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Structure constants in the Green's-function method: A new analytic evaluation
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A new efficient procedure to calculate the structure constants in the Green's-function
method is presented. The conventional algorithm in terms of the Ewald sums is replaced by
alternate and quite convenient analytic expressions. As a specific test the conduction bands
of solid neon are obtained. The relationship with the Segall-Yang approach is discussed.

I. INTRODUCTION

The Green's function method [or Korringa-
Kohn-Rostoker (KKR) method'] has found wide
applications in the study of electronic properties of
materials. The multiple-scattering approach is very
appealing from a formal point of view because it
provides the same unified basis to discuss apparently
different problems. The method has been success-
fully employed to study perfect bulk crystals (see,
for instance, Refs. 2—4), electromagnetic propaga-
tion in heterogeneous media, impurities, clusters,
thin films and surfaces, alloys, etc.; the method
has also fostered parallel techniques based on linear
combinations of muffin-tin orbitals. '

Among the procedures for band-structure calcula-
tions, " the KKR method is one of the most power-
ful tools. Its advantages with respect to other cellu-
lar methods can be summarized as follows: (i) sharp
and elegant separation of the problem of electronic
state calculations into two parts, namely (a) scatter-
ing properties (phase shifts) of the muffin-tin poten-
tial and (b) structural aspects of the lattice; (ii) no
explicit dependence of the choice of muffin-tin radii;
(iii) very rapid convergence.

These important advantages are to some extent
counterbalanced by the computational difficulties
connected with the evaluation and storage of the
structure coefficients DIM(E, k), which depend on
the energy E and wave vector k. In the last two
decades the standard method for their evaluation
has been the Ewald partition. ' This procedure is
rather laborious when repeated in a sufficiently fine
mesh in the Brillouin zone and in the energy vari-
able, and constitutes the most delicate aspect of the
formalism (see, for instance, Refs. 2—4, 13, and 14,
and references quoted therein).

The presence of the poles in the structure con-
stants at the empty-lattice eigenvalues is the basis of
attempts to separate the singular part from the
smooth part. Consider, for instance, the expression
of Doo(E, k ) in the form

V4vr 1 VE
DOD(E, k ) = g z + lim cot(V'Er),

E —k„4m ~

n

where k„=k+ h„, h„are the reciprocal-lattice vec-
tors and 0 is the unit-cell volume. To obtain the ef-
fective mass at k =0 in the nearly-free-electron case,
Ziman' extracted from Eq. (1) only the singular
term corresponding to h„=O.

To give a better justification of Ziman s pro-
cedure, in particular, his neglect of the divergent
term of the type 1/r for r~O, the present authors
have implemented the Ziman procedure with the
following analytic approximation of Eq. (1):

Doo(E, k )-=
k,

E —k„

VE k, +VE
ln

2~3/z k VE— (2)

In Eq. (2) k, is a chosen cutoff value and k, is the
radius of a sphere such that

4 3
—,mk, =mQBz

m being the number of k„vectors smaller than k,
and QBz the volume of the Brillouin zone. The last
two terms on the right-hand side of Eq. (2) result
from Eq. (1) through the following procedures: (i)
replacement of the discrete sum for k„)k, with a
continuous integral provided E &k„and (ii) use of
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the identity

1 1 1f e'"'dk.
r

in the limit of r —+0.
More recently, the growing use of the Green's-

function method and its extension to several areas of
research have stimulated renewed interest (see, for
instance, Refs. 4 and 14, and references quoted
therein) in the key ingredient of the method: the
evaluation of the reduced structure constants. A
significant reexamination of this problem was given

by Segall and Yang. These authors showed the
convenience of separating the singular part of
DLM(E, k ) from the smooth part, up to a given en-

ergy; the smooth part is then expanded in series with
the help of the Ewald algorithm. An analogous
separation had earlier been suggested by Williams
et al. ' within a similar context. These procedures,
however, do not avoid the Ewald algorithm, al-
though they do reduce its use, with some advantages
in computational labor.

