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Theory of tetrahedral-site interstitial s- and p-bonded impurities in Si
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A theory of the major chemical trends in the deep-energy levels of interstitial defects at
the tetrahedral site in semiconductors is developed, based on a simple, empirical tight-

binding scheme. The importance of hyperdeep and hyperbonding levels is emphasized. The

theory is applied to various charge states of 29 interstitial defects in Si with the use of a

self-consistent defect potential. The theory accounts for the electron-nuclear double-

resonance data of the deep Al'+ wave function and the deep-energy levels of Al+, as well as

for what is currently known about the major chemical trends in the deep and shallow levels

of several other impurities.

I. INTRODUCTION

The purpose of this paper is to develop a simple
theory of the electronic energy levels introduced into
or near the fundamental band gap of Si by an
s-p —bonded impurity occupying an interstitial site
of tetrahedral symmetry. Our major goal is to es-
tablish guidelines, based on the valence, atomic
properties, and chemistry of the defect, for predict-
ing which interstitial impurities are likely to act as
shallow donors, shallow acceptors, deep donors,
deep acceptors, or inert centers.

Some such guidelines for the energy levels of de-
fects already exist for substitutional impurities; for
example, a substitutional defect whose valence
differs from that of the host by + 1 ( —1 ) typically
forms a shallow hydrogenic donor (acceptor) level.
Although this simple rule for substitutional defects
has a number of important exceptions, it acts as a
useful rule of thumb for anticipating the character
of common dopants. However, no analogous rule
exists for interstitial impurities.

Interstitial impurities play an important role in
semiconductors. Some, such as Li, Mg, and the
transition metals in Si, energetically prefer to occu-

py the interstitial site and are electrically active.
Other impurities are driven, via the Watkins ex-

change mechanism, ' from the substitutional site to
the interstitial site as a result of radiation damage.
Interstitials are also important in atomic migration,
since the diffusion constant for an interstitial impur-
ity is typically several orders of magnitude larger
than for a substitutional impurity. Furthermore, in
the II-VI materials, it is believed that a substitution-
al group-I acceptor may spontaneously move to an

interstitial site, thereby becoming a donor and self-
compensating the material.

In the present work, we select the tetrahedral in-
terstitial site in Si as a prototype because of its high
symmetry, its fourfold coordination, and the fact
that the nearest-neighbor bond length for the inter-
stitial is the same as that of a bulk host atom. We
expect the basic mathematical methods and physical
ideas developed for this prototypical site to apply to
other lower-symmetry interstitial sites as well.

Most of the theoretical work on interstitial impur-
ities has been concerned with the transition-metal
impurities"' because of their technological impor-
tance in semi-insulating material. It has been
known for some time from spin-resonance experi-
ments that these transition-metal impurities occupy
tetrahedral sites and produce a number of levels in
the band gap associated with different charge states
of the impurity.

Much less theoretical work has been devoted to
impurities with an outer s-p valence structure. This
is partly due to a lack of detailed experimental infor-
mation concerning their energy levels and site sym-
metries. Yamaguchi and Weigel et al. have inves-
tigated interstitial carbon in diamond. The Li inter-
stitial in Si has been investigated by Singh et al.
and the self-interstitial in Si by Singhal' and more
recently by Kauffer et al. ,

"Weigel, ' and Scheffler
et al. ' However, all of these calculations, except
those of Weigel, ' consider only one specific impuri-
ty, so they provide little insight into the global
chemical trends in the defect energy levels. Our ap-
proach is to consider a large number of impurities so
that the general systematics of the energy levels will
be displayed, even if some imprecision results for the
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energy levels of individual defects.
We treat the host Hamiltonian Hp using the

empirical tight-binding nearest-neighbor approxima-
tion: Thus the host Si bands are determined by the
Vogl et al. 10' )& 10' sp s* model Hamiltonian ma-
trix, ' where 1V is the number of unit cells. The in-
terstitial impurity is treated by augmenting the 10K
host basis orbitals and including in addition one s
orbital and three p orbitals centered at the interstitial
site. Hence the (uncoupled) Hamiltonian matrix for
the host plus interstitial impurity (in the localized
basis) is a direct sum H eH, where H is the diag-
onal 4X4 interstitial Hamiltonian. The coupling 8'
between the host and the interstitial impurity is a
10')&4 sparse matrix. The matrix elements of 8'
vanish except between the interstitial and its 10
closest neighboring atoms. The nonzero matrix ele-
ments between neighbors are assumed to depend
only on the bond length and on the relative sym-
metries and orientations of the orbitals involved
(viz. , there are eight independent nonzero matrix ele-

ments: 8 z Wzp Spp, and Spp for nearest and
for second-nearest neighbors; each 8' scales with
distance according to the Pandey-Phillips rule" ).
The chemical identity of the interstitial-impurity
atom is contained exclusively in its central-cell po-
tential, namely, the four diagonal elements of H .
These diagonal elements, in the case of a Si self-
interstitial, are taken to be equal to the Si-site diago-
nal elements of Hp. For an interstitial impurity oth-
er than neutral Si, additions V, and Vp are made to
the diagonal matrix elements; these are determined
in a self-consistent manner using the ideas of Hal-
dane and Anderson. ' We found this to be necessary
since an interstitial atom is not in general neutrally
charged within its atomic volume. Moreover, we ex-

pect some interstitial impurities, especially those
that are highly charged, to exhibit bonding charac-
teristics quite different from the highly covalent sp
tetrahedral bonding. Except for this self-consistency
requirement (which is less important for substitu-
tional defects) this theory is similar to an earlier
model of substitutional deep traps by Hjalmarson
et al. '

