltonian is separated into con-
tributions from each individual site

Ur" (z) —= U "(a,y, e) (13)
5H =g 5H„ (18b)

The simple form of the Hamiltonian at the fixed
point allows us to calculate the average local DOS
on a y atom. By definition

pr(E)—:—ir ' lim Im(G/0(z)), z=E+irt
0+

The Green's function can be expanded in terms of
G—:[z H] ', w—hich is translationally invariant
and easily calculated, and 5H:

G'= [z —H']-'

(14)
=6+6 5H 6+6 5H G 5H 6+ (19)

where ( GII(z) ) is the configuration average of the
diagonal element of 6 subject to the constraint
czo ——y. In the RVCM

All consecutive scattering by 5H„ in (19) can be
grouped together and summed exactly, defining t
matrices:

pr(E)= —ir ' lim Im[z —Ur" (z)]
g~0+

tn =—5H„+5H„G 5H„+5H„C 5H„G 5H„+

(20)
The total average DOS is then

p(E)=gcrpr(E) .
y

The same expressions [(10), (12)—(16)] were ob-
tained in Ref. 21 by identifying the coefficients of
decimated Green's-function equations with the ma-
trix elements of a renormalized Hamiltonian. The
matrix elements were then configuration averaged
independently in the Green's-function equations. It
is evident from our derivation here that this method
is equivalent to a VCA on the renormalized Hamil-
tonian H" '.

The first term in (11) which is not averaged
correctly is second order in H':

In terms of these operators, the Green's function is

G =G+G+t„G+G+t„G g t G+
n m+n

(21)

Summations in (21) are restricted to preclude succes-
sive factors of the same t„: All successive scattering
by site n is already included in the t matrix. The ap-
proximate average Green's function is obtained in
the ATA by configuration averaging each t matrix
in (21) independently,

G~.A ——G+G X «. &G

(H') ~(H')' (17) +Gg(t. )G g (t )G+
n mQn

The error comes from successive matrix elements
depending on the occupation of the same decimated (22}
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The renormalized average —t-matrix method
proceeds in an analogous fashion. It is convenient
to divide the Hamiltonian as in (18), but taking

procedure we must find operators 6' and t' which
give the projected Green's function through a rela-
tion equivalent to (21):

H'=geo(a„)
~

n)(n
~

(23a) 6 ' =~even 6
5H„—:s(a„a„+()

~

n ) (n
~

+ V (a„a„+i)
~

n ) (n +1
~

+V (a„+ia„) n+1)(n
~

+s(an+)an)
~

n+1)(n+1 (23b)

where e and s are defined in (2). The disorder in

6Hn is associated with the "bond" connecting sites n

and n+1. The motivation for this choice is that
after a decimation each new "bond" from 2n to
2n+2 is associated with a single decimated site,
2n +1.

The auxiliary operators in the RATM are the t
matrices t~, defined by (20) and (23). The Green's
function G, which enters (20), is

G =[z H] '=—g[z —e (a„)] ' n)(n
~

(24)

The t matrices are calculated in Appendix A. %e
find

t„=ao(a„a„+))
~
n)(n

~

+b (a„a„+))
~

n)(n+1
~

+ho(a„+,a„)
(

n +1 ) ( n
~

+a'(an+)an )
~

n + 1)(n +1
~

(25

where the coefficients are as follows:

=G'+G'g t,'„G'

+G gt2ng g t2mG+ ' ' '

n mQn

(27)

These new operators should have the same form as
6 and t, but on the new length scale. Moreover,
6' cannot depend on the occupations of any de-
cimated sites, or the average indicated in (22) is
inapplicable. The above conditions are satisfied if

~0
~even 6 (28)

+ ) (29)

To complete step (ii) of the renormalization pro-
cedure, G"' is calculated from (27) by averaging the
t matrix as in (22):

and t2n contains all combined scattering by the two
"old bonds" connecting sites 2n to 2n + 1 and 2n + 1

to 2n +2, i.e.,
0 0 0 0

t2n even ~ (t2n+m+ 2n+mg 2n+1 —m
m =0, 1

0 0 0 0 0
+t2n+mG t2n+1 —mG t2n+m

a (ap)=[z —e (a)]Is(ap)[z P(p) —s(pa)—]

