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Localization, percolation, and the quantum Hall effect
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Noninteracting electrons in a smooth two-dimensional random potential are localized in

the large magnetic field limit. In contrast to Anderson localization, eigenstates with large
localization lengths occur with a probability proportional to a universal power of their size,
with the power given in terms of percolation critical exponents. Adding a parallel electric
field F causes extended states to appear in numbers proportional to a power of O'. This

implies a nonlinear broadening of steps in the quantized Hall conductivity. The results for a
parallel electric field are obtained by considering a graded percolation problem, in which the
probability that a site is occupied varies with position.

I. INTRODUCTION

It is believed that in two dimensions without a
magnetic field any amount of disorder will localize
all of the electronic wave functions. ' Experiments
have been performed in which an intense perpendic-
ular magnetic field is applied to electrons that are
confined to two dimensions in metal-oxide semicon-
ductors and heterojunctions. ' These experiments
have demonstrated that the Hall conductivity is
quantized in units of e lb.

The following question arises: Do the electronic
states remain localized in the presence of a magnetic
field? The simplest point of view is that there must
be extended (or arbitrarily large) states since local-
ized states carry no current and nonzero Hall con-
ductivity is observed. Purely theoretical arguments
reaching this conclusion for sufficiently weak poten-
tial have been given by Aoki and Ando, Laughlin,
and Halperin.

It is of interest to know whether a finite fraction
of the eigenstates is extended. If so, the steps in the
quantum Hall conductivity will never become sharp,
even in the limit where the magnetic field is large
and the temperature and electric field go to zero.
There have been speculations that this may be the
case (the assumption is also implied by Refs. 5 and
6). A further agrument in favor of a nonzero frac-
tion of extended states is that is difficult to imagine
a single delocalized electron carrying sufficient
current to be observed in a macroscopic experiment.

Contrary to these expectations and in agreement
with remarks in Refs. 3 and 8, we find that for a

smooth random potential in the limit of an arbitrari-
ly large magnetic field B, the fraction of extended
states is zero. (Because the number of states per unit
area in a given Landau level is proportional to B, it
is possible that the number of extended states per
unit area does not vanish as B~oo, even though the
fraction of states that are extended goes to zero. )

Our main result is to demonstrate a quantitatiue re-
lation between the localization problem and two-
dimensional percolation. [A qualitative correspon-
dence has been previously noted; see Refs. 3 and
8—10(a).] The distribution of eigenstates of large
spatial extent is given by a universal relation involv-
ing percolation critical exponents. A second relation
is derived that describes the fraction of extended
eigenstates as a function of the tangential electric
field, which implies a nonlinear broadening of the
Hall conductivity steps.

The contents of the remainder of this paper are as
follows: Section II describes the electron eigenfunc-
tions and their relation to continuum percolation.
The distribution law for large eigenstates is derived.
Section III treats the effect of adding a tangential
electric 'field. A lower bound for the number of ex-
tended states in a general potential is derived, as well
as a relation for a random potential. The model is
shown to imply a linear relation between Hall volt-
age and current, but a nonlinear broadening of the
steps in Hall conductivity versus electron density.
Section IV includes a description of the electron
Green's function and conclusions. The appendix is a
rough calculation of the magnitude of the nonlinear
step broadening, which appears to be in an experi-
mentally accessible regime.
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II. EIGENFUNCTIONS
AND PERCOLATION

1H=
2meff

eA
p — + V(x,y),

C

where V(x,y) is a smooth position-dependent poten-
tial that arises from inhomogeneities. Electron-
electron interactions are neglected. The magnetic
field B= V XA is of constant magnitude 8 in the z
direction. Let l=(Pic/eB)'~ be the radius of the
ground Landau orbit, and co,:eB/m—,rrc be the cy-
clotron frequency.