The remainder of this paper is organized into
three main sections. The theory is given in Sec. II
and consists of two parts: (a) the construction of the
Green's-function equation for the determination of
the bound-state eigenenergies for a given central-cell
potential, and (b) the evaluation of the central-cell
interstitial atomic potential for a particular impurity
using the procedure of Haldane and Anderson. A
discussion of the essential qualitative physics
governing interstitial deep levels is described in Sec.
III, including illustrations of the main features of
the wave functions and the dependence of the deep-

energy levels on the interstitial impurity and its local
chemistry. In Sec. IV, the results of the present
theory for 29 different s-p —bonded tetrahedral-
interstitial-site impurities in a number of different
charge states are given and compared with available
data; most notably the theory for Al + is compared
with the wave function extracted from electron-
spin-resonance (ESR) and electron-nuclear double-
resonance (ENDOR) experiments. Finally in Sec. V
we summarize our findings and discuss our con-
clusions.

II. THEORY

A. The eigenvalue equation

We now construct the eigenvalue equation for the
defect energy levels of an interstitial impurity in Si
with a given 4 X4 central-cell potential matrix. (The
question of how the central-cell potential for a
specific impurity is determined will be addressed in
the following section. ) The basis set of the Si host
crystal in the tight-binding approximation is aug-
mented by introducing localized orbitals centered on
the interstitial site. This is necessary because expan-
sion of the interstitial wave function in terms of the
wave functions of the nearby host Si atoms is

doomed to slow convergence. ' Thus the model
Hamiltonian in the localized orbital basis takes the
schematic block form

HP

O' H

where H is the perfect-crystal host Si Hamiltonian
of Vogl et al. ,

' H is the interstitial Hamiltonian in
an appropriate basis (we shall use an sp basis at the
interstitial site), and W denotes the coupling matrix
elements between the interstitial atom and the host.
The localized orbitals we use for all of the matrix
elements in this section will be assumed to have the
same spin component, say spin up (t). All matrix
elements between spin orbitals with opposite spin
components vanish since we have neglected spin-
orbit interactions. The interstitial Hamiltonian HI
is a 4&(4 diagonal matrix with elements e, (I), ez(I),
e&(I), and ez(I) equal to the interstitial s, p„,pz, and

p, orbital energies "in the solid, " respectively. For
the case of the neutral Si self-interstitial these orbital
energies in the solid are taken to be the on-site ma-

trix elements in the Vogl et al. Si tight-binding
Hamiltonian, because the coordination numbers and
the bond lengths are the same for the neutral inter-
stitial Si and for host Si: A neutral interstitial Si
atom has the same on-site matrix elements e(I) as a
host Si atom. For interstitial impurities other than
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energies in the solid' from Table I). Qther im-
purities may be considered by altering the 4)&4 di-
agonal matrix from H„t to H„t+ V, where V (in a
first, non-self-consistent approximation) is the diag-
onal matrix whose elements are the change in the s
and p atomiclike orbital energies from those of
atomic Si. The final results can be shown to be in-
dependent of the choice of the reference orbital ener-
gies if V is iterated to self-consistency, so that any
reference would serve equally well. The energy lev-
els E are determined by the determinantal equation

det[1 G„t(E—) V] =0, (3)

where G„t(E)=(E H„,t) —' is the Green's function
for the host crystal coupled to the reference Si self
interstitial, and H„t is the Hamiltonian of Eq. (1)
with H =H„t. The Green's function G„t(E) con-
tains all of the information about the perfect Si host
crystal and of the interactions of any interstitial im-
purity with its neighbors. Thus the introduction of
a reference Hamiltonian for the neutral Si self-
interstitial and a difference potential V has substan-
tially reduced our computational labor since G„, (Et)
is the same for all impurities and need be computed
only once.

The interstitial atom occupies a site of Td
(tetrahedral) symmetry. Symmetry arguments show
that the localized levels obtained in an sp basis are
of A~ (s-like) and T2 (p-like) symmetry. These sym-

metry considerations factor the 4X4 determinant in

Eq. (3) into a product of scalars (1X 1 matrices): a
singly degenerate term for the A

&
level and a triply

degenerate term for the T2 levels. The condition for
a bound state simply reduces to the familiar Koster-
Slater ' condition

[G„t(E)]„=(V, )

[G„t(E)]p~——( V~ )

(4)

where V, (V~ ) is the orbital s (p) energy difference of
the particular interstitial impurity and the reference
neutral Si. The functions [G„,t(E)]„and [G„,t(E)]~~
are the on-site matrix elements of the reference
Green's function

[G,.«)]-=(s(I) l(E —H-t) 'ls(I)&

[G„(E)]„=(p(I)
~

(E —H„)-'
~

p(I)),
where ~s(I)) and ~p(I)) are the s and p atomiclike
basis orbitals at the interstitial site (which need not
be explicitly given).

