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We present a simple model for calculating energy levels and envelope functions of elec-

trons in the conduction subbands of doped GaAs-(GaA1)As multiple-quantum-well hetero-

structures. The model, which has no adjustable parameters, takes into account the discon-

tinuity of the conduction-band edges at the GaAs-(GaAl)As interface and the electrostatic

potential in the GaAs wells. Calculated intersubband splittings and Coulomb matrix ele-

ments are in full agreement with parameters derived from light-scattering experiments.

I. INTRODUCTION

In semiconductors the studies on a quasi-two-
dimensional electron system were limited at first to
inversion layers' and were subsquently extended to
multiple-quantum-well heterostructures (MQW),
which are the subject of this paper. The first ap-
proach was to consider the electron motion in the
plane of the layer, assumed to be infinitely thin.
Such an idea was used by Stern' to calculate, for ex-

ample, the screening length and the plasma frequen-
cy in the plane of the layer. Owing to the finite
thickness of the slab (typically hundreds of
angstroms in a square well of MQW), the energy
levels of the electrons are quantized. The splitting
between the ground level ~=0 and the nearest sub-
band i= 1 is of the order of 10 meV in a typical
MQW. Because of the finite thickness, the polariza-
tion effect perpendicular to the slab must be taken
into account when an electron is excited from one
subband to another.

This polarization field effect was discovered by
Chen, Chen, and Burstein. A more specific calcu-
lation was given by Allen, Jr., Tsui, and Vinter and
generalized by Dahl and Sham' to collective modes.
From an experimental point of view, resonant in-

elastic light scattering was proposed"' to study the
elementary excitations of two-dimensional electron
systems, and polarized (light) spectra to study the
single-particle and collective excitations. The
single-particle excitations have an energy which is
simply the intersubband splitting Ej'Ej E' while
the collective modes have an excitation energy
which depends on E;J and also on an effective plas-
ma frequency. Both of them can be deduced from
experiments. ' It is then straightforward to deter-
mine the Coulomb matrix elements (CME) as de-
fined in Refs. 9 and 10. (We shall come back briefly
to this point at the end of Sec. VI.) Indeed, in polar

semiconductors the collective excitations are strong-
ly mixed with LO phonons and the existence of this
coupling is the characteristic signature of the macro-
scopic polarization effect, as shown by Pinczuk
et al. ' '

The goal of this paper is to calculate explicitly the
CME. *' This will permit a direct comparison be-
tween experimental data, given in Refs. 13 and 14,
according to the ideas developed by Burstein
et al. "' and the theories given in Refs. 8—10.

In all experiments of interest here' ' it is quite
reasonable, as shown below, to deal with the single-
square-well model and not with the full MQW
structure. In particular, our results support the
analysis of Ref. 13, which uses the single-layer ap-
proximation to obtain the CME from experimental
data. All the samples are n type (more precisely
modulation doped'; i.e., with no donors in the
GaAs). There is no electrical neutrality in the indi-
vidual layers and the finite-electron concentration in

the well leads to a band bending, ' ' which causes
changes in the energies and the wave functions of
the quantified levels. Usually in a square well of a
modulation-doped sample there are between
N =10 ' and / =10' electrons per square centime-
ter. In the effective-mass approximation the elec-
tron wave function is a simple product of a plane
wave in the plane perpendicular to the axis z of the
MQW heterostructure and an envelope function
g;(z), where i indexes the different conduction sub-
bands i =0, 1,2, . . . . Since the relevant information
is contained in g;(z) we shall concentrate our atten-
tion on these functions.

Contrary to the case of an inversion layer, the
MQW have a mirror symmetry with respect to the
plane in the middle of a square well so that the
functions of an infinite-square well g

"' or even of a
finite-square well gf, which are well known, ' are
very easy to handle. However, due to the band
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bending the true envelope functions g; are more dif-
ficult to calculate. If the Fermi level is between the
first level i =0 and the second level i= 1 (we keep
the usual notations for level index) the Poisson equa-
tion relates the potential and the wave function go.
If the electron concentration N is larger than a criti-
cal value N*, the Fermi level is between the second
level (i = 1) and the third level (i =2) and
N =No+N~ where No and N~ are, respectively, the
charge density in the levels i =0 and i = 1. In this
case the local charge density is proportional to

Nogo+N~g &, and the calculation of the functions g;
is more complicated.

We calculate the functions g; as a function of X
(smaller or larger than X*), because they are neces-
sary for an evaluation of the CME. Previous pa-
pers' have dealt with complex calculations to be
carried out on a computer. We have taken exactly
the opposite point of view and we have written ex-
plicitly our intermediate results so that they can be
applied to other cases without difficulties. We have,
therefore, attempted a compromise between fully
self-consistent, but lengthy, calculations and some
crude approximations (for example, the infinite-
square well). We obtain results which are in agree-
ment with the experiments to better than 10% and
which give some physical interpretation from a
qualitative point of view. It is, in principle, possible
to improve our results, but it should be noted that
some parameters of the MQW are not always de-
fined with an accuracy much better than 10%.' '
Consequently, the effort needed for the refinement
of our tractable calculation seems unnecessary to us.

Finally, calculations are made at 0 K. This is
quite reasonable because the experiments with which
our results will be compared were performed at a
liquid-helium temperature on samples with charge
density N larger than 4)(10" cm . In such cir-
cumstances k~T (ke is Boltzmann's constant; T, the
absolute temperature) is less than 0.7 meV while the
Fermi level is typically of the order of 15 meV.