In the limit in which the magnetic field becomes
arbitrarily large (V slowly varying on the scale I),
the eigenfunctions g become quite simple:

~ g ~

is

large only in the vicinity of a constant-energy sur-
face of the potential V. Perpendicular to the line of
constant V, the wave function extends a distance of
order l, which vanishes in the limit of 8—+ oo. Oth-
er authors, including Tsukada and Prange and
Joynt, have noted that the eigenfunctions of energy
E+ ioru, (n + —, ) are localized about the classical or-
bit V(x)=E in the large-8 limit. The latter work
contains an illuminating derivation based on the
path integral representation of the electron propaga-
tor. The motion of electrons along equipotential
contours is analogous to that of superconducting or
superfluid vortices in an inhomogeneous film. Per-
colation theory implies universal power-law
behavior for vortices as well. ' '

Although we will not need the explicit form of
the electron eigenfunctions, they can be approximat-
ed by

i)'j(u, v) =C(u)X„(v)e'~'" "' (2)

in the limit B~oo. The variable u parametrizes
distance along the constant energy surface
V(x)=const, and v parametrizes distance orthogo-
nal to this line. The index n =0, 1,2, . . . is the Lan-
dau level and the energy eigenvalue is
E=V+fico, (n+ —, ). The function g„ is the nth
harmonic oscillator function,

U

+n Hn exp
2

2l

C (u)- 1

i
VV(u, v) i„

and P(u, v) is a gauge-dependent phase.
One can show that the wave function itj(u, v) given

by Eq. (2) satisfies the Schroedinger equation

We consider the eigenfunctions of the two-
dimensional Hamiltonian

2

IIP=EQ in the regions where P is large, with frac-
tional errors of order r, '(Pic/eB)'~ and also of or-
der

firn, rr ~

V V ~(c/iiieB) ~

(r, is the local radius of curvature of the constant-
energy surface). These errors vanish on smooth
constant-energy surfaces in the limit B~ oo.

Because P(u, v) must change by an integral multi-
ple of 2~ around a circuit, only a discrete set of
constant-energy surfaces corresponds to electron
eigenfunctions. In the high-8 limit, each allowed
surface encloses an additional area of hc/Be. The
electron density is then everywhere equal to nBe/hc
if n Landau levels are filled. (These points are dis-
cussed in more detail in Ref. 9.)

Consider two approximate eigenfunctions given
by Eq. (2), g, and 1(ti, that are on opposite sides of a
saddle and whose constant-energy surfaces are a dis-
tance d apart at their closest approach. The eigen-
functions are approximate because they were ob-
tained by retaining terms in H only to second order
in v. For a large but finite 8, there is a nonvanish-
ing overlap integral i) between gi and it2. A true
eigenstate will then be an admixture of Pi and g~.
Note, however, that

i)-exp( deB /4fic),—

whereas the minimum energy mismatch AE of 1(i
and g2 goes like 1/8, barring an accidental degen-
eracy. " The ratio g/EE vanishes as 8—+ oo. This
implies that as B~oo, an electronic eigenstate has a
large amplitude only in the neighborhood of a single
(connected) constant-energy surface.

We now consider a random potential V(r) which
is assumed to have the following properties: V(r) is
a random variable whose distribution is given by
Prob[ V( r ) =e]=p(e). The distribution function
p(e) is continuous, bounded, and independent of r
with J p(e)de= 1 We cho. ose the zero of energy
such that ( V(r)) =0, where enclosure by angular
brackets denotes an average over r. The correlation
function ( V( r ) V( r + x ) ) goes rapidly to zero for

~

x
~

&&b, where b is the correlation length of the
potential. ' Finally, we assume that V is slowly
varying on a sufficiently small length scale. Many
functions satisfy the above requirements, such as
Gaussian white noise with a smooth high-frequency
cutoff at k =b

As 8~ oo, the density of states is proportional to
p(E). If one seeks eigenfunctions of energy E, ' a
convenient construction is to color in all points r
such that V(r) &E. Then as B~ao, the eigenfunc-
tions will be localized on the perimeters of the
colored areas (see Fig. 1). For a random V, the
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FIG. 1. Points r such that V(r) &E are shaded.
Eigenfunctions of energy E are localized within a distance
I of the perimeter of a shaded region.

properties of the connected colored regions are those
of a continuum percolation problem. ' In the usual
site-percolation problem, a lattice point r~ is con-
sidered to be occupied (colored) with a probability p.
One is interested in the properties of connected clus-
ters as a function of p. In the continuum problem
described above, rJ is replaced by the continuous
variable r and p is replaced by E through

E
p(E)= f p(e)de. (3)