All matrix elements of the Hamiltonian H in Eq.
(1) are known explicitly, so that the necessary matrix
elements of the Green's function can be found exact-
ly (although numerically) in the model. The impar-
tant diagonal terms are conveniently written (exact-

E e, (I)—(s(I)—
i

W Go(E)W s(I)) =V,

for the A
~ levels and

E e~(I) —(p (I) —W"Go(E) W
~ p (I) ) = V

(Sa)

(gb)

for T2 levels. Note that these equations require the
computation of matrix elements of Go(E), which de-
pend only on the uncoup/ed system. The impurity
enters only through the energies e, and e& (and
through the defect potentials V, and Vz). The Ham-
iltonian of the uncoupled system block-diagonalizes
to produce the perfect crystal Bloch states and the
atomic energy levels of the interstitial. Note that, as
the coupling potential W goes to zero, X;(E) (i =s or
p) goes to zero, and the Koster-Slater condition
reduces to the interstitial atomic orbital energies
[E—e;(I)] '= V; ', or E =e;(I)+V;, as it should.
Also note that in the limit that the interstitial atom
becomes an ideal vacancy (V, —+ oo and V~ ~ oo, Ref.
23) the spectrum of "impurity" levels for this "inter-
stitial vacancy" is equal to the spectrum of the host,
as it must be.

B. The self-consistent interstitial impurity potential

In this section, we discuss how the atomic poten-
tials V, and V& of the interstitial atom are deter-
mined. First approximations to the diagonal matrix
elements of the interstitial-impurity potential are the
neutral free-atom orbital energies of the interstitial
impurity relative to Si. However, because an inter-
stitial impurity does not fit in with the normal
bonding requirements of the surrounding host ma-
terial, the charge on the interstitial atom may be
quite different from that of the neutral free atom.

ly) as

[G„t(E)]„=[E—e, (I)—X,(E)]

[G„,t(E)]p~ [E——Eq (I)—X~ (E)]
where X,(E) and X~(E) are the self-energy terms
which represent the coup/ing of the interstitial atom
to the surrounding host. These self-energy terms are
given by

X,(E)=(s(I)
~

W Go(E)W is(I)),
Xz(E)=(p(I)

i
W Go(E)W ip(I)) .

Here Go(E) is the Green's function of the uncoupled
(i.e., W=O) host plus interstitial system, Go(E)
=(E H H—„,t)—

Hence the eigenvalue equations for the deep trap
energies E are
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We include these charge-state effects in an approxi-
mate manner, using a self-consistent procedure (to
be described shortly) similar to the d-state model of
Haldane and Anderson. '

We begin by first constructing a phenomenologi-
cal model to describe the charge-state effects on the
orbital energies of a free atom. The Coulomb repul-
sion between the outer valence electrons in different
spin-orbitals can be described using an Anderson
Hamiltonian with three electron-electron interaction
parameters U„, Upp, and U,p. These three parame-
ters represent the Coulomb repulsion between two s
electrons, two p electrons, and an s and a p electron,
respectively. Consider an atom which is successive-

ly ionized through the outer p and then the inner s
shells. The atomic-orbital energies, or ionization po-
tentials, in these different charge states are approxi-
mated by

I20-

I I 0-
IOO-

90-
O 80-
tt)

o 70-
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8 40
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20—

IO—

Es
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P S

Number o f Elect rons n

E, (Inl)=E, +g'n, U„+pe U~,
o' j,o'

EP (Inl)=Ep+g'nP Upp+ gn, UP,
j,o' 0'

where o is the spin (& or t), i =x, y, or z, and the
prime on the summation indicates that the self-
interaction (i =j and/or o=cr') is excluded. Here
n, and nP ~ are the occupation numbers (0 or 1) of

l

the s orbital and p; orbital of spin 0., respectively.
The collective set of occupation numbers is denoted
by Inl. This model assumes that the atomic ener-

gies are linear functions of the electron occupancy
and that quadratic effects are unimportant. That
this approximation is reasonable, at least for the p
states, can be seen in Fig. 2.

There are five unknown parameters in this
phenomenological description: E, , Ep, U~, Upp, and
U,p. These five parameters are empirically fit so
that they reproduce (i) the Hartree-Fock occupied s
and p orbital energies for the neutral free atom' '

and (ii) the experimental s and average p ionization
potentials. The requirements (i) and (ii) yield a
unique fit to the five parameters for neutral atoms
which have four or more outer valence electrons.
However, the Coulomb repulsion between two p
electrons Upp is absent for neutral atoms which do
not have at least two electrons in the p shell. Sup-
plementary information, such as from nonionizing
transitions [e.g., s p to sp (Ref. 27)] or the excited-
state calculations of Basch et al. , is used for the
lower valence atoms. The values of the Anderson U
parameters obtained by this fitting procedure are
listed in Table II.

In the solid, the orbital s and p energies of the in-
terstitial impurity are computed using the same ap-

FIG. 2. Ionization potentials {in eV) vs number of elec-
trons in the shell, n~ and n„ for elements from the third
row of the Periodic Table. E, is the ionization potential
of the last 3s electron. The Coulomb parameters U„and
Uzz [Eq. (9)] are the derivatives of the ionization poten-
tials with respect to n, and n~, and can be extracted from
these curves because they are nearly linear.