The purpose of this paper is to present an alterna-
tive and efficient procedure for the evaluation of the
structure coefficients. In Sec. II we present the new
method; the novelty of our procedure is that closed
analytic expressions are provided. Both simple lat-
tices and composite lattices are considered. The re-
lationship with the Segall-Yang approach is also dis-
cussed. In Sec. III, as a test of the new procedure,
we consider the specific case of the conduction
bands of solid neon in the Hartree-Fock limit. By
utilizing phase shifts from electron-atom scattering
experiments, we also estimate the correlation-
polarization effects. Section IV contains the con-
clusion. Some aspects of more mathematical and
technical nature are reported in the Appendix.

II. NEW PROCEDURE FOR EVALUATING
THE STRUCTURE CONSTANTS

A. General considerations

In this section we briefly summarize the expres-
sions for the structure constants in the extreme lim-
its of summations either in coordinate space or in
reciprocal space. It is well known that the use of
one of the two spaces requires an impossibly large
number of terms in the sum; however, by an ap-
propriate partition between the two spaces it is pos-
sible to find an efficient procedure that is an alterna-
tive to the Ewald procedure. For simplicity we con-
fine our attention to simple lattices; atomic units are
used throughout the paper.

The structure constants DLM(E, k ) for a given en-

ergy E and wave vector k can be represented as a
sum over the reciprocal-lattice vectors in the form

4m. 1
Dr~(E, k )=

q g 2 YLM(k„)
( E) k

E —k„
n

1 1+ 5L plim
4K r~p r

(4)

where FLM are spherical harmonics (or appropriate
combinations) in real form. The significance of the
symbol lim(1/r) for r~0 has been already clarified
in our discussion of Eqs. (1)—(3).

Expression (4) is valid both for positive and nega-
tive energies. It exhibits poles at the positive values
of E corresponding to the empty-lattice eigenvalues.
For any energy E the sum (4) is slowly (conditional-

ly) convergent and completely useless for practical
calculations.

The structure constants DL,M(E, k ) can be
represented as a sum over the direct-lattice vectors

DLM(E, k )=i ~E g e "[nL,(~Er„) ijr. (v Er„)]I—LM(rn) — ~E5Lo4n.
r n+0

where jL and" nL are the spherical Bessel and Neu-

mann functions.
In the case of negative E, the direct-lattice sum (5)

converges exponentially fast and is thus of interest.
However, for positive E (which is the situation of
practical relevance) the sum becomes slowly condi-
tionally convergent and completely useless for actual
calculations. For positive E, the direct-lattice sum

appears to be even worse (from the convergent point
of view) than the reciprocal-lattice sum, because it
does not exhibit explicitly the expected singularities
at the empty-lattice eigenvalues.

B. Ewald algorithm

The standard manner for achieving satisfactory
accuracy in the evaluation of the structure constants
is the application of the full Ewald algorithm with
summations both in direct and reciprocal spaces.
For convenience we quote the final expressions in
the case of one atom per unit cell:

Dim(E k )=DLw(E k )+DLM(E k )+Doo (ENLo

where
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—k„/g

(v'E ) k E —k„
n

2 L+1 1, .

(E/rl)
2m, o s!(2s —1)

(7a)

(7b)

(7c)

The parameter g is arbitrary and is chosen to optimize simultaneously the convergence of the summations in
both spaces. The labor involved in the computation of expressions (7) at the desired values of E and k is the
most time-consuming part in setting up the KKR secular determinant.

An analytic implementation of the Ewald method has been provided by Davis' in terms of the incomplete I
function. ' Equation (7b) can be rewritten in the form

——2'i' "
Dr's'r(E, k )= ~ g ( ,E)—,g, 2 &

e "YrM(~„)I (L —m+ —,, —,rir„) (7b')

lt

and the incomplete I function can be calculated us-

ing a continued-fraction expansion.
(k„—E) ' —(k„+Eo)

(E+Eo)(—k„—E) '(k„+Eo) (8)
C. A new efficient algorithm

In this section we provide an alternative algo-
rithm for the evaluation of the reduced structure
constants; summations in direct and reciprocal
spaces are combined in a new feature, which leads to
quite convenient analytic expressions. We illustrate
the guidelines of the procedure, and summarize the
final results, referring the reader to the Appendix
for aspects of a more mathematical and technical
nature.