Percolation theory immediately implies a number
of universal results for the case in which the poten-
tial V is random. There is a unique energy E, (the
percolation threshold) where E, is the smallest ener-

gy for which an infinite connected colored region
exists. For E & E, there is a length

There are no states of infinite extent except
perhaps at E =E„which is a set of measure zero.
Thus we have that for a random potential as B~ oo,
the fraction of eigenstates of infinite extent is zero.
Note that we have used the assumption that the dis-
tribution function p(e) is continuous, so that in the
vicinity of E, Eq. (3) implies that E E, —is propor-
tional to p —p, . In contrast, Prange and Joynt have
considered a model potential in which V=0 except
in disconnected regions in which V is arbitrary.
That potential has a 5 function in p(e) exactly at the
percolation threshold, and in fact has a finite frac-
tion of states of infinite extent for B~oo.

The energy dependence of the localization length

g given in Eq. (4) disagrees with that given by
Ono, ' "who uses the self-consistent Born approxi-
mation to find g(E) —1 exp(y /E ). One could attri-
bute the difference to the fact that Ono considered a
random potential that is a sum of 5 functions, so
that his V(r ) is never smooth on the scale of 1, no
matter how large the magnetic field. The localiza-
tion of an eigenfunction on the perimeter of a per-
colation cluster may also be too subtle an effect to
be seen in the self-consistent Born approximation.

In the absence of infinite eigenstates, we investi-
gate those of large spatial extent. Let f(R) be the
fraction of eigenstates whose extent I. &R. (The
number of eigenstates per unit area is given by the
fraction f multiplied by eB/hc )We m. ake the fol-
lowing assumptions, the first two of which are dis-
cussed by Stauffer':

(1) The scaling hypothesis: The number density

n, of clusters of large area s is given by

n, -s 'gl(p, p)"f—
g(E)-

~

E E,
~

" as E—~E, (4)

such that connected clusters of spatial extent I.
greater than g are exponentially rare. (The spatial
extent I. could be loosely defined as the "diameter"
of a connected region or quantitatively as the radius
of gyration. ) In two dimensions the percolation crit-
ical exponent v is —,. ' Thus for B~oo the elec-
tronic wave functions of energy E will typically
have a spatial extent of no larger than the order of
g(E) =c i ~

E E,
~

". —For E & E, an infinite con-
nected colored region is present. One might suppose
that this would imply eigenfunctions of infinite spa-
tial extent. Such is not the case, however. For
E &E, it is convenient to identify the wave func-
tions with the perimeters of the uncolored regions. '

Above E, the connected uncolored regions are of
finite extent, with maximum typical size again given
by Eq. (4). Because of this symmetry, we will need
to consider only the finite connected regions for
E &E.

where g (z) is analytic with g (0)= 1, and g (z) goes
rapidly to zero for large z.

(2) The ramification hypothesis: Large clusters of
area s have a typical perimeter t with s-t~ and
p'= 1.

(3) We further assume that as p is increased to
p+dp, a cluster of area s and perimeter t will be
coated with an additional area dA which is propor-
tional to tdp. The fraction of the total area occupied
by constant-energy surfaces of perimeter t or greater
is then

1 /2 oof- f de f dss' 'g(es ) ~ f-t

Using the relation between the perimeter and the di-
ameter of a connected region t-R', we obtain
the relation that for large R

f(R)-R
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The exponent

p) =(r—2+o )/o v=(1+P)/v,

where the last equality follows from scaling rela-
5

tions among exponents. With the use of P= —„41
(Ref. 15), p ~

———„. As expected, the fraction of
states of extent larger than R vanishes as R ~ oo.

Equation (6) states that large eigenstates appear
with a probability proportional to a power of their
diameter. This is in sharp contrast to Anderson lo-
calization in the absence of a magnetic field, where

f(R) goes to zero exponentially. '

One subtlety should be mentioned with respect to
the above derivation. Equation (5) is most naively
obtained by assuming that each cluster of area s has
a single (external) perimeter t-s. Clusters, however,
have internal perimeter as well, and it is the total
perimeter (internal plus external) that is proportional
to s. To incorporate this fact, define the average
perimeter t of a cluster as t —= g. t& /g. tj, where

the sum is over the external and all internal perime-
ters. If t-s, one can show that p& ——(1+P)/v still
obtains. A sufficient condition for t-s is that the
external perimeter remains a nonzero fraction of the
total perimeter. Computer simulations by Leath and
Reich' ' ' show that as s increases, the external per-
imeter is a Uery slowly decreasing fraction of the to-
tal perimeter. The largest simulated clusters (2000
sites) still have over 75% external perimeter. This
issue is not yet sufficiently well understood to know
whether p~

——(1+P)/v or whether this is a slight un-
derestimate of the correct exponent.