TABLE II. Atomic energies E,"' and E~"' {Refs. 14,
25, and 26), bare ionization energies E, and E~, as in Eq.
(9), and Coulomb energies U„, U~~, and U,~ [as in Eq. (9)].

Eo

Key
USS

ATOM
S PP

EATOM
P SP
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-14.29 B I-31.68 C
I
-52.21 Nj-80.68 0~ -121.0 F
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12.29 I 1.69 14.23 I
".30 20.01 22. 87

15 15 jPI I
I

28. 50 C I
45. Io D I -65.00 c I -88o3 a I I

-114.30
-1074 +-21.80 ~~-34.63 '~ -51.49 ~~ -73.12 ~~ -95.57

756 -11.26 9.60 -14.8 11.64 -18.8 1365 -23 92 15.53 -29. 18 17.57
5.62 —5,93 8.30 -7. 75 8. 19 -10, 12 9.84 —11 go 12 31 —13.77 13.70
6. 27 7.90 9.34 lo. 85 12. 15 13.50

-i766 GoT5o7o Gel 447o Asl-626-o Sel-62~ Br I40500
-I I.BB——1-23.71 -35.03 -49.25 -66.82 -84 93
1000 -11.55 10.13 -15.05 1049 -178 12.50-22.78 14.0C -2700 1440

7.81 -5.67 9.74 -7.82 8.05 -9.19 9.27 -10.96 11.08 -12.43 11.96
8.40 9.02 9.58 10.77 11.31 12.32

-1690)nT2605 Snt-4072 Sbl-5600 TeJ -7200 iJ- I 1,22 -22.81 -32.03 -44.61 —-- -59.30 —-
9.70 -10.14 9.17 -12.96 10.23 -15.83 11.90 -19.06 12.00 -22.33
7.64 -5.37 10.45 -7 21 7.28 —9.10 8.33 -9.79 9.66 —10.97
8.23 8.72 8.74 9.42 10.24

-i675 Tl I-266o Pbl-42. 5i Bl I-56oo Pol AJI

11.65 —9.82 9.38 -12.41 10.38 -15.01 10.70 -1790 -20.82
907 -5.23 13.21 -6,95 7.61 -8.70 9. 14 -928 —10.33

IO. I I 10.60 9.76 Io. 10

-13,6
H

-12.8
-13.6 4.0
—3.4 3.6

5:52 Bel
-538 5.08 -9.31

-3.52 3.90 -490
4.20
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-7 Io
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proximations as were made for the free-atom orbital
energies in Eq. (9). The electron-electron interaction
parameters U are assumed to be the same as those of
the free atom, but since an electron is shared over
many sites, the spin-orbital occupations of the inter-
stitial n, and np are no longer integers, following

t
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Haldane and Anderson. ' The spin-orbital occupa-
tion n (a generically denotes any one of the spin-
orbitals s &, s l, p„ t, p» 1', p, t, p„1,p» i, or p, l) of the
interstitial atom are obtained by integrating the local
density of states d (E) for the spin-orbital a over all
occupied levels,

no J
——d~(E)dE . (10a)

The local density of states d is formally given by
the matrix element

d~(E) = (a(I)
~

5(E H«r —V~)
~

—a(I) ) . (10b)

I.O

c 0.75

0
o 050
O

0
0.25

0.00 I ( I I

-20.0 -15.0 -10.0 -5.0 0.0
Defect Potentiol V, or Vp (eV)

5.0 [0.0

It is clear from Eq. (10b) that the occupation num-
bers n depend explicitly on the value of the impuri-
ty potential V . Conversely, the impurity potentials
V depend on the spin-orbital interstitial-site charge
occupation numbers n,
V, =[E,—E,"' (Si)]+g'n, U„+ gn» U,

CT j,o'

=[go—E"m(Si)]+ g' U + yn, U,
J,O' 0'

The prescription of Haldane and Anderson, ' which
we adopt here, is to solve Eq. (8) for the eigenvalues
E, given the defect potential V~, with the additional
constraint that the resulting atomic valence configu-
ration [Eq. (10a)] of the impurity is consistent with
the input defect potential V .

The charge on the interstitial atom can be decom-
posed into two contributions; (i) a contribution n~"~
from the occupied bound deep states in the band gap
or from quasibound sharp resonant levels near the
top of the valence-band edge, and (ii) a contribution
n"'" ' from integrating the local density of states
from below and through the valence bands to near
the top of the valence bands. The deep (n "")and
band (n

'" ') contributions to the occupation charge
of the interstitial orbitals of A& and T2 symmetry
are plotted in Fig. 3 as functions of the defect poten-
tial for that orbital. (Note that nz n, for ei—t—her$0'

spin 0 and nT n~ )F——or V .~—ao, the charge
2 I

n
'""' approaches unity, as expected.
The electronic occupancy XI of any localized lev-

els which might be introduced into the band gap by
the interstitial impurity affects the charge and po-
tential of the impurity. (Note that l =A& or Tz la-
bels the levels, and that NI, the level occupancy, is
an integer and differs from n the fractional number
of electrons in the ath orbital at the interstitial's
site. ) A maximum of eight one-electron levels may
be formed in the gap in this model; including the
spin degeneracy, there may be two of A