+ [ V'(aP)]'j /f(aP),
bo(aP)=[z —e (a)][z—e (P)]V (aP)/f (aP)

and
(26)

G"'=(G'),
6(1)+6(1)~ t(1)6(1)

2n

+g())yt())g()) y t(i)g(i)+. . .
n m+n

(30)

f(ap) = [z —e (a) —s (ap)][z e(p) —s (pa—)]
—[V (aP)]' .

ln order to perform step (i) of the renormalization

where G =G' and the t2„= (t2n )~d are calculated
(1) (1)

in Appendix 8 using Eqs. (23)—(26) and (29). The
result can be expressed in terms of recursion rela-
tions for the coefficients of the t matrix a' ' and
b' ', defined in (25) for N =0. These are

g( N1+)( a)yap( ) I(2(N)(ap) + [b( )(ap)] (2 (py)/d (apy) j
P

(N/ i )(y)yp(N)b(Ã)(ap)b(N)(py)[zeo(p)] /d((apy)
P

where

d' '(apy)=[z —e (p)]' —(2' '(pa)(2' '(py)

(31a)

(31b)
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and the p'Iir are renormalized probabilities defined
in (4).

As in the RVCM, the Green's function at the
fixed point of the RATM (31) is diagonal for
rI =Im(z)) 0. As N~ oo, b' '(aP)~0 and
a' '(aP)~a~ . The configuration average of the di-

agonal element of the Green's function on an a
atom, (Goo), is easily calculated at the fixed point
from (30). In the RATM

(a)

VCA

(b)

00 a
(Goo(z) ) =[z —e (a)] ' 1+2 g z —e'(a)

ATA RATM

[ 0( )]-i z-e'(a)+a "(a)
(32)

z —e (a) —a "(a)

The partial DOS on an a species and the total aver-

age DOS follow immediately from (14) and (16). CPA

E. Moments

One measure of the quality of an alloy approxi-
mation is the number of moments of the DOS that
it reproduces exactly. The Mth moment of the
DOS, p„(E), projected onto the nth site is defined
to be

pM= fE p„(E)dE=((n iH i )n),i i, (33)

where the configuration average is over occupations
of all sites. The right-hand side of (33) implies that
only M-step paths contibute to pM. Thus low-order
moments reflect the influence of local properties on
the electronic spectrum.

For the case of purely diagonal disorder, Fig. 3 il-
lustrates the shortest paths contributing to the total
DOS which are averaged incorrectly by conventional
single-site methods and their renormalized ana-
logs. The highest moment of the average DOS
which is reproduced exactly is indicated for each
method in Table I. The renormalization techniques
reproduce substantially more moments than their

FIG. 3. The shortest paths contributing to the total
DOS which are averaged incorrectly by conventional ap-
proximations (a), and their renormalized analogs (b), for
purely diagonal disorder.

conventional counterparts. Many diagrams are
summed in the initial projection onto even-
numbered sites [step (i)] before configuration averag-
ing. In the RVCM these diagrams include as a sub-
set all those summed in the conventional ATA. The
RATM sums a different set of diagrams than the
CPA, but reproduces the same number of moments
of the total DOS and one more moment of the par-
tial DOS. For purely diagonal disorder, the first er-
ror is second order in the strength of disorder for
the RATM and fourth order for the CPA. There-
fore the RATM should be more accurate than the

TABLE I. Order of the highest moment of the total DOS reproduced exactly by various al-

loy techniques for the indicated type of disorder. Numbers in parentheses refer to the highest
exact moment of the partial DOS, when it is different.

VCA

ATA

CPA

Averaging technique

Conventional
Renormalized
Conventional
Reriormalized
Conventional

Diagonal

1

5

4(3)

7(6)

Disorder
Off-diagonal

1

3
1

3

Environmental
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CPA for large disorder.
Table I also indicates the highest moment repro-

duced exactly by each method in the cases of pure
off-diagonal disorder (ODD) and pure environmen-
tal disorder (ED). As above, the renormalized
methods represent a substantial improvement over
their conventional counterparts. The accuracy of all
methods decreases as the type of disorder changes
from diagonal to off-diagonal to environmental.
Note that the conventional CPA and ATA can only
be applied to special types' ' of ODD and ED: se-

parable, Vzs ——Q Vzz Vobis, or additive,

&ps = (&qg +sss ) /2. &lackman, Esterling, and
Berk have extended the CPA to incorporate gen-
eral ODD. No single-site technique for general ED
has been found, but it can be included in the recent-
ly developed traveling cluster method. ' All renor-
malization methods presented in this paper can in-
clude general ODD and ED as well as SRO.