The outline of this paper is as follows: In Sec. II
I

we define the notation used throughout this paper
and we set the conditions which justify the single-
square-well model. In Sec. III we calculate the en-
velope functions, taking into account the band bend-
ing. In Sec. IV we introduce the definitions of the
CME. We calculate the CME corresponding to
i =0—+i =1 transitions in Sec. V and to i =0~i =2
transitions in Sec. VI. We give our conclusions in
Sec. VII.

In the Appendixes we have given (i) the justifica-
tion of approximations used in this paper (Appen-
dixes A and D); (ii) the calculation of the matrix ele-
ments needed to obtain the eigenenergies when the
band bending is taken into account (Appendix B),
and (iii) the calculation and more particularly the
discussion of the different approximations of the
CME (in infinite-or finite-square well, without and
with band bending) (Appendix C).

II. ENVELOPE FUNCTIONS g; (z)
AND SINGLE-SQUARE-WELL MODEL

Let us begin to specify our notations. The Hamil-
tonian of interest here is the Hamiltonian in one di-
mension (z direction) of a free particle of effective
mass m * in a square-well potential (in GaAs
m~=0.068mo, whose mo is the free-electron mass).
V~ and d ~ are, respectively, the depth and the width
of the square well. The center of the square well is
taken as the origin and as usual the potential is zero
inside the square well ( ~z

~
&d&/2) and V outside

(
~

z
~
)d ~/2). If the depth V~ is infinite the Hamil-

tonian (noted H'"') has a background state (indexed
0) energy of which is Eo"' ——(n. /2)(fP/m*d, ),
where 2m. A' is Planck's constant. (In the following
we always use oo as a superscript to indicate a quan-
tity calculated in the infinite-square well. ) The
eipenenergies of H'"' are E "'=(a "') Eo"', with
a;"'=i +. I (r'. =0, 1,2, . . . ), and the eigenfunctions
are gI"', which are sine or cosine. If the depth V~ is
finite the Hamiltonian H has eigenenergies

EI =a& Eo ', where a; is the solution' of

, 2
(a;m. /2)tan(a;n /2)

[(vr/2) V /Eo"' —(a;m/2)]'~
( —a;m/2)cota;m/2

fori even

for i odd.

If we set b; =( 1 lvr)[EO '/( V„E;)]'~, the eigen—functions gf(z) of the Hamiltonian Hf can be written as

1/2b, z/b, .d1
cos(a;m /2)e 'e ' ', z( —d~/2

gf(z)=(2/d, )' n; X cos(a;mz/d, ), ~z
~
(d, /2

j /2b, . —z/b& d
~cos(a;n/2)e 'e . ' ', z&d&/2

for i even, and
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]/2b; z/b;di—sin(a;m/2)e 'e ' ', z& —d&/2

gf(z)=(2/1&)'~ n;)( sin(a;mz/d~), ~z
~

&d, /2
1/2bi —z/bid

&sin(a;rr/2)e 'e ' ', z )d~/2

(3)

for i odd. The normalization coefficient is

sin(a;n. )
n; = 1+ +b;[1+c os( am)]

a;~

—1/2

(4)

where the upper (lower) sign corresponds to i even (i

odd).
Two quantities are of peculiar interest: First, the

product b;d ~, which is the decay length of the gf(z}
functions outside the square well; second,

—d)/2
P(= f [g;(z)] dz+. f [g;(z)] dz, (5)

which gives the probability of finding one electron
outside the square well. All these quantities are
given in Table I (there are only four bound states in
all the finite-square wells of interest here) and we
can now justify the single-square-well model. The
distance between two square wells of width d~ is
equal to dq+ 2d 3, d2 is the thickness of the
Ga& „Al„As layer containing the donors, and d3 is
the thickness of the undoped part (see Fig. 1). For
the sample where d ~

——204 A, V = 190 meV,
d2 ——200 A, and d3 ——0, the decay length of i =3 and—d2/bid) 3i=2 are, respectively, such that e ' =3X10
and 2X10 . For the samples corresponding to
d

~
——250 A, V~ =120 meV (see some other details in

the following sections and in Ref. 20) d2 ——300 A,

I

0

and d3 ——50, 100, or 150 A for the three samples
studied. In the worst case (d 3

——50 A}
e ' '=2)&10 for i=3 and 1)&10 for

—(d2+2d3) /bid )

i=2. We show in the following that a basis made
up by the four functions gf (i=0,1,2,3) is enough to
calculate all the quantities of interest. The connec-
tion between two consecutive GaAs square wells is—(d2+ 2d3 ) /bi d

1very small due to the weakness of e
Furthermore, we shall see that the function g3,
where b;d& is the largest one, plays a weak role in
the calculation of CME of interest for the sample
d~ ——204 A and no role at all for the samples
d& ——250 A. All this means the single-square-well
model is well justified for the calculations carried
out in this paper.