&
(s-like) and

FIG. 3. Electronic charge occupancies in the solid

2
'

the defect potential V, or V~ (in eV, with the Si interstitial
as zero). The conduction- and valence-band edges E, and
E, occur for defect potentials denoted by single (double)
arrows for the nq " (nT" ). Note that for V—+ —ao,

1 2

n bands~ l

six of T2 (p-like) symmetry. Each of these levels has
a wave function

~
1(1 ) which is a linear combina-

tion of one of the interstitial-site spin-orbitals a
(a =s t, p„ t, p» t, p, t, s t, p, &, p» 1, or p, i ) as well as
several host-site spin-orbitals. The interstitial-site
wave-function component (a(I)

~
1(~ ) can be la-

beled by o. alone, which serves as a useful index for
categorizing the localized levels. Using this index-
ing scheme, we search for solutions of Eqs. (8) and
(11) with integer occupation numbers (N„,N„,
N~ „Nz „Nz „,N~ „Nz „Nz „) corresponding to each

of the eight possible ground-state configurations of
the interstitial impurity in each of its eight charge
states (we assume A

&
levels lie lower in energy than

T, levels):

(1,0,0,0,0,0,0,0), (1,1,0,0,0,0,0,0), . . . ,

The problem of determining the impurity poten-
tial and the impurity energy levels is now completely
prescribed. A specific impurity and a set of deep-
level occupation numbers [NI are selected. A trial
set of V 's are used to compute the occupation
charge in each of the interstitial spin-orbitals using
Eq. (10). This set of n~'s is then substituted into Eq.
(11) and a new set of V 's is generated. The pro-
cedure is repeated until self-consistency is obtained.
The process is actually quite simple since most of
the eight relations in Eqs. (10) and (11) are redun-
dant. In practice there are never more than three
unique defect potentials V and three unique inter-
stitial spin-orbital charges n .

It should be emphasized that the present calcula-
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tions are self-consistent and do include many-
electron contributions to the interstitial s one-
electron energy levels. The major approximations of
the model are the treatment of self-consistency using
the Haldane-Anderson procedure (which allows for
the alteration of the defect potential but does not
alter the neighboring host) and the neglect of lattice
relaxation. Of course, both of these effects can be
incorporated into the model and correspond roughly
to extending the range of the defect potential. They
have been omitted in the present work because we
judge them unlikely to significantly alter chemical
trends and because their costs in terms of lost sim-
plicity very likely outweigh any benefits in terms of
slight improvements in quantitative accuracy of the
calculations.

III. QUALITATIVE PHYSICS

The qualitative physics of the impurity energy lev-
els and wave functions can be understood by consid-
ering a simple molecular model. Consider a pair of
molecules connected by an "interstitial" atom as
shown in Fig. 4(a). The interstitial atom is assumed
only to have an s state, so it only couples to the sym-
metric (i.e., A ~) combination of molecular orbitals of
its neighbors. As shown in Fig. 4(b), there are two
such combinations corresponding to linear combina-
tions of the bonding and antibonding states of each
molecule. The interstitial atom drives the bonding
orbital downward to the lower energy E, (the inter-
stitial atom provided an extra bond for atoms b and
b') and the antibonding level to the higher-energy

level E3. For the self-interstitial example El=ED
shown in Fig. 4(b), the interstitial energy EI is equal-
ly pushed upward by the bonding orbital and down-
ward by the antibonding orbital such that the level
E2, which lies in the bonding-antibonding gap, is a
nonbonding orbital at the original energy el. Alter-
ing the interstitial orbital energy el changes the
three molecular levels E~, E2, and E3 as shown in
Fig. 4(c). The middle branch E2, which is the ana-
log of the deep level, is trapped into an arctangent-
shaped curve by the bonding and antibonding levels
of its neighbors; this is an example of the Rayleigh
interlacing theorem.

A schematic plot of the wave functions for the
three energy branches in this simple molecular
model is shown in Fig. 4(d). Let us first focus on
the wave functions of the middle "deep"-level
branch E2. The point B2 is at an inflection point
where the bonding and antibonding levels of the
host are weighted equally in the construction of this
deep-level wave function; here the wave function is
nonbonding. As we pass through this inflection
point, A2~B2~C2, the deep-level wave-function
amplitude on the interstitial atom and on its second
neighbors varies slowly and smoothly. However, the
deep-level wave function on the near-neighbor atoms
changes its character dramatically; at the point A2
below the inflection point it is negative, then van-
ishes at the inflection point B2, and finally is posi-
tive (at C2) above the inflection point. This
behavior is to be contrasted with the nearly universal
antibonding character of the anion-site substitution-
al electronegative impurity deep-level wave func-
tions. ' ' '
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FIG. 4. Illustrating the qualitative physics of interstitial impurity levels. (a) Four atoms a, b, b', and a', with diagonal
energies eo and nearest-neighbor transfer matrix elements w, an interstitial I with diagonal energy el and transfer matrix
elements W. (b) The splitting of the host levels of a, b, b', and a' to produce the bonding state g+ and the antibonding
state of P . The introduction of an interstitial with EI=Ep repels the energy levels of the bonding and antibonding states,
producing three levels E&, E2, and E3. (c) Schematic illustration of how these levels vary as el —eo varies from zero.
(E~ ——B~, E2 ——B2, E3——B3) to + Op. (d) Schematic illustration of the wave functions of the levels E), E2, and E3 for condi-
tions corresponding to different choices of el. A, B, and C of part (c). Note that the third level E3 retains its essential
character as a conduction-band resonance, that the second level E2 is a deep trap in this illustration, and that the second
level's wave function has central-cell and second-neighbor amplitudes that are insensitive to the value of el while the first-
neighbor amplitude changes sign as el varies. Also note that the first level changes character from a hyperdeep state that
is almost completely impuritylike (for A) to a hyperbonding state for B and C, in which the interstitial's nearest neighbors
develop extra bonds to the interstitial because it is nearly in resonance with them.
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The wave function for the energy levels of the
lower branch E& behaves quite differently. These
levels always have bonding character but can be ei-
ther impuritylike, namely hyperdeep in character for
extremely electronegative impurities (e.g. , at A ~), or
hostlike (which we term hyperbonding) in character
for electropositive impurities (e.g. , at C&). The hy-
perdeep level occurs when the interstitial energy lev-
el lies well below the host bonding level, and elec-
trons flow to the highly attractive interstitial impur-
ity. (This is similar to the hyperdeep level of substi-
tutional impurities. '