III. TANGENTIAL ELECTRIC FIELDS

creases at least linearly with 8' for small 8'. This,
incidentally, resolves the paradox of how a vanish-
ing fraction of delocalized states can carry a macro-
scopic Hall current. As the Hall voltage increases,
additional extended states appear which carry the
extra current.

The proof of Eq. (7) again uses the correspon-
dence between area and number of eigenstates. One
must show that for the potential
U(x,y) = V(x,y) —e8'y the constant-energy surfaces
that are infinite in extent comprise a fraction of the
total area no smaller than fb. The sample is as-
sumed infinite in the y direction, which is the direc-
tion of the electric field. It is convenient to define
V(x,y) as the function V(x,y) multiplied by a factor
G(x), where G(x)=1 for 0&x &L, , G(x)=0 for
x ( —b, and L

~ +6 &x, and G(x) interpolates
smoothly between zero and one in between. Define

V(x,y)—:V(x,y)G (x),
U(x,y) = V(x,y) —el'y .

Thus V= Vin the region 0&x &L], and Vvanishes
outside the region —6 &x &L~+~.

Consider a constant-energy surface of U contain-
ing the point (x,y) with x & —h. This constant-
energy surface is simply the line y =y for x & —6
[see Fig. 2(a)]. As the line enters the region
—6 &x &L &+6 it must remain in the band

~y
—y ~

(M/eS' since it is a constant-energy sur-
face. In particular it cannot escape to y =+ao for
a fixed nonzero electric field. The line cannot re-
emerge at x & —5 and y&y because then again it
would not be a constant-energy surface. Thus the

A. Lower bound for general V(x,y)

f„(&)&«/(~'+«)= fb(&) . — (7)

Thus the fraction of states of infinite extent in-

In experiments on quantized Hall conductivity,
electrons move in the presence not only of a magnet-
ic field normal to the surface, but also of an electric
field tangent to the surface When .o„, vanishes,
this electric field is simply the Hall voltage divided
by the sample width. We will show that such an
electric field has a drastic effect on the localization
of electronic states. We assume a smooth potential
V(x,y) whose magnitude and slope are bounded:

I
V(xy)

I
&~

I
~V(xy)

I
&~ T"e po«nti»

need not be random (it could, for example, have
long-range correlations). Then, in the presence of a
tangential electric field 8' in the limit B~op, a
nonzero fraction of the electronic eigenstates is delo-
calized. The fraction f„ is bounded below by fb.

Yb

Yb

I

Ll L)+g

FIG. 2. Electric field is in the y direction. a, a
constant-energy surface of U for a random potential; b, a
band of constant-energy surfaces that occupies the
minimum possible area for 0 &x & L (general potential).
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line must reemerge at x )L +5 where its equation
is y =y. ' This is an extended constant-energy sur-
face; it has an arc length of at least L 1 as the sample
width L i ~ 00 ~

What fraction of the area is occupied by lines that
extend across the sample? A band of states in the
region y~ &y &ye+ by for x & b, wil—l occupy the
smallest possible area in the region 0&x & L i if it
moves straight across the sample in a region in
which

~

VU
i

has its maximum possible value of
M'+e S' [see Fig. 2(b)].' The minimum fraction of
the area occupied by such states is then

fb ——e S'/(M'+e S'), which proves Eq. (7).
Corollary. It is straightforward to show that if

eS'&M' all constant-energy surfaces are extended,
so that f„=l.

f (S') S' '

may be exact for S'—&0, with

p2 ——(r—2+o)/o(1+v) =(1+P)/(1+v) = «

(9)

Equation (9) is motivated as follows: One is in-
terested in the connected regions of the plane such
that

U(x,y) = V(x,y) —e S'y &E .