High-order moments are crucial in determining
the exact nature of the DOS. ' These are the mo-
ments affected by the long-range fluctuations in oc-
cupation that our renormalization methods were
designed to include. The marked difference in the
nature of spectra calculated with conventional
single-site methods and with their renormalized ana-
logs (Sec. III) reflects changes in the treatment of
these high-order moments.

F. Extensions and improvements

An obvious way of improving either the RVCM
or the RATM is to decimate the chain i times before
configuration averaging. Then all paths on the
2' —1 decimated sites between a giuen pair of neigh-
boring preserved sites are averaged exactly. The cal-
culated DOS improves, as illustrated in Sec. III.
However, the exact DOS is not obtained in the limit
i~ ao. The values of moments of the DOS im-

prove, but the number of exactly reproduced mo-
ments remains constant. The paths indicated in Fig.
3 which give the first incorrect contributions to mo-
ments of the DOS in the RVCM and RATM are
averaged in the same way for all i Of cours. e, other
diagrams of the same order are averaged correctly
for i & 1. In the numerical examples we compare re-
sults for i=1, single decimation (SD), and i =2,
double decimation (DD).

A second class of improved methods is based on
more sophisticated averaging techniques than the
ATA and VCA. The most straightforward are early
cluster generalizations' ' ' of single-site methods.
The alloy chain is divided into clusters of j atoms
each. The RVCM or RATM is then applied, treat-
ing the different cluster types as new "atomic

species. " The number of exact moments increases
because all paths within each cluster are averaged
exactly. Up to jth nearest-neighbor hopping matrix
elements on the chain are mapped into nearest-
neighbor hopping elements between clusters. The
difficulties in this method are increased computa-
tion and, possibly, ambiguous interpretation, because
the division into clusters is artificial. Every site in
the chain is equivalent, however, approximations in
the configuration averaging may lead to inequivalent
projected DOS on different sites in the cluster. We
have not explored this possibility, but such problems
are known to arise in cluster generalizations of
conventional methods. The usual solution is to
average properties over all cluster sites, or to choose
some site as most representative and calculate its
DOS.

The development of renormalized analogs of the
VCA and ATA suggests that a renormalized version
of the CPA should exist. The CPA improves on the
ATA by including self-consistently in the t matrix
for each site the average scattering from all other
sites. In the conventional ATA an arbitrary zero of
energy can be chosen for the diagonal elements of
the unperturbed Hamiltonian. The CPA was origi-
nally derived' by finding relations for the optimum
choice of this reference energy. A similar degree of
freedom exists in the renormalized ATA. An arbi-
trary energy and species-dependent self-energy can
be added to H and subtracted from 5H in (23).
Proper choice of this self-energy may lead to a re-
normalized analog of the CPA. Research in this
direction is in progress.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical examples we specialize to a
binary alloy with no environmental disorder. The
tight-binding Hamiltonian is characterized by two
on-site energies U& and Uz ——Uz —6V, where
V=V&s ——Vs&. The off-diagonal matrix elements
are taken to be related by V~ tV&s V t V——Di——ag-.
onal and off-diagonal disorders are characterized,
respectively, by the dimensionless parameters 5 and
t. Composition and SRO are specified by x and o as
described in Sec. II B.

To provide a standard for the success of our re-
normalization techniques, we compare our results to
the CPA and to numerical evaluations of the DOS
of randomly generated Markovian chains with 10
atoms. The integrated number of states in succes-
sive energy intervals of width 6 was determined by a
node-counting technique. ' For the purpose of our
discussion, the resulting histogram of the DOS may
be considered an exact average total DOS. Increas-
ing the number of atoms in the chains to 10 pro-
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duced negligible change for the examples plotted
here.