) As the interstitial's energy el
becomes increasingly positive (A, ~B~~C&), the
charge on the interstitial spills off onto its neigh-
bors, producing at Bj an interstitial resonant with
two neighbors (the three atoms try to share the
charge nearly equally) and then a state C& with
much of the charge on the neighbors. These last
two states are largely hostlike in character and hy-
perbonding, because the atoms neighboring the in-
terstitial have each developed an extra bond to the
interstitial, thereby lowering the total energy of the
impurity complex.

IV. RESULTS

In this section, the basic results of the self-
consistent potential model are summarized. The
model has been used to compute the A

&
(s-like) and

T2 (p-like) electronic levels near the band gap for
each of 29 different s-p —bonded interstitial impuri-
ties in Si. A number of charge states have been con-
sidered for each impurity.

To grasp the basic general trends in the deep elec-
tronic levels, we first consider only the third-row
elements Mg, Al, Si, P, S, and Cl in their neutral
charge states (see Fig. 5). The levels for these im-
purities range from conduction-band resonances, to
bound deep levels in the gap, to valence-band reso-
nances; the most electronegative (and higher-
valence) atoms producing the lowest-energy levels.
The electropositive group-II element Mg produces
only high-energy conduction-band resonances; its
two electrons are thus captured by the long-ranged
Coulomb potential, which we have omitted, into a
hydrogenic shallow donor state as observed experi-
mentally. The less electropositive group-III ele-
ment Al does produce a deep A& level just below
midgap. However, its p orbital forms a T2
conduction-band resonance whose electron is simi-
larly lost to become a shallow donor. The Si self-
interstitial produces a filled 2& valence-band reso-
nance level and a bound T2 level just below the
conduction-band edge. The T2 level is so close to
the conduction-band edge that it can only bind one
electron; localizing a second electron increases the

Conduction Band Minimum
gap
I.O—

0.0)
m

G)
C

LIJ

-I.O—

Valence Band Maximum

Neutral Third Row Elements

energy because of the electron-electron repulsion.
The recent self-consistent pseudopotential calcula-
tions of Scheffler et al. ' similarly find an A

~

valence-band resonance but only T2 resonance levels
above the conduction-band edge.

The group-I and group-II impurities which we
have studied (H, Li, Be, Mg, Zn, Cd, and Hg) are all
predicted to form shallow single (group-I) or double

—.o +"
CI S P $i Al Mg

SZII SQ '57 ZZ III II

FIG. 5. Predicted chemical trends in energy levels (in
eV) near the fundamental band gap for neutral third-row
elements of the Periodic Table at the tetrahedral-
interstitial site in Si. A ~ or s-like (T2 or p-like) levels are
denoted by single (triple) lines. Occupation by spin-up or
-down electrons is denoted by arrows. (Magnetic effects
and Hund's rules have been ignored in this and subse-

quent figures. ) Deep resonances in the conduction band
are hatched. Electrons that would occupy these reso-
nances if they were genuine bound states in the gap in-

stead spill out into the continuum and fall to the
conduction-band edge (arrows with circles) where they oc-

cupy shallow donor levels as a result of the long-ranged
Coulomb potential of the impurity (omitted in the present
model). The zero of energy is the valence-band maximum
of Si. The energies in this figure are the one-electron
eigenvalues of Eq. (8), and are different for each different
charge state because the mean-field Coulomb interaction,
Eq. (1), is different. Some of these neutral-defect levels

will be unstable to electron capture or emission (see Fig.
6). Notice that some of the predicted valence-band reso-
nance levels are not fully occupied. Configurations asso-
ciated with such levels may not be stable and the charge
state of the impurity may be able to spontaneously in-

crease by electron capture. The capture of an additional
electron raises the one-electron energy level, and changes
the defect's charge by one electronic charge. If the one-
electron level after electron capture lies above the Fermi
energy, the electron spills out of it and the original charge
state is stable. If the one-electron level after electron-
capture lies below the Fermi energy, either the configura-
tion with the extra electron is the stable charge state or a
configuration with more extra electrons is the stable state.
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(group-II) donors. Experimentally Li is known to be
shallow while H (and muonium) is believed to be
deep although its location in the lattice has not
been determined experimentally. (We predict that H
has a resonance -0.3 eV above the conduction-band
minimum. ) One might naively expect that, since H
has an atomic s orbital energy of —1.0 Ry which is
near the Si s orbital energy of —1.09 Ry, the H
central-cell potential would form a localized level in
the valence-band similar to the Si 3