This is a type of graded percolation problem in
which the probability p that a point is occupied
(colored} is not simply a constant, but rather a func-
tion of position. As a result, the locally defined
correlation length g( r) will vary from point to point
in space. For fixed S' and V, there will be a length
which we denote by L (S'), such that finite clusters
that extend a distance greater than L are exponen-
tially rare. To estimate L, consider a cluster of ex-
tent lz in the y direction. Such a cluster will be
strongly suppressed if the local correlation length
g'(r } is much less than l» in large parts of the clus-
ter. For nonzero 8', the local correlation length

B. Random V(x,y)

If V is a random potential then the constant-
energy surfaces in the presence of a small electric
field are tortuous and resemble the upper line in Fig.
(2) more than the lower. The actual fraction f„(S')
of extended states will then increase more rapidly
with electric field than does the lower bound, Eq.
(7). We propose that

g=c&
~

E F.—, i

" can be no larger than the order of
cl ieS'I»

~

' in large parts of the cluster. If the
cluster is to occur with substantial probability, one
must have

or

1» & c, i
e S'l»

i

l»&c'S' " "+ '=L(S') .

(10)

The application of a small electric field 8' is not ex-

pected to substantially modify the statistics of clus-
ters of extent R «L(S'), whereas it will strongly
affect those with R »L (S'). It is reasonable to as-
sume that the area that was occupied by constant-
energy surfaces of extent R &L(Ã) in the absence
of an electric field will be converted to f„when the
field is applied. Equations (6) and (10) then imply
the desired result, Eq. (9).

S'( r ) is the electric field in the x-y plane, which has
contributions from the local random potential and
from an external field,

8'(r) = S',„,—(1/e)V V(r) .

Equation (11) is correct both classically and quan-
tnm mechanically. " The current I„ that passes
through the line x =const for a sample width L2 in
the y direction is

C. Quantum Hall effect

The Hall current is carried by extended states.
Since the number of such states is a singular func-
tion of the parallel electric field [Eq. (9)], one might
expect a nonhnear relation between the current I
and the Hall voltage VH. Such is not, however, the
case, and in fact this model predicts a linear relation
I„=cr„~VH. This relation has been previously ob-
tained by Laughlin as a consequence of gauge in-

variance. We include the following brief derivation,
which obtains the same result from a different point
of view.

Assume that the first Landau level is filled and
for simplicity neglect spin and valley degeneracies.
In the high-B limit, the electron number density n is
everywhere equal to eB/hc 'The expe. ctation value
of the local electron velocity operator is

(-.(-.))=. ~
(11)

I~= dy ne v x ~ I„=— +ext'y ——V x,L2 —V x,o
0 h - o " . e (12)
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In an experiment, the measured Hall potential VH is
the sum of the electrostatic potential and the differ-
ence in Fermi levels" [respectively, the first and

second terms inside the braces of Eq. (12)]. One re-

covers the result Iz 0zy VH with O.„y
——e /h. A

simple generalization gives o.„~=ne /h for n occu-

pied Landau levels.
Equation (9) implies a nonlinear broadening of the

steps in o.„y versus electron density. Consider a
metal-oxide-semiconductor field-effect transistor
(MOSFET) at T=0 in a nonzero parallel electric
field 8', with electrons added to the lowest Landau
level by varying the gate voltage. The first electrons
will occupy localized states with E «E, . Then
they will fill extended states at E=E„and finally

the localized states with E g&E, . The current wi11

increase only as the extended states are filled. By
Eq. (9), the number of extended states is proportion-
al to 8"+~'~"+ ', with 5' proportional to the Hall

voltage. One then has the following nonlinear ef-

fect: The width af the steps in the Hall conductivity

as a unction 0 electron density is proportional to

VH
+ ' "+'. The Appendix discusses the observa-

bility of this effect.