Consider in Eq. (4) the term (k„E) '. If th—e
energy E is negative (say Ep, Ep )0) th—e summa-
tion (4) can be conveniently replaced by Eq. (5),
which is absolutely convergent in this case. Also
note that the denominator (k„—E) ' for large k„
goes as k„,while the difference

DLM(E, k )=DLM(E, k )

where now

+DLM(E, k )+Doo (E)6 L~o

for large k„goes as k„. Our procedure consists
essentially of splitting (k„—E) ' as indicated in (8),
iterating it a convenient number of times (say Ip),
and utilizing the summation in direct space for the
first term and the summation in reciprocal space for
the other, both summations being now absolutely
convergent.

The details are given in the Appendix. For simple
lattices, we report the final expressions in the fami-
liar form

4~ (E +E )o kL
D (E,k )= g YLM(k„),

( E) g (E k)(E +k )'— (10a)

(10b)
o

DLM (E k ) =
L g &

(E +Ep ) g 7 e "YLM( 'rn )(~EO) + hL 1(l'~Epr )—
( E ) r o I!2

D (E)= —
3 g (I ——,)(I ——, )" ( ——, ) .

o
—' (E+E )

4~ r=o I!Eo
(10c)
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The simplicity and advantages of the new equa-
tions (10) with respect to Eqs. (7) are evident. Fur-
ther simplifications for computational purposes are
discussed in the Appendix. It is worthwhile to em
phasize that our Eq. (10b) not only is analytic (and
does not contain numerical integrations), but, most
important, the summation over z„ is independent of
the energy E and must be performed only once at
the given wave vector of interest in the Brillouin
zone. In Eq. (10b) the dependence on energy is
indeed confined in the powers (E+Ep) up to
I =Ip 1[ap—art from the factor (v E) ]. With
respect to Eq. (7b'), our Eq. (10b) exhibits the impor-
tant advantages that the sum over index I is finite,

I

and the computation of the Hankel functions is
trivial (see the Appendix); in contrast, the unavoid-
able truncation of continued-fraction expansion
needed in Eq. (7b') is indeed a delicate point. '

For the sake of completeness we give also the re-
sults in the case of a composite lattice with basis
vectors bi, b2, . . . , b„, again referring the reader to
the Appendix for detailed proofs.

The expressions of the off-diagonal reduced struc-
ture constants DLM(E, k ) (p&v) can be written in
the form

DgM(E, k ) =DLQ"(E, k )+DE"(E,k ), (11)

where

Io L gkn (bp-by)
4~ ( E +Ep) ' k„e

DLtI'"(E, k )= L g t YLM(k„),
( E)' -.„(E k')(E —+k')"

to —'

DLQ' (E k )= L g t (E+Ep) g l
rn b„+b„~ e "FLM(r„—b&+b„)

( E ) t p I!2

(12a)

X(~Ep) +'hL t(i~E()
~

r„—bq+b„~ ) . (12b)

Note that for p&v the term Dpp' is no longer
present; a phase factor appears in D"', and the sum
over ~„ in D' ' includes ~„=0.

Before closing this section, we wish to clarify fur-
ther the basic physical concept, which is at the heart
of our procedure for Eqs. (9)—(12). Disregarding
factors unessential for the present reasoning, we
consider sums of the type

Si(E,k )=g- E —k„
n

(Ep+E) '
S2(E,k )=g

k
E k' (E.+k')"—

n

and we notice that S& and S2 have the same poles
with the same residuals (if Ep )0). Thus the differ-
ence S~ —S2 is a well-behaved function, easy to
evaluate by a series development. The sum S2 is
rapidly convergent when Io is sufficiently large, be-

—2—2Io
cause the terms to be summed vary as k„ for
large k„. Thus a convenient manner to evaluate S~
is to compute S2 and S& —S2. This is basically what
our procedure' does through Eqs. (9)—(12).

D. Comparison with the Segall-Yang
approach

It is interesting to compare our results with those
of Segall and Yang. The Segall-Yang approach

makes great strides toward a drastic reduction of the
employment of the Ewald algorithm but still re-
quires its usage. On the other hand, our procedure
fulfills this aim. Thus it is worthwhile to compare
more closely the two procedures and clarify how our
approach can be seen as a generalization of the
Segall- Yang approach.