The DOS [Eq. (14)] is given by the imaginary part
of (0~ G(E+irl) ~0) in the limit q —+0+. This
limit is difficult to calculate or plot because of the
pathological analytic character of the spectra of 1D
binary alloys. In the results for the DOS presented
here we plot

p(E)= —n. 'Im(0/ G(E+ir)) /0) (34)
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FIG. 4. Results for the total DOS of a random binary
chain with purely diagonal disorder: (a) SD-RVCM; (b)
DD-RVCM; (c) CPA (thick line) and exact histogram
(thin line); (d) DD-RATM; (e) SD-RATM. The parame-
ters, defined in the text, are 5=4, t =1,x =0.5, o =0, and

g =0.02 V (for analytic methods) or 6=0.05 V (for numer-
ical histogram). The DOS is symmetric, p(E)=p( —E).

evaluated at a small positive value of rI. This is
equivalent to convoluting the true DOS with a
Lorentzian of half-width g. The value of rl is
chosen to provide a resolution of features in the
DOS which is comparable to the resolution 6 in the
exact histogram. The effect of g and 6 and the na-
ture of the spectra of disordered chains are illustrat-
ed in Fig. 5 and discussed below.

In Fig. 4 we compare the results of several
methods for the total average DOS of a random
binary chain with purely diagonal disorder; 5=4,
t=1. The concentration is x=0.5 and the energy
resolutions are g =0.02V and 6=0.05 V. The exact
histogram for the DOS of a long chain and the CPA
DOS are compared in 4(c). The CPA spectrum cov-

ers roughly the correct energy range, and a gap is
present at E=O which is also found in the histo-
gram. However, the gap is too large, and the CPA
fails to reproduce any of the other structure in the
exact DOS.

The DOS produced by the RVCM of Refs. 19 and
21 is shown in Fig. 4(a). Some of the structure in
the exact DOS is reproduced, but the spectrum is
not in good overall agreement with the numerical re-
sults. The double decimation version of the RVCM
(Sec. IIF) gives the spectrum in 4(b). With respect
to 4(a), the widths of the gaps at E=0 and E=2V
are decreased towards the exact values and the posi-
tion of the upper band edge is improved. Agree-
ment of the peak positions and intensities with those
in the exact spectrum is still poor.

The results of the RATM [Figs. 4(d) and 4(e)]
represent a striking improvement. The DD-RATM
[Fig. 4(d)] in particular reproduces the morphology
(the sequence of peaks and their relative heights) of
the histogram very well. However, peaks are some-
what shifted from their correct positions ( (0.2V).
Shifts in large peaks and peaks at high-energy values
are smallest. These are the peaks which contribute
most to moments of the DOS.

The difference between the DOS calculated via re-
normalization methods and the CPA reflects differ-
ences in the treatment of compositional fluctuations.
The renormalization procedure incorporates fluctua-
tions at all length scales. Scattering between species
at one length scale is mediated by an effective field
that includes fluctuations at shorter length scales.
Approximations involved in calculating this effec-
tive field cause the shifts in structure discussed
above.

All the renormalization methods presented here
yield exact results in the ordered limits, o.=+1.
The random case, o.=0, considered in Fig. 4 is the
least favorable one, and agreement with exact results
improves as

~

o
~

increases. This is illustrated in
Fig. 5 where DD-RATM results [Figs. 5(a) and 5(c))
are compared to exact histograms [Figs. 5(b) and
5(d)] for o = —0.5 (tendency to form a binary chain)
and 5=4. As in Fig. 4 the DD-RATM reproduces
the morphology of the DOS very well. Note that
shifts in the peak positions are generally smaller
than in Fig. 4 because of the ordering.

Figure 5 also illustrates the rich structure in the
DOS of binary alloy chains. The calculation for
Figs. 5(a) and 5(b) was repeated with the energy
resolution increased by a factor of 5. Both the exact
histogram [Fig. 5(d)] and the DD-RATM [Fig. 5(c)]
results show finer structure which was unresolved at
the previous values of 5 and g. The qualitative
agreement between the two methods is maintained.
New structure continues to be found as the resolu-
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FIG. 5. Calculated DOS for the chain of Fig. 4 with
partial order, 0.= —0.5, and two different energy resolu-
tions: (a) DD-RATM, g=0.02V, (b) exact histogram,
6=0.05 V, (c) DD-RATM, g =0.004 V, and (d) exact his-

togram, 5=0.01 V.

value q =0.02V. For disordered chains, the number
of iterations saturates as g~O at a value X given
approximately by 2 -E '. A complete discussion
of the application of renormalization methods to the
study of localization will be reported elsewhere.