III. SINGLE-BAND POTENTIAL
AND PERTURBED FUNCTIONS 0;(2}

In this section we deal with the case where N is
small enough (N &N*) so that only the first level is
occupied: The potential is given by the Poisson
equation

dV 4~e
N (),

dz

where e is the dielectric constant of GaAs [we sup-

TABLE I. Energies and wave functions of a square well in GaAs. First row E "' gives the
energies level in an infinite-square well, where a "'=i +1, b "'=0, n "'=1, and P "'=0.
The other rows correspond to the finite-square wells. a; define the cosine or sine part of the
envelope functions in the square well, the product b;d ~ is the decay length outside the square
well, n; is the normalization coefficient, and P, the probability of finding an electron outside
of the square well. All these quantities are defined precisely in the text.

E,'"' (meV)

13.2
52.8

118.8
211.2

E~ (meV)

9.7
38.3
84.8

145.6

di ——204 A
0.855
1.70
2.53
3.32

n;

V =190 meV
0.086 0.924
0.094 0.918
0.113 0.903
0.174 0.862

0.75
3.2
8.2

19.7

b;d l(A)

17.6
19.2
23.0
35.4

8.8
35.1

79.0
140.5

6.4
25.3
55.9
95.5

di ——250 A
0.852
1.70
2.52
3.30

V =120 meV
0.088 0.921
0.097 0.915
0.118 0.900
0.191 0.851

0.80
3.4
8.9

22.0

22. 1

24.2
29.4
47.7
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pose the dielectric constant of (GaA1)As is the same]
and Npp(z) the carrier density at z. We make the
simplifying assumption that

pp(z) = [go(z)]

which is justified because the potential Vis not very
sensitive to the exact form of po(z); see the discus-
sion in Appendix A.

With the use of the approximation defined by Eq.
(7) the potential is given by

2 1 /2bp Z/bpd]bp—[1+cos(aper)/4]e e El—z/d l +E2, z & —d l /2

V(z)=n~(4me /e)Ndl —, cos(—aper)/4a~~ =, (z/dl } +cos(2apvrz/dl )/4a~vr,
I

z
I

&dl/2
2 1/2bp z/bpd1—bp[ 1 +cos(aper)/4]e e +Elz/d l +%2, z )d l /2

with

1
I(1—————

2

sin(aper ) 1+cos(aper )—bp
2Q p7T 2

(8)

U= V(0) —V +
2

= V(0)

2 4me 1 1
=nil Ndl —+ 2 [1—cos(ape )]

8 4@o~

and is equal to 16 meV in the sample (dl ——204 A,
V~=190 meV, and N =4.2X10" cm ). The band
bending U is directly proportional to d1. For a

UNDOPED

G41 Ai As

Si- DOPFD
+

+ +
+
d2

GQ Ai „As SPACER

Ga As +

+ +

+ +

+ + +

dp == dq

r
CONDUCTION
BAND EDGE

FIG. 1. Sequence of layers in modulation-doped
GaAs-(GaA1)As multiple-quantum-well heterostructures.
The structure of the conduction-band edge is also indicat-
ed. The dotted line shows the band bending.

2 1+cos(aper )
bo2

4 2
——E1,

where the constants are such that V(+d l /2) =0 and
V and d V/dz are continuous. This potential is con-
sistent with the single-square-well model. If we had
to take into account more than one square well we
would have t;o modify the potential to make it
periodic in the z direction.

The band binding U is defined as
V(0) —V(+dl/2), so that

I

given charge density ¹,the larger the width d1, the
larger the band bending U.

Now we must find the eigenenergies and the
eigenstates of the Hamiltonian Hf+ V(z), where Hf
is the Hamiltonian of the finite-square-well solu-

tions, which were given in Sec. II (energies, E;, wave
functions, gf) and V(z) is the potential defined by
Eq. (8). Inside the basis made up by the four bound
state~

I
0o& I kz& I kl & and

I (3& Ho+v(z)
may be written as

Ep+ Voo Vo2
f f f

V02 E2 + V22
f f f

E1+Vf11f
f

0
(9)

13

Ef+ Vf

g2 =CO/2 —C2(0f f

gl Clg1 +C3(3f f

g3 =Cl(3 —C3( 1
f f

(12)

(13)

with cp ——c1 ——1 if ¹ 0.
Indeed, the matrix (9) is a truncated matrix and

could be continued by other matrix elements be-
tween the functions gf(z} and the continuum. Being
smaller for the lowest-energy levels, these matrix
elements have probably a large influence on the
fourth level (i=3) whose energy is near the value of
V, but a weaker influence on the other ones. While
Eqs. (10) and (12) are quite accurate (the continuum

where we write V/r = (g; I
V

I gf & Vfz VJ, b. ecause-—
all the matrix elements are real. V(z) has even pari-
ty so that only the matrix elements such as VJ,
where i and j have the same parity, can be different
from zero. The calculation of Vfj is tedious but
straightforward, and is given in Appendix B.

The eigenvalues of the matrix (9) gives the split-
tings E,J, which must be compared with experiment.
The eigenstates are written as follows:

(0=CO(0+C2$2 (10)
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being negligible), Eqs. (11) and (13) are less so, be-

cause in principle we should have taken the continu-
um into account especially for in Eq. (13) describing
the fourth level. Indeed, to calculate the CME we
shall use Eqs. (10) and (12) in Sec. IV and Eqs. (10)
and (11) in Sec. V and we will not need to use the
most questionable equation (13) so we shall neglect
the continuum which permits one to keep the calcu-
lations tractable.