Consider expression (4) for the structure constants
DLM(E, k) when L&0 (the case L =0 can be dealt
with along similar lines). Following Ref. 4, we split
the sum over the vectors k„ into two parts: one in-
side a sphere of (arbitrary) radius k, and one outside
it. Wehave

L
4m. k„

DLM(Et k ) L y 2 ILM (kn )

k(k E —k'

k„+ g I LM(k„)
k„&k, E—kn

(13)

For the E&k„with a series development of the
denominators in the second sum of Eq. (13), we ob-
tain
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Q(~E )~ ~ kq
DrM(Ek )= g 2 YLM(k) —g YrM(k)k„ 1+ ~

+" + 2
+".

4n.

L

2 YrM(k„) —g k„YrM(k„)
k &k E kn k„&k

j—1 Ei
„.+0

k„'

'j

k,
(14)

where the order of magnitude of the residual terms
is (Elk, )r.

It is convenient to define the quantities

fr",sr(k ) = —g k„+ '
Yr.M(k„), (15)

k„&k

which can be evaluated with appropriate manipula-
tions of the Ewald sums. In terms of these auxili-
ary parameters, Eq. (14) can be written in the more
compact form

k„
DLM(E, k )= g ~ YLM(k„)

4m
n& c

E—kn

j—1

+ g fr"M(k)E'
i=0

J
+0

k,
(16)

Thus we recover the results of Segall and Yang, but
our procedure allows an estimation of the accuracy
of Eq. (16) and provides a criterion to improve it.

To make fully transparent the comparison of our
procedure in Sec. II C, we define the quantities

gr"M(k) = —gk„' + 'YLM(k„) (17)
14 „

and exploit the identity

g2 g2 g2 g2(j —1)
n n n n

j—1

+ g gi'M(k )E'
i=0

j'
2k,

(18)

With the help of Eqs. (17) and (18), we transform
Eq. (16) in the form

II(~E)L k E'
DLM(E, k )= g q 2. YrM(k„)

4m.
r, (r, (E —k„)k„j

%e now dispose of the residual terms of the order of
(Elk, ), letting k, ~oo. We have

II(~E )r k„E'
DrM(E, k )=g ~ 2. YrM(k„)

4~ (E —k„)k„i
n

j—1

+ g gr'm(k )E' .
i=0

(19)

Equation (19), which summarizes the results of
Segall and Yang, becomes equivalent to our equa-
tions (10) if in Eq. (14) the series development
around E =0 of the term (E —k„) ' is replaced by
the series development around E= —Eo.

III. NUMERICAL APPLICATION:
ENERGY BANDS OF SOLID NEON

In this section we briefly consider the specific case
of the conduction bands of solid neon. The great
amount of literature on this material (see, for in-

stance, Refs. 18—22, and references quoted therein)
allows checks of our procedure from a numerical
point of view and comparison with different
methods.

Solid neon crystalizes in the fcc structure; the lat-
tice parameter ao has been taken equal to 8.43 a.u.
as in Ref. 21. In our KKR application we wish to
describe the s, p, and d character of the conduction
bands; thus we are interested in the reduced struc-
ture coefficients with L up to 4. The structure coef-
ficients DLM(E, k ) are computed using Eq. (10) and
Eq. (A16). The choice of the partition parameter Eo
and iteration number Io has been done in such a way
as to produce a reasonable balance in the sums over
reciprocal- and translational-lattice vectors. After
some attempts and checks, the choice of the parti-
tion parameter of the order of 1 and of Io in the
form Io [tL/2 j + 5 was fo——und to be quite satisfac-
tory in the energy range (up to =3 Ry) of our in-
terest. The sums over reciprocal- and translational-
lattice vectors could be safely terminated upon in-
cluding about 50 terms in the former and about 100
terms in the latter. A somewhat higher number of
terms in the direct-lattice sum is acceptable, since
the direct-lattice sums in Eq. (10b) do not depend on
energy and must be performed only once for a given
k vector.
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After computing the reduced structure coeffi-
cients up to L =4, the structure coefficients
I ~ ~ (E,k) with l, l' up to 2 are constructed in the
standard way, and the KKR secular equation

Ill l, l' (E k )+~«o«&i«+0&
(20)

is then set up.
In the KKR equation (20) we have inserted the

phase shifts calculated theoretically for the isolat-
ed neon atom in the Hartree-Pock (HF) approxima-
tion. The assumption that the crystal potential is
the sum of atomic nonoverlapping HF potentials ap-
pears reasonable ' in view of the relatively large in-
teratomic separation in the solid and of the closed-
shell nature of the composing units.