In Fig; 6 we plot the average DOS for a random
binary chain with off-diagonal disorder only; t=2,
5=0. The other parameters are 0.=0, x =0.5,
g=0.015V, and b, =0.035V. Results from the DD
versions of the RVCM and RATM are compared to
the exact histogram. The DOS's given by all
methods are Aat for values of E near 0. Both pure
elements have states in this energy region. As E in-
creases structure develops. The RVCM produces
spurious structure at intermediate energies
(0.7V&!E!&1.4V) and does not reproduce the
structure in the histogram at higher energies. -The
RATM provides much better agreement. Less
spurious structure is present at intermediate energies
(see, however, the peak at E =1.3 V). As in the case
of diagona1 disorder, the morphology of the peaks at
higher energy is reproduced but at somewhat shifted
positions. The agreement is not quite as good as in
the case of diagonal disorder, because the number of
exact moments is lower when off-diagonal disorder
is present.

IV. SUMMARY AND CONCLUSIONS

tion is further increased. Conventional analytic
methods do not exhibit this behavior, even if one
goes beyond the single'-site approximation, because
they are mean-field techniques.

The extreme structure in the DOS of Figs. 4 and 5
is associated with short localization lengths. The in-
verse localization length E may be defined in terms
of the decay of off-diagonal matrix elements of G at
large distance:

E= —lim N '(InG2N, 0 InGN, o~ Il .
N~ oo

For g & 0, the Green's function is always diagonal at
the fixed points of the renormalization methods
presented here: GNo(z)~0 as N +oo. In disor-—
dered chains the fixed point remains diagonal in the
limit g~0. All states are localized. The rate of
convergence to the fixed point gives an approximate
inverse localization length. Only in completely or-
dered chains does this inverse localization length
diverge.

From the above discussion it is evident that the
number of iterations required to reach the fixed
point in numerical evaluations of the DOS depends
on two factors: the size of g and the inverse locali-
zation length. For the ordered chain the number of
iterations diverges as g~ 0, but is only —10 for the

%e have presented a systematic study of applica-
tions of the RG procedure and conventional alloy
averaging techniques to the calculation of the DOS
of 1D disordered systems. A previously suggested
method' ' ' was rederived as a virtual-crystal ap-
proximation on a renormalized Hamiltonian, and

2
E/V

FIG. 6. Average DOS for a random binary chain with
purely off-diagonal disorder. From top to bottom: results
from DD-RVCM, DD-RATM, and exact histogram.
The parameters, defined in the text, are t =2, x =0.5,
cr=0, g=0.015V, and 5=0.035V. The DOS is sym-
metric p(E) =p( —E).
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extended via multiple-decimation techniques. A re-
normalized version of another conventional single-
site approach —the ATA—was derived and shown
to constitute a substantial improvement over the re-
normalized virtual-crystal method. Other applica-
tions were suggested.

Generalizations of the renormalization methods
to higher dimension are desirable. Compositional
fluctuations are less important in two and three di-
mensions, but still dominate the question of localiza-
tion. Unfortunately, the methods described here are
not directly applicable to lattices with higher con-
nectivity than a chain. Traditional approxima-
tions for 2D RG calculations may prove fruitful,
but will not yield the exact DOS in ordered limits.
However, chains of finite width in two or three di-
mensions may be readily treated.

The renormalization methods described here
represent a dramatic improvement over their con-
ventional counterparts. Some discrepancies remain
between the renormalized ATA and the exact DOS,
but we believe the RG approach is a promising route
to better approximations for the properties of disor-
dered chains. The computational simplicity of these
methods, and their ability to incorporate very gen-
eral types of disorder in a natural manner, encourage
research based on more sophisticated conventional
alloy methods. The fact that all states are found to
be localized with easily calculable localization
lengths is an especially desirable feature for treat-
ments of disordered chains.
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+[z—A(a„+ia„)] n+1&&n+1 I, (A2)

where k(Py)=e (P)+s(gy), and the off-diagonal
terms in

5h„—= V (a„a„+i)
I

n & & n+1
I

+ V (a„+ia„)
I
n+1&&n

I

Equation (A 1) can be rewritten as

[(G )
' 5H„]G—t„=5H„.