To summarize, we shall use a model where the
wave functions are described in a basis made up of
only the four bound states of the single-square-well

model, which is quite enough to calculate the CME.
It is only in the case where the exact form of g3 is
required that our calculation becomes much more
questionable. Indeed, in Table II the calculated EQ3
is the only quantity which is not in agreement with
the experimental data by better than 10%. But in
this paper, g3 is not required for a calculation of the
CME. This means, as we have already said in the
Introduction, that the single-square-well model is
adequate for extracting the CME from the experi-
mental data, and this justifies the procedure of Pinc-
zuk et al. ' '"

IV. COULOMB MATRIX ELEMENTS: DEFINITIONS

In the infinite-square well the Coulomb matrix elements are equal to '
di/2 2 z

Li"'(ij;i',j')= f dz f „dz'gI"'(z')gi"'(z') f dz"g "'(z")gll"'(z")

This relation is very useful because it is very easy to calculate and indeed the experimental data L'" '(i,j;i',j ')

have been compared with L' '(i j;i',j ') which gives the first order of approximation to the CME. '3'~

We wish to calculate

L (i j;i',j ') = f dz

L (i,j;i',j ')= f dz f dz'gf(z')gz~(z')

where the gf are given by Eqs. (2) and (3) and '

r

f dz'g((z')gq(z')

dz",f z",f z"

f dz"g; (z")gj (z")

where the g; are given by Eqs. (10)—(13). The numerical values of the coefficients c; must be calculated for a

given concentration. In the following we shall calculate L'"'(0, 1;0,1), Lf(0,1;0,1), and L(0,1;0,1) as well as

L'"'(0,2;0,2), Lf(0,2;0,2), and L(0,2;0,2) to find the relative importance of the finite-square well and the band

bending before making the comparison with the experimental data. The calculation of L'"'(0,1;0,1) and

V (me V) Experimental
results

(Ref. 13)4.2@10"
154.4
95.6
49.5
25.8

128.6
69.8
23.7
99.8

—7.0
99.9

—5.4
15.1

0
211.0
118.7
52.8
13.2

197.8
105.5
39.6

100
0

100
0

11.5

0
145.6
84.8
38.3
9.6

136.0
75.2
28.7

100
0

100
0

13.5

X (cm )

E3 (meV)

E2 (meV)

E& (meV)

Ep (meV)

Ep3 (meV)

Ep2 (rneV)

Epi (rneV)

cp (%)
&2 (%)
&i (%)
&3 (%)
L(0,1;0,1) (A)

106
63.7
21.7

15.0

TABLE II. This table gives the energies and the Coulomb matrix elements L(0,1;0,1) for a

square well of width d& ——204 A. We have also given the coefficients c;, giving the mixing of
the wave functions, which are needed for the calculation of L(0,1;0,1).

0

di ——204 A
00 190
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L'"'(0,2;0,2) is straightforward and gives

L'"'(0, 1;0,1)= di,5

L'"'(0 2 0 2)= d
5

]

(17)

V. CALCULATION OF L(0,1;0,1)

We begin with
r

L (0, 1;0,1)= J dz J dz'(0(z')g&(z')

which, with the use of Eqs. (10) and (12), gives

L (0, 1;0,1)=cocfL/(0, 1;0,1)+2coc~c3L~(0, 1;0,3)+2coc ~cpL/(0, 1; 1,2)

+2coc)cpc3[L (0, 1;2,3)+L (0,3;1,2)]+c 3L (0,3;0,3)

+c,c&L (1,2;1, 2) +2c zc 3L (0,3;2,3)+2c~cqc3L (1,2;2, 3)+cqc3L (2, 3;2,3) .

(18)

(19)

Some examples of the expression obtained for
L~(i,j;i ',j ') are given in Appendix B (as well as nu-
merical values).

The experiments of interest here were performed
on the sample (d~ ——204 A, V~=190 meV, and

N=4. 2)&10" cm ).' In this case the Fermi level
is below the second level i =1, and Eq. (6) is applic-
able.

riting here L instead L(0, 1;0,1) we obtain
L' ' =11.5, L~=13.5, and L=15.1 A. The experi-

0

mental result is L'""'=15.0 A. Because the calculat-
ed energies have only an accuracy of the order of
10% we must consider the agreement obtained for L
as coincidental. Nevertheless, given the uncertainty
on the parameters of the samples discussed in the
Introduction, this result shows we obtain an excel-
lent approximation with our simple model.

I

found to be 4.99, 4.95, and 5.06 A. ' Scaling with

d& gives a more useful comparison,
L(0,2;0,2)/d ~

——0.0200, 0.0203, and 0.0207, which
are consistent with being a constant within the ex-
perimental uncertainties. (Let us recall [Eq. (17)]
that L~ ~(0,2;0,2)/d~ ——0.0158.) The band-bending
effect must increase the CME [as was the case for
L(0,1;0,1); see the preceding section]. However,
L(0,2;0,2) does not depend on the charge density N.
It is precisely the goal of this section to explain why.