The results are given in Table I, where we have
also reported for sake of completeness the HF (at
least in principle) calculations available in the litera-
ture with different methods. The practical co-
incidence between the present KKR calculation and
the augmented-plane-wave (APW) results ' when us-

ing the same phase shifts is evident.
A rather interesting point concerns the problem of

correlation-polarization effects' ' ' on the band
structure of large gap insulators. In order to esti-
mate these effects on the conduction bands of neon,
we have inserted in the KKR equation (20) the
phase shifts obtained from electron-atom scattering
experim. ents. This procedure is justified if the crys-
tal potential can be taken as the sum of nonoverlap-
ping potentials, described by the experimental atom-
ic phase shifts.

The correlated energy levels obtained in this way
are reported in Table I. It can be noticed that the
correlated energy bands shift almost rigidly =1 eV
with respect to the HF energy bands, in the sense of
a reduction of the energy gap. It is worthwhile to
note that our KKR calculations confirm the useful-
ness of the semiempirical shift expression
AE = —,(e /RML)(1 —I/e, )=0.7 eV, where RML
=~a0/6. 3346=4.18 a.u. is the Mott-Littleton ra-
dius of solid neon and e, =1.24 is the static dielec-
tric constant.

Finally, we notice from Table I that the bottom
conduction state I ~ has positive energy ( + 1.27 eV)
even if correlation effects are included. A negative
electron affinity in solid neon is indeed necessary to
explain the dynamics of atomic self-trapped exci-
tons, recently investigated by transient absorption
spectroscopy.

IV. CONCLUSIONS

In this paper we have examined the problem of
the calculation of the reduced structure constants in
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the Green's-function method. We have provided a
new algorithm, which turns out to be convenient
and manageable. The new procedure, applicable
also to composite lattices, is of value not only in the
field of bulk electronic state calculations but also in
other areas of research for which the Green's-
function method is an invaluable tool.

APPENDIX

1. Some mathematical properties
and identities

In the following we need an explicit expression of
the derivative of order I with respect to Ep of both
members in Eq. (A3). To begin, consider the case of
first-order derivative. We have

[(~Eo} +'hE(iV Eor„)]
dEp

= —,(~Eo) '[(L + 1)hz (i ~Ep'Th )

+i~Epr„hi (i~Epr„)], (A4)

We recall the two representations of the structure
constants DEM(E, k ) in the extreme limits of sum-
mation either in direct or reciprocal space. From
Eqs. (4) and (5) we have

where

hl (i~Epr„)= hE(x)
d

x =l~EpT

1 . 1+ 5zolim-
4m' T o r

(Al)

L
4m 1 k„

DLM(E, k )= E g 2 YEM(kh)
( E) q

E —k„
n

(L+ l)hz(x)+xhL (x) =xhE i(x), (A5)

We take advantage of the recurrence relations'
for hI (x), which are valid for any integer L (posi-
tive, negative, or zero):

and

DEM(E, k )

2L +1 hz(x}=hE i(x)+hE+i(x) . (A6)

i v E—g e "hE(v Erh)YEM(r„)
&n+p

Exploiting the first of these two relations, we obtain
for (A4)

where

l ~E 5L 0
4m

hI (x)—:hL"(x)=ji (x)+inl (x) .

(A2) [(~E())
+

hL (i~E()rh )]
dEp

2
(v Eo) hE i(i~Eprh) . (A7)

—:(VEo)+' g e "hr(ivor )YgM(r )

1 1 . 1
V Ep5zo — 5Eplim —.

4n 4~ r or
(A3)

If we compare the two expressions (Al) and (A2),
we obtain an identity that is valid for any value of
the energy E (positive or negative). We write down
this identity for E= —Ep (with Ep) 0):

4~ k„'
Y (k)

n

Iterating Eq. (A7) I times, we obtain

I
I [(~Eo} hi (i~orh ) 1

dEp

2
(~E()) +'hz 1(i~E()rh) . (AS)

With Eq. (AS) we can now perform the derivative of
order I with respect to Ep of both members in Eq.
(A3). We obtain the important identity

4m d
L 'I

2 YiM(k„)= (V Eo) g He "YLM(r„)hrI(i~Eorh), —
dEo k Eo+kh2

™h
2 Eo +

n It

T

+ — '' ' —I + 1 Ep 5L p
— 5Lp51pllm

2 1 3 1 1 1 iy2 I 1 1

3v4~22 2 2 v 4' or

(A9)
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2. Case of one atom per unit cell