~ level. Howev-
er, if H were to form such a level, it would tend to

be occupied by two electrons, making the defect H
not H . The defect orbital energy for H would not
be —1.0 Ry, but nearly zero; thus this occupancy ef-
fect would cause H to behave as though it were quite
electropositive like Mg (but less electropositive than
Li) rather than like Si.

The predictions for all the important charge states
of the elements studied are shown in Figs. 6(a)—6(e).
Each figure shows the energy levels for a given
column of the Periodic Table. It is found that
within each isoelectronic series, all of the impurities

Egpp CB M

I.O-
Egpp CBM

I.O—
~ 4 s ~ a

T

~ 00

C
LIJ

VBM,&--
I

Expt.
+I

'I'Expt.

I
I

00 VBM

l.o—

-I.O-
B++ B+ B Al" Al' Al Ga" Ga' Ga In" In' In TI" Tl' TI

C
~ C C' C Si+~SI~Si' Sl Gene' Ge' Ge SrPSn' Sn' SA' Pb~P8 Pb Pb

Group ZZ Interstitials Si

(b)

E CBM

IO—

0.0

QP

cu -IO
LLJ

-2.0

Q4g
I
I
I

I
I
I
I

VBMg gy
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I

N+ N N

Group III Interstitials in Si

(o)

ma+ ~

I
I

I

I

I

+$~

P+ P P As+ As As Sb+ Sb Sb Bi+ Bi Bi

Group 5Z Interstitials in Si

Egap CBM
1.0—

0.0)
-I.O

QJ

-2.0

Il gQ@

I
I

I
I

44k'
I
I
I

VBM

I

o+ o o o I
s' S S S Se' Se Se Se Te+ T~ Te Te

Group SH In ter st i t ip ls in Si

Egpp CBM

I.O—

VBM

tu

C
~ -IO-

LtJ

I
I

I
I

I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I

F F F CI CI CI Br+ Bro Br

Group SHI Interstitials in Si

{e)
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(e) VII. The charge states are determined as in Fig. 5. The stable charge configuration is the state with the highest one-

electron level that lies below the Fermi energy.
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have a very similar level structure. The second-row
elements B, C, N, 0, and F deviate most from the
norm.

The charge-state splittings (e.g. , the difference in

energy levels of B + and B+) predicted here are
larger by almost a factor of 3 than those found for
substitutional impurities [such as Si:Tes; (Ref. 38)].
This is doubtless because of the fact that the
interstitial's deep levels are more atomiclike: The
charge within the central cell of the defect [which is
equal to dE/dV (Ref. 31)] is approximately 3 times
as large for the interstitial.

The Al interstitial provides a particularly interest-
ing example of an interstitial impurity. This center
is created in radiation damaged material. A substi-
tutional Si atom is knocked into an interstitial posi-
tion, and then rnigrates to the neighborhood of a
substitutional Al atom. The interstitial Si and sub-
stitutional Al change places so that the interstitial
impurity is now Al. ' The material is p type (doped
with substitutional Al), and the Fermi level lies
slightly above the valence-band edge. Thus the Al +
valence-band deep resonance level at -E,—100
meV [see Fig. 6(a)] represents the equilibrium state
for this system. This level has an unpaired spin and
is the A I level detected by EPR and ENDOR mea-
surements by Watkins' and Brower. A hyperbond-
ing level of AI symmetry is predicted to lie below
the valence band, but is fully occupied and is there-
fore not seen in EPR. By changing the Fermi level
or performing a nonequilibrium experiment, the Al
A, level can be doubly occupied (with spin t and
spin t) to produce the Al+ center. The Coulomb
repulsion between electrons drives the AI level out
of the valence band to become a true localized
band-gap deep level at -E„+0.50 eV as shown in
Fig. 6(a). This level has been observed in deep-level
transient spectroscopy experiments by Troxell
et al. , where they estimate the level to be at
E„+0.17 eV. The third electron to be attached to
the Al interstitial, forming Al, is predicted not to
be deep and so is bound only by the long-ranged
dielectrically screened Coulomb potential into a
shallow donor level. This level has not been ob-
served. Troxell et al. suggest that this is due to the
interstitial atom moving out of a site of high syrn-
metry into a site of lower symmetry such that the
degeneracy of the p orbitals is removed and stronger
bonds are formed. ' ' Interstitial 8 (Ref. 42) and
C+ (Ref. 43) are also found at lower symmetry sites,
presumably for the same reason.