We shall calculate all quantities of interest as a
function of the charge density N (d&

——250 A, and
Vi=120 meV). Figure 2 shows typical functions
for N=6 which corresponds to cq ———0.17 (see
below). Now from Eq. (16), L(0,2;0,2) is given by

r

L (0,2;0,2) = J dz f dz'go(z')gz(z')

VI. CALCULATION OF L(0,2;0,2)

L(0,2;0,2) was measured on three samples with the
same Al composition x=0.12 (which gives a square
well with V„=120 meV), and with the following
characteristics: d ~

——245 A, X=5,5 )& 10" cm
d~ ——244 A, N=6. 8)&10&i cm-z d& ——250 A, and
N =8.8)&10" cm . L(0,2;0,2) was, respectively,

I

(20)

Because go and gz are linear combinations of the
same wave functions g~o and g~z (contrary to the case
of go and g~ in Sec. V) we can write L(0,2;0,2) as a
function of one parameter, namely c~. For this we
use co=(1—cz)' due to the normalization, the
sign of co being unambiguous because co ——1 when
cz ——0. We obtain

L (0,2;0,2) =(1—2cz) L~(0,2;0,2)+2(1—cq)'i (1 —2cz)[L (0,2;0,2) —L (0,2;0,0)]

+(1—cp) cp[L~(0,0;0,0)+L (2, 2;2, 2) —2L/(0, 0;2,2)] . (21)

We have used the symmetry properties
L(ij;i',j') =L(j,i;i',j')=L(i',j';i,j). As for all the
CME the calculations are tedious but straightfor-
ward. In Fig. 3 we have plotted L(0,2;0,2) as a func-

I

tion of cz. This is enough to show that there is sa-
turation for increasing cz. Physically, this results
from the fact that the overlap between $0 and gq has
a maximum in a given range of cq. A discussion is



27 ENERGY LEVELS AND COULOMB MATRIX ELEMENTS IN. . . 7617

4i

0 I

by

8 V'
[No[go(z)] +N&[gt(z)] ], (22)

o E
g 0 i=2

CVT'
2 II

Z
O+

~Jl
(A If)
Z N

n

I-o ~ i=1

U

4J

i =0

EVEN

ODD

YEN

m*
Np —— EF, (23)

and if N )N*,
m~ m*

N =Np+Nl —— EF+ (Ep —Epi)

where in a fully self-consistent problem gp and g &

should be replaced by gp and g&.
Even with the form given in Eq. (22) the calcula-

tions of V' can be complicated. If N &N*, N&
——0

and the Fermi energy in level i=0 is merely given
by

d1/2

NZO

I

d1/2 Z

N*6x10" cm

m~
(2EF—Ep&) . (24)

FIG. 2. This figure shows the envelope functions

[more precisely (dli2)'i gi which are dimensionless] for
the square well d& ——250 A, and V =120 meV. On the
left-hand side is charge density N=O and on the rig'ht-

hand side is N =6)&10" cm ~ which gives c2 ———17%
and c3 ———13%.

given in Appendix C. Now we must calculate the
mixing between the functions gp(z) and (2(z), i.e.,
we must calculate c2.

In the samples where N is larger than a critical
value N*, the two first bands are occupied.
N =Np+N, In the same. spirit of simplification as
in Sec. II, we suppose that the potential V' is given

1.4

1.3
O

8 1.2

1.1

vw

0
dg = 250A

0 9 I I I I

0 -0.1 -0.2 -0.3 -0.4 -0.5
MIXING OF LEVELS 0 AND 2

FIG. 3. This figure shows the Coulomb matrix element

L(0,2;0,2) as a function of coefficient c2, defined in Eq.
(10). This corresponds to. the sample with d& ——250 A and
V =120 meV.

if Ep& is known, Np and N
&

are known. But Ep] it-
self depends on the influence of the potential V'(z)
on the eigenstates of the finite-square well. In other
words, even taking gfp and gf, instead of gp and g, ,
we cannot avoid using a self-consistent method for
calculating Np and N&. However (see Appendix D),
a good approximation is given by Eq. (D4) which al-

lows us to calculate Np and N&, and from Eq. (22)
we obtain the potential V'(z), which plays the same
role, when N is larger than N*, as the potential V(z)
given in Eq. (8). The potential V (z) is given in Ap-
pendix D. Under these conditions, we are able to
calculate c2 for a given charge density N and using
Eq. (21), we obtain the results summarized in Fig. 4
for the energy spacings and in Fig. 5 for the CME
L(0,2;0,2). The overall accuracy is better than 10%%uo

and from a qualitative point of view we find again
the "saturation" of L(0,2;0,2): N is big enough so
that the range of interest for c2 is precisely the sa-
turation range. This means that for L(0,2;0,2) a
more self-consistent calculation [gf replaced by g; in

Eq. (22)] could not bring our calculated values near-
er to experiment (if we stay in the same simple
framework, i.e., in a basis made by the four bound
states of a finite-square well).

At last we can calculate the energies of the even-

parity coupled electron —LO-phonon modes corre-
sponding to the transition Ep2. The effect of E&3 on
the Ep2-like modes is neglected because it has less
carriers (Ni (Np), it is far removed, and it is also
"leaky. "' First, we deduce the effective plasma fre-
quency. ' '

E&(0,2;0,2) =[8aNpe L (0,2;0,2)Epq/e" ]'i2 .

(25)
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IN TERSUBBAND TRANSITIONS
0

d1 = 250A, Vw =120 meV

large (by about 10%) in Fig. 4 is seen again in Fig.
6, where E+ is too large by about the same propor-
tion.

VII. CONCLUSION
40—

E

50
K
LLI
X
LLJ 20—

E

10

0
0 2 4 6 8 10

CHARGE DENSITY (10 cm )

FIG. 4. Intersubband splittings as a function of the

charge density X in the square well (dI ——250 A and

V =120 meV). The solid circles are the experimental

data and the continuous lines are the theoretical curves.