Consider the identity expressed by Eq. (8) of the main text. The same identity when iterated Ip times gives

o (E+Ep) (E+E )

k„E—I p (k„+Ep) +'

This last equation can be rewritten in the form

Io0 ~

( 1)I dl 1 (E+Ep) P

(E+Ep)', , +
k» E I p I ~ dEp k»+Ep (k2 E)(k~+ E )

(A10)

Expression (A10) can also be obtained by a Taylor expansion up to the order of Ip —1 of the term (k2 —E)
around E = Ep; th—e residual term is expressed exactly by the last term of (A10).

Substituting (A10) into (Al) we obtain

4m. 1 ( —1)I +

DLM(E, k )= — g (E+Ep) I g 2 YLM(k„)0 ( E)L I=p dEO k„+Eo
n

4~ «+Ep) ' k„ 1 . 1+ YLM ( k ) + 5L plim—
(V E ) k (E k2)(E +k2)l&

" V4~ r~p r
(Al 1)

By inserting (A9) into (All) we prove Eqs. (10) of
the main text.

3. Some manipulations for computer programs

2L —1
PL —2(x) PL(x) — PL &(x) .

X

In particular, we have

(A13)

Although expressions (10) of the main text are
simple, it is convenient to introduce some minor ma-
nipulations for computer programs. In particular,
we can always express DLM(E, k ) in real form, in
the case of simple lattices.

It is convenient to define auxiliary functions

pl (x) associated with the Hankel functions hL (x) by
the relation

pL(x) = i hL(ix—)e" . (A12)

Using (A6), we find that the auxiliary functions

pL (x) satisfy the recurrence relations

PL(x)=P L ~(x),

pp(x) =p
&
(x)=—,1

X
(A14)

pt(x)=p 2(x)= —+1 1

X

etc. The auxiliary functions pL(x) are simple com-
binations of powers of 1/x, very easy to construct.

We can write DLM(E, k ), defined by Eq. (10b) of
the main text, in the following form:

DLM(E, k )=— X
( I X ~npL —1(~Ep&, )&

' " e "i YLM(r») .
( E) I p I!(2 Ep) ~„~0

(A15)

We can further simplify this expression using the following considerations:

(a) For any translation vector r„ there is also —r».
(b) The spherical harmonics YLM(r„) have parity ( —1) with respect to the inversion symmetry operation.

(c) exp(ik. r„)=cosk. r„+i sink r„can be split in even and odd parts with respect to inversion.
(d) All the other terms of (A15) depend on 7 „only through the modulus r„.

The final expression of DLM(E, k), most convenient for computational purposes, can be written in the form
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Dt.M(E, k) = —( —1)(,) [~/2] (~Eo) (E+Eo)
(v E ) o I!(2~Eo)

cosk. r„ if Lis even

X g rnpL, t('t/—Eo& )e
' " YLM(7„)X

'

sink ~„ if Lis odd

(A16)

where the symbol [L/2] denotes the integer part of
L /2.

4. Generalization to the case of a composite lattice

Consider now the case of a composite lattice with
translation vectors v„and basis vectors
b ~, 12, . . . , b„. Besides the "diagonal" reduced
structure constants DttM(E, k ) with ls=v, which
have been already discussed, we must consider the
"off-diagonal" reduced structure constants
Dg'M(E, k) with ls&v, which refer to one atom cen-
tered at b„and the other at b„.

The expression for the "off-diagonal" reduced
structure constants in direct or reciprocal space
presents only some formal differences with respect
to (Al) and (A2). We have, in fact,

With respect to (Al) the absence of the singular
term and the presence of appropriate phase factors
can be noted.

The sum over the direct lattice is

Dgl(E, k )= i ' —v E

X YLM( rn bti+ b„),

p,&v . (A18)

DQg(E, k) = 0 (

i k„-( Q —b„)

xg
F. —k„

n

pWv.

(A17)

Again, we have minor formal differences with

respect to (A2).
We can now repeat step by step, starting from

(A17) and (A18), the considerations that were given

beginning at (Al) and (A2), and we prove in this

way the equations (12) of the main text.
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