IV. DISCUSSION AND CONCLUSIONS

+ Q(x2)g (x~)
co E I%+ig— (13)

For fixed x, there is a (connected) constant-energy
surface S that contains x &. Let R be the distance
to the point on S that is farthest from x~. G(x2)
will have a substantial amplitude for those points xz
that are near S. This amplitude tends on the average
neither to grow nor diminish as R ~2 =

~
xr —x

~ ~

in-

creases. Then suddenly as R &2 increases past R
G(x~) decreases very rapidly with increasing R &2 for
all x2. Even for the most favorable x2, 6 decreases
like

exp[ —e8(R (2 —R ) /2rric]

Percolation theory implies several additional
properties of the electron eigenstates and Green's
functions for very high magnetic fields. For 5'=0
the eigenstates are closed curves of vanishing thick-
ness l-B ' . The statistics of the small closed
curves are not universal, and depend in detail on the
short-wavelength properties of the random potential
V. In contrast, the large eigenstates have universal

properties, including a density given by Eq. (6).
They are rough objects (fractals), with a perimeter
that grows. faster than their diameter (t-R'~ ",
with 1/o.v= «).

We now consider some properties of the (retarded)
electron propagator defined by

for R ~2 near R . This arises because increasing R &2

past R forces r2 off of the constant-energy surface
and into the Gaussian tail of the wave function. For
random starting points x &, Rm will occur with a
probability given by Eq. (6).

Conclusions. We have partially characterized the
eigenstates of noninteracting electrons in a. two-

dimensional random potential and strong magnetic
field. As B~ oo, a fraction 1 of the eigenstates are
localized. (As mentioned in the Introduction, this
does not imply that no extended states exist, but
rather that they comprise a vanishing fraction of the
total. ) Large eigenstates occur in numbers propor-
tional to a power of their spatial extent, with the
power given in terms of percolation critical ex-

ponents. The result is quite unlike Anderson locali-
zation that occurs for B =0, where large eigenstates
are exponentially rare.

For B~ oo, a tangential electric field 8' destroys
localization, and creates extended states in numbers
proportional to a power of 8'. This implies a non-
linear broadening of the steps in quantum Hall con-
ductivity, again given in terms of percolation critical
exponents.

We have considered only the limiting distribution
functions as B~ oo . There is as yet no systematic
way to perturb away from this limit, such as an ex-
pansion in powers of B '. In particular, the possi-
bility remains that the fraction of extended states
goes smoothly to zero as B~ oo, but does not actu-
ally vanish at any finite magnetic field. One might
investigate finite magnetic fields by considering a
kind of Anderson localization problem in which the
sites are constant-energy surfaces, and are connected
by hopping terms. One feature of this model is that
the sites themselves can become arbitrarily large
near E„so that an eigenfunction near the band
center could be localized when measured in terms of
sites but extended in terms of distance.

Pote added. After this work was completed, we
learned of a study by Luryi and Kazarinov.
These authors have adopted a similar point of view

and have discussed (among other topics) finite-size
effects, in contrast to the results for extended sys-
tems that are obtained here.
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We will give what is at best an order-of-magnitude
estimte.

The discussion preceding Eq. (9) implies that
f(S') is 0(1) for an electric field the order of an

average
~

VV ~, where (
~

VV
~

) = V/b. Equation
(A 1) becomes

APPENDIX: EXPERIMENTAL ASPECTS
OF NONLINEAR BROADENING w =a(eS'b/V) ', (A2)

The appendix contains a rough argument that the
nonlinear broadening of the steps in the Hall con-
ductivity may be experimentally observable. Let w

be the width of the Hall step divided by the distance
between Hall steps at successive Landau levels. (The
width can be defined as the inverse of the maximum
slope of do„~/dn )Eq. uation (9) implies

P2
w =c28' (A 1)

It is of interest to determine cz to know whether
nonlinear broadening should be observable at reason-
able Hall voltages. ' An accurate estimate is diffi-
cult because c2 is not universal and depends on de-
tails of the random potential V, including its corre-
lation length b and average magnitude V—:(V ).

with cz a dimensionless constant of order unity.
Both b and V are highly sample dependent. We use
V=kq T at the temperature T at which the steps ex-
perimentally get fairly broad due to thermal excita-
tion of electrons. T=5 K might be typical for some
samples. At B =20 T, the Landau length is 60 A.
The percolation arguments used are valid only for
b peal; we assume a sample with b =500 A. For a
sample of width 50 pm, Eq. (A2) implies that a Hall
voltage of = 1 mV will give a step of width
w =0.05. This is an experimentally accessible re-

gime. In fact, the steps published by Klitzing et a1.
may be nonlinearly broadened by the Hall voltage.

We are unaware of any published studies of
w(V~). (Nonlinear studies of cr do, however, ex-
ist. )
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