Second, we deduce the coupled-mode energies E+.
Eq (0,2;0,2)

1 —
2 2

——0,
El (E+ ) E+ —Eo2

(26)

where eL(E)=(EL E)/(ET E—) accou—nts for
the screening of the Coulomb interaction by the po-
lar lattice. Et (Er) is the LO- (TO-) phonon energy
in GaAs. For a given N, we have already deter-
mined No, Eo2, and L(0,2;0,2), so that there is no ad-
justable parameter in these calculations. Compared
to the experimental data, the fact that Eo2 is too

It is possible to make tractable calculations in
doped MQW heterostructures by means of simple
approximations. Given the uncertainty in the sam-
ple parameters the calculated results are in excellent
agreement with the experimental data. Adding fur-
ther refinements to our calculations would be mean-
ingful only if the overall accuracy of determinations
of sample parameters could be improved.

Both the finite depth of the square well and the
band bending must be taken into account in these
compounds in the charge-density range of interest.
The band bending increases the Coulomb matrix ele-
ments but leads to a saturation above a given value
of the concentration for transition between two lev-
els of the same parity. From a more general point
of view we have shown that the single-band model
used to extract the Coulomb matrix elements from
the light-scattering experiments (Refs. 13 and 14) is
fully justified and that the previous theories (Refs.
8—10) about the Coulomb matrix elements account
well for the experimental results. In conclusion, the
wave functions given in this paper are simple and re-
liable enough to be used elsewhere.
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APPENDIX A

In this Appendix we justify the approximations
made to calculate the potential [E s. (7) and (22)],
i.e., to justify the use of functions g; rather than the
functions g; in these equations. In the first case
(d i

——204 A, V~ =120 meV, and N =4.2X 10"
cm ) we have calculated

I
cz

I

=7% (Table I) and

this cannot change the results significantly. In the
second case (d i

——250 A, V = 120 meV; 0 & N & 10'
cm ) the problem is a little more complicated be-
cause Ic2

I

can reach 27% for N =10' cm . Up
to N-4)&10" cm the problem is the same as the
preceding one and is solved in the same way. For
N y 4&(10" cm, the Fermi level is above the bot-
tom of the second conduction subband and the coef-
ficient c2 is weak but not negligible. d V'/dz'-
No

I gp I
+N,

I g, I, and we are going to consider
more specifically the first term on the right-hand
side. Using Eqs. (2), (3), and (10) we obtain for the
range di/2&z &di/2, which gives the most impor-
tant contribution to the matrix elements,

r

1 ~z 2 'ljz
gp(z) = 1+cos 2ap +(cp —1)cos 2ap

1 1 1

7TZ 7TZ+ 2cpc2 cos (ap+a2) +cos (a2 —ap) 2 7TZ+ 2cos 2a2
1

(A 1)

The two first terms correspond precisely to
I

ufo
I

. The only important contribution from the other terms
comes from 2cpc2cos[(a2 ao)vrz/—d

& ], which in the worst case (N =10)& 10" cm, cz ———27%) gives a term
of the order of 6% of the contribution of the two first terms in the calculation of (gfp

I

V ufo) and is com-
pletely negligible for the other diagonal terms. The contributions of 2cpc2cos[(a2 —ap)irz/d~] to the off-
diagonal terms is smaller in absolute value than the one to the diagonal terms but larger in proportion. The
largest influence arises in (gfp

I

V
I
gfz) and is less than 20% always in the worst case (N =10X10"cm ):

Neglecting this term is the crudest approximation in our calculation. All the other terms in
I gp I

as well as
the other terms in

I g i I
are negligible.

APPENDIX B

The goal of this appendix is to give the matrix elements (gf I

V gjf). The functions gf are defined in Eqs.
(10)—(13) and the potential V(z) in Eq. (8) via the approximation given in Eq. (7). Under these conditions, the
calculations are straightforward:

4m.e Nd, 4 1 cos(aper )
ko I

V
I ko = no

e 8 4a pm.

sin(a pm. )
1+

ape
1

24

cos(aper ) sin(aper )22+4a 7T 4a m

sin(aper ) 1 1 sin(ape. ) sin(2apm )
+ 2 2

—+ +
8apm 4a 0~ 2 ape 4apm

4 ap7I
+ 6pcoS

2 2

bP+bP 2 aP~2

+ 2 Eicos
4m.

r

bOE2 2
a 0~

+ 2
COS

2m. 2 2
(Bl)

Ei and K2 are given in Eq. (8). The other diagonal terms are similar. The off-diagonal terms are a little more
complicated. For example,
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f f 4me Xd~ 3
&0o I

V
I
gz&= rzoriz

E'

1

4m

cos(aper }

2Qo
2 3

sin[(az —ap)ir/2] sin[(az+ap)ir/2]
+

a2 —ap a2+ap

cos[(az —ap)~/2] 2 sin[(az —ao)m /2] m sin[(az ap—)vr/2]
+

(az —ao)'ir (az —ap) ir 4(az —ap)

cos[(az —ap)n. /2] 2sin[(az+ap)m/2] ~sin[(az+ap)m/2]
+

(az —ap) (az+ap) m 4(az+ap)