The wave functions for the Al + center obtained
from spin-resonance experiments' and from the
present theory are shown in Figs. 7(a) and 7(b),
respectively. The experimental wave function is
reconstructed from the experimental hyperfine cou-

pling parameters
' assuming these parameters can be

directly related to the Al and Si free-atom values of
~ P,««(0)

~

and (r ). The Si free-atom para-
meters are taken from the empirically corrected
Hartree-Fock values given in Ref. 44. However, we

multiply the Al free-atom values of Ref. 44 by a
correction factor C2+ (or C+) to roughly take into
account the fact that the Al + center does not in-
volve a neutral Al atom. Hartree-Fock calcula-
tions" yield correction factors

C2~ ——
~ g, , (0)

~
/~ 1(~,,(0)

~

=1.5

and

C~ =
~ P„, (0)

~

'/
~

t('~,o(0)
~

'= 1.2 .

The calculation of the defect wave function is then
straightforward. 6

The experimental wave-function amplitude on the
Al atom using either correction factor is shown in

Fig. 7(a). Both theory and experiment show a
preponderance of the wave function on the intersti-
tial site and a much smaller amplitude on its neigh-
bors. (Notice that we have plotted the wave-

function amplitude, which exaggerates the smaller
components, and not the charge density

~ P ~

. ) The
agreement of the theoretical wave function with that
of experiment for the interstitial's neighbors is good,
but quantitatively less impressive than for the inter-
stitial site. The origin of this modest discrepancy is
rooted in the basic nonbonding character of the in-

terstitial deep-level wave function described qualita-
tively in Sec. III. There we showed that the wave
function on the interstitial atom was slowly varying
as a function of the deep trap energy, but that the
wave function on its neighbors changes even qualita-
tively with small energy changes. These considera-
tions indicate that the interstitial-site wave-function
component is much easier to calculate accurately
than the wave-function component of its neighbors.

Recently Elliott has suggested that Ga intersti-
tials may form a center similar to that of Al. He
suggested that the Ga2 center is an isolated Ga in-

terstitial or possibly a Gaq-Gas; pair. The lumines-
cence (1.049 eV) is near the band-gap energy, but is
split in a magnetic field into a pattern characteristic

1 1

of a pair of spins —, instead of the usual spins —, and

—, of an electron and valence-band hole. Elliott's in-

terpretation is that the initial state is an excited Ga+
center, where one electron is in a shallow donor level
and a hole is in a tightly bound level, and the final
state is the Ga+ center in its ground state. Within
the context of the present theory, this interpretation
does remain plausible, since the final Ga+ ground
state does indeed lie near the valence-band edge [at
E, + 160 meV from Fig. 6(a)].
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FIG. 7. (a) Experimental and (b) theoretical wave functions of the Al + interstitial at the tetrahedral site in Si. Only the
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ing that the interstitial level is a valence band resonance at —0.1 eV, and taking the ionic normalizations C2+ (solid) and
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V. SUMMARY

We have examined the chemical trends of the en-

ergy levels of the Td-symmetry —site interstitial
s-p —bonded impurities in Si. The energy levels are
found for 29 different impurities, each with a num-
ber of possible charge states. The theory appears to
be successful in reproducing the basic chemical
trends concerning which impurities form shallow,
deep, or valence-band resonance levels. The major
factor which determines an interstitial impurity's
near-band-gap levels is the number of outer valence
electrons. The group-I and -II elements studied
were all found to act as shallow donors. The
group-III elements already have the more complex
behavior of producing valence-band resonances,
deep band-gap levels, and shallow donor levels in the
2+, +, and 0 charge states, respectively. Briefly
summarizing the predictions for the other columns
of the Periodic Table, we find that the group-IV ele-
ments generally are shallow donors, group-V and
-VI impurities act as deep donors, deep acceptors, or
both, and the group-VII impurities are predicted to
act as deep acceptors.

The model we have used takes an atomic view of
the problem. The tight-binding approximation is
used for both the perfect crystal and the interstitial
defect. The energy eigenvalues are determined by a

Green s-function technique where the atomiclike in-
terstitial potential is determined self-consistently.
Coulomb interaction parameters, necessary to
describe charge-state effects and the self-consistent
potential, are determined empirically from the free-
atom orbital energies.

Comparison with known experimental data for
the Al+ center suggests that the theory is accurate
to -0.3 eV. (Unfortunately, a more definitive state-
ment of the theory's accuracy is not possible, due to
the lack of quantitative energy-level data for impuri-
ties known to occupy the tetrahedral interstitial site. )

Although the 0.3-eV accuracy is a significant frac-
tion of the band gap, the theory remains quite useful
in understanding the global features of interstitial
impurity levels and making reasonable estimates for
their energies. Moreover, we doubt that currently
available theoretical techniques can obtain a signifi-
cantly better accuracy than this.

Finally, the theoretical wave function for the
Al + center has been critically compared with the
experimental wave function. Good quantitative
agreement is found for the wave-function amplitude
on the interstitial site; the wave-function amplitude
on the interstitial's neighbors is qualitatively
described, but is quantitatively less accurate than the
interstitial-site wave function. We have argued on
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the basis of a simple qualitative molecular model
that the precise theoretical evaluation of the wave
function for the interstitial s nearest neighbors is in-
herently a much more difficult task than for the in-
terstitial atom itself. This is because of the basic
nonbonding character of an interstitial deep-level
wave function.

We hope that investigators studying interstitial
defects in Si will find these guidelines useful.
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