By regrouping terms on the left we find

[g„'—5h„]G t„=5H„,
and thus

(A3)

(A4)

(AS)

t„=(G ) 'q„5H„,

where

q„=( 1 —g„5h„) 'g„

(A6)

=(1+g„5h„+g„5h„g„5h„+ . )g„. (A7)

Only terms with even powers of 5h„contribute to
the diagonal matrix elements of q„, and only terms
with odd powers of 5h„contribute to off-diagonal
elements. Separate summation of these terms yields

q„=w„(g„+g„5h„g„),

where

w„= [1—g„5h„g„5h„]

is diagonal. Furthermore, since

&n Ig„5h„g„5h„ I
n &

(A8)

(A9)

where 5H„and G are defined in (23b) and (24).
The summation is simplified if the diagonal and
off-diagonal components of 5H„are considered
separately. The diagonal terms are incorporated in a
new operator g„

g„—:[z —A,(a„a„+i)] '
I

n & & n
I

APPENDIX A

The t matrices are given by

t„=5H„+5H„G 5H„+5H„G 5H„G 5H„+ .

(A 1)

=
& n

I g.5h.
I
n+1& &n+1

I g.5h.
I

n &

=
& n+ 1

I g„5h„g„5h„
I
n+ 1

I &,

m„may be treated as a scalar,

(A10)

w„= (1—[V (a„a„+i)] /[ [z —A(a„a„+i)][z—A,(a„+ia„)]I )

Equation (A6) can now be written as

(A 1 1)
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t„=u)„(G ) 'g„(1+5h„g„)5H„.

The matrix elements of t„are easily calculated from (A12) to give Eqs. (25) and (26).

(A12)

APPENDIX B

Expressions for t„are given in (Al), (25), and (26). Each factor of G in Eq. (29) is between two different t
matrices t2„and tz„+&. The on1y site on which both t2„and tz„+& have nonzero matrix elements is 2n+1.
Thus G may be replaced by

~
2n+1)[ z—e (a2„+l)] '(2n+1 ~. Then separate summation of terms with

even and odd powers of t in (29) yields

t2~ —— g P~„~~([tz~ +~+tz~ + 2n+1)[z e—(a2~+l)] '(2n +1
~
t2„+l m ~

2n +1)
m =0, 1

X[z—e'(a2g+))] 'f2/(2n+I
~

t2. +~]

+t,'„+
~

2n+1) [z —e'(a2„+, )] 'f,„(2n+1
~

t,'„+, ), (B1)

where

00

f2„Q I (2——n+1
~
t2„+~ ~

2n+1)[z e(a—2„+l)] '(2n+1
~
t2„+l ~ ~

2n+ I)]'
j=0

= [ 1 —0 (a2„+la2„)a (a2„+la2„+2)[z e' (a2n +1)1
—2 —1

is a scalar factor.
The matrix elements of t2„can now be calculated and configuration averaged over o.2„+] to give t2'„' in terms

of renormalized a's and b's Terms i.n (Bl) with odd powers of t contribute only to the diagonal elements of
t2„while even terms in t contribute to off-diagonal elements. Only one of the terms in the sum over m in (B1)

is nonzero because (2n
~
t2„+, ——0= (2n+2

~
t2„. We find

a (a2„,a2„+2)=(a (a2„a2„+l)+[b (a2na2n+I)] a (a2n+la2n+2)(&) 0 2 0

X [d (a2na2n+ la2n+2)] )odd ~

0 —1

where

( 2n 2n+2) ( ( 2n 2n+1)b (a2n+ la2n+2)[ e ( 2n 1)+]

0 —1%X [d (a2na2n+ la2n+2] &odd ~

(B3)

d (aPy)=[z —e (P)] —a (Pa)a (Py) . (B4)

With the use of the relations in Sec. II B, the configurational averages in (B3) are explicitly written as in (31).
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