1+ 32
4m ap

sin[(az —ap)ir/2]

a2 —ap

sin[(az+ao)ir/2]
+

a2+ap

sin[(3ap —
a z )vr /2] sin[(3ap+a z )vr /2]

+ +
Qo Q2 QO+Q2

ape a2%
+cos

2
cos

o&2, ao~4 2

2 cos
362+ho

1 bp62 l Job 2+— Ei2irz bp+bz vr (bp+bz}z

1 &o&2
E2~2 bp+b2

The other off-diagonal term &g/i
I

V
I

g/3& is similar to this one. With N =4.2X10"cm, we obtain the fol-
lowing with the parameters of the square well (di ——204 A, and V =190 meV) given in units of meV in Table
I

V

&kz I

V
I kz &=1o 4 (83)

&ko I
V

I kz &=4 9

From this we can calculate the energies to first order (E; -Ef+ & gf I

V
I g; &) and compare with the energies

E; given in Table II which are exact, i.e., calculated by solving the two quadratic equations of the matrix
defined in Eq. (9). The difference is small for the case di ——204 A, V =190 meV, and N =4.2&(10" cm
but not negligible for the case d ~

——250 A, V~ = 120 meV, and X & 4)& 10" cm

APPENDIX C

Here we deal with the Coulomb matrix elements. The calculation of L (i,j;i',j ') derived from Eq. (15) is
straightforward. Because it is tedious, we give only two examples here:
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5d) 9 ~
'

1 1 sin[(ap+a ~ )vr] sin[(ap —a
~ )7T]

L/(0, 1;0,1)= z
n on ) 2+ 2 + +

9~z 5m. 2 (ap+a ( ) (a [ ap) 2(ap+a] ) 2(a[ —ap)'

sin(a on. ) sin(a ~m)
+ +

ao(a&+ao)(ai —ao) a&(a~+ao)(a~ —ap)
(Cl)

Other terms of the form L/(i j;ij ) are similar [let us recall that L '" '(0, 1;0,1)=5d
&

/9m. ],

5d) 9 sin[(a3+az —a
~
—ao)m /2]L (0, 1;1,3)= zn no~ nzn3

9a 3+ 2 al 0}( 0+ 1)( 2+ 3}

sin[(ap+a&+az+a3)m. /2] sin[(ao+a&+az —a3)m. /2]+ +(ap+a~)(az+a3)(ap+a~+az+a3) (ap+a~+az a3)—(ao+a~)(a3 —az)

sin[(ap+a ~+as —az)~/2] sin[(ap+az+a3 —a ~ )m /2]+ . +(ap+a~ +as —az)(ap+a ~ )(a3 —az) (ap+az+az —a
~ }(az+a3)(a ~

—ap)

sin[(a~+az+a3 —ap)~/2] sin[(a~+az ap a3—)ll/2—]+ +(a~+az+a3 —ap)(az+a3)(a~ —ap) (a~ —ap)(a3 —az)(a~+az —ap —a3)

sin[(a ~+as —ap —az)m'/2]
+

(a~+as —ap —az)(a~ —ap)(az —az)

Other terms of the form L/(i,j;ij'') are similar to
L/(0, 1;2,3).

We give below the numerical values of L/(0, 1;2,3)
if the width d

&

——. 204 A. The order of i,j;i 'j ' is the
same as in Eq. (19). The unit is L "(0,1;0,1).

0, 1;0,1
0,1;0,3
0,1;1,2
0,1;2,3
0,3;1,2
0,3;0,3
1,2;1,2
0,3;2,3
1,2;2,3
2 3;2,3

1.000
0.100

—0.900
0.900
0.036
0.136
0.936
0.000

—0.900
0.918

L~(i,j,i',j')
1.172
0.124

—1.061
1.065
0.032
0.149
1.096

—0.004
—1.084

1.128

With d) ——204 A, L "(O,l;0,1)=5d)/9~ =11.5 A
Without band bending, L(0,1;0,1)=L/(0, 1;0,1)
= 1.172)&11.5 A =13.5 A. With band bending
and the values of coefficients c; given in Table II, we
obtain L(0, 1;0,1)=15.1 A. In Eq (19) the . coeffi-
cient of a term L (i,j;i',j ') is c;cjc;cj Now why is.
L/(i j;i',j') increased if we start from L~ '(i,j;i',j')
and why ultimately is L(0, 1;0,1) larger than
L/(0, 1;0,1)? There is no simple answer to this ques-
tion. Let us look, for example, at

L/(0, 1;0,1)= f dz J dz'Po(z')P/&(z')
L

We can say that the overlap between f/o and g/& is
larger than that between go"' and g,"', but this
must be used with some caution because this notion
is not very precisely defined. [Conversely, we can
say that L/(0, 1;0,1) is a "measure" of the overlap be-
tween g/o and g/~. ] Indeed, the most convenient way
to convince oneself that the overlap between g/o and
g/& is larger than the overlap between go"' and gz"'
is to sketch the various functions.

Another question is to ask why is L(0,1;0,1) larger
than LJ(0,1;0,1)? The answer is still more compli-
cated: In the sum, some terms are positive and some
are negative [take L/(0, 1;1,2) for example]. But in
this case the coefficient cpc~cz is negative too (be-
cause cz is negative) and gives a positive contribu-
tion. It is straightforward to analyze each term
c;cjc;cJL (i,j;i',j') and at the end one finds easily
that the contribution of the positive terms is larger
than the contribution of the negative terms, but we
acknowledge we do not see any clear physical mean-
ing to this result, except precisely that the "overlap"
between gp and g~ is larger than the overlap between
g/and g/.

We do not give here the expressions like
L/(0, 2;0,2} or L (0,0;0,2} needed to calculate
L(0,2;0,2) from Eq. (21) because they are tedious but
straightforward. We merely say that these expres-
sions are a little simpler than the expressions needed
for the calculation of L(0,1;0,1} because there are
only two different coefficients i=0,2 in Eq. (22) in-
stead of two, three, or four i=0, 1, 2, or 3 in Eq.
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(19). Once again the notion of large overlap to
understand why L(0,2;0,2) for large N is larger than
L(0,2;0,2) for small N must be taken with caution.
As a proof it is shown in Fig. 3 that for large N
(large

I
c2

I ), L(0,2;0,2) is decreasing: The satura-
tion range corresponds to the largest overlap of go
and g2. In any case, from an analytical point of
view, if cp varies from 1 to 0 (cp+c2 ——1) the roles
of gp and gz are inverted: [L(0,2;0,2)],,
=[L(0,2;0,2)], p and there is an extremum for

some value of cp between 1 and 0. In the samples of
interest, the charge density N corresponds to a max-
imum ' (see Fig. 4).

APPENDIX D

The purpose of this Appendix is to justify Eq.
(D4) used in Sec. VI to calculate Np and N~. From
Eq. (9) the eigenenergies E; can be explicitly ob-

tained (as has been done throughout this paper) but

can also be written to the first order such as

Ep~ -E
~
—Ep +const &(N .f f (D2)

Then we calculate Eo~ for N =2)&10" cm . We
obtain Eo&

——16.2 meV and Ez ——7 meV. Ep and E&f f
are known from Table II, d~ ——250 A and V~ =120

Eoi =E& —Eo

=E~i E/o+«(~i —
I

V (~i& ((~o
I

V
I

—(~o& .

(Dl)

The diagonal elements ( gf I

V
I gj) are strictly pro-

portional to the charge density N for N smaller than
the critical density N* (N =Np) and only roughly
proportional to N for N larger than N~

(N =Np+N&) if N~ is small enough by comparison
to Np. To simplify the calculations as much as pos-
sible, first we suppose this proportionality approxi-
mately holds for N larger than N*; therefore

meV. So roughly

Epi —19—1.3N, (D3)

where Ep& is in meV and N in 10" cm . The rela-
tion (D3) allows us to calculate Np and N, [see Eqs.
(23) and (24)], the potential used when the second
level is occupied (see below), the matrix elements,
and the eigenvalues of Eq. (9). The system is self-
consistent if Ep~ calculated from Eq. (9) is the same
as given by Eq. (D3).

Indeed, Eq. (Dl) is valid as long as off-diagonal
elements are negligible, i.e., as long as the charge
density N is not too large. Above a given density
(Dl) does not hold any more and neither does (D2).
Practically, we observe that for N &7)(10" cm

Ep~ given by Eq. (9) is always of the order of 10
meV, which is no longer the value obtained from
Eq. (D3) and which merely implies that the first-
order equation (Dl) is no longer valid. Eventually,
we take for 0&N &10' cm

19—1.3N, N &7
10, 7&N &10 (D4)

where Ep& is in rneV and N in 10" cm and we
will be satisifed if Ep~ obtained from Eq. (9) and Eq.
(D4) differ by less than 1 meV, as is indeed the case
The results given in Fig. 5 are obtained from Eq. (9).
We can, therefore, conclude that a more refined cal-
culation could give some different values for the
splittings E,J but would not change anything in the
range of interest (7&&10"&N &9X10" cm z) in

making a comparison with the experimental data be-
cause this is precisely the saturation range of
L(0,2;0,2): In this range the precise value of
L(0,2;0,2) does not depend on the precise value of
the coefficient c2.

Finally, we give the potential V'(z). For N p N~,

Eq. (22) gives the following potential (with

pp Np/N and p~
——N~/N):——

(i) For Iz I
&d, /2,

24me 1 n2 2

V'(z)=no Nd~ —pp+p& 2
no

cos(aom ) n p cos(a ~m )
2

2 2 P& 2 4 2 24a pm. n
~ 4a~~

2
1 z

po+pi
np

2

cos(27Mpz/d ] ) tl f cos(27Ta ~z/d ] )
+Po 2 2

—Pi
4a ~ n 4a ~

(ii) for z & d ~ /2,
2

2 4~e2 2 1+COS(ape ) 1/2bo z/bod~ ~1 —
Z

1 COS(&1~) I/2b& z/b~d, —
V'(z) = ll p Nd

& ppbp-e 'e ' ' —p~ 2b)
1 1 1

E 4 np 4

+ K') +I( 2
1
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sin(a ott )
+bpsin ap-

2ap '2
and

2
2 2 ~ ] p

Ez ————,E~+ —,ppbpcos ap + 2p~ 2sin a~

where the sign before E,' is positive if z & d t /2 and negative if z & —d ~, with

n ~ sin(aotr) I+cos(ace ) n
~

2 2

+1 = — Pp+P1 p
—Pp +bp +P]2 pg p 2a p7T 2 rl, p

It is easy to see that if pc ——I,pt ——0, and V'(z) = V(z).
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