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Metal-insulator transition in a doped semiconductor
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Millikelvin measurements of the conductivity as a function of donor density and uniaxial
stress in bulk samples of phosphorus-doped silicon establish that the transition from metal
to insulator is continuous, but sharper than predicted by scaling theories of localization.
The divergence of the dielectric susceptibility as the transition is approached from below
also points out problems in current scaling theories. The temperature dependence of the
conductivity and the magnetoresistance in the metal indicate the importance of Coulomb in-
teractions in describing the behavior of disordered systems.

I. INTRODUCTION

Doped semiconductors have been widely studied
to probe the nature of the metal-insulator transition
in disordered systems. ' Si:P is a well-

characterized, homogeneous system where P donors
sit substitutionally and randomly in a dislocation-
free Si lattice. The outer electron of the shallow
donor moves with a large effective Bohr radius az
which encompasses many lattice sites. This makes
the discreteness of the lattice unimportant in
describing the interaction between neighboring
donors. In Si:P, az is —17 A while the nearest-
neighbor distance of the Si lattice is 2.35 A. At low
donor concentrations (n) there is negligible overlap
of the hydrogenic wave functions of these donor
electrons, and the material is an insulator at tern-

perature T=0. At high concentrations when the
overlap is large compared to the on-site electron-
electron repulsion, the material is a metal. The tran-
sition from the insulating to metallic state (i.e., lo-
calized to itinerant electrons) occurs at a critical
concentration n„when the average spacing between
the impurities, n, ', is about 4 times the Bohr ra-
dius as observed in a variety of materials with great-.
ly different values of n, This led M. ott' to the fol-
lowing universal scaling form:

n, a&-0.25

which is confirmed by data in systems with n, vary-
ing over 9 orders of magnitude.

Another view of the transition, due to Anderson,
involves localization due to random one-electron po-
tentials seen by the electrons. For low donor con-
centrations the energy spread in the random poten-

tials of the disordered system is large compared to
the energy bandwidth and the electronic states of the
system are localized. At higher concentrations, ex-
tended states appear, separated in energy from the
localized states by a mobility edge E, . Within this
framework, the metal-insulator transition occurs
when the addition of electrons pushes the Fermi lev-
el Ez through E, from the localized to the extended
side at n, .'

Competing theories have recently been proposed
to describe the specific features of disordered sys-
tems near the metal-insulator transition. Scaling
theories of localization ' suggest that the zero-
temperature electrical conductivity o(0) decreases
continuously as n is lowered to n, . A. corresponding
critical divergence' is predicted in the dielectric con-
stant as n is raised to n, on the insulating side. In
contrast, Mott has proposed that o.(0) decreases
continuously with n only until a minimum value of
conductivity oM is reached. Reducing n further
causes o(0) to drop discontinuously to zero. Mott's
reasoning is based on the Ioffe-Regel criterion (that
in a metallic state, the electronic mean free path
cannot be less than the interdonor spacing), plus
considerations of Anderson localization.

Recently, the contribution of both Coulomb in-
teractions ' and localization' ' effects to the
low-T transport properties of disordered, metallic
systems have been calculated. The temperature
corrections to cr(0), as well as magnetic field effects
(magnetoresistance and Hall effect), have been con-
sidered. Models in which the electronic transport
proceeds by hopping have also considered the effects
of finite T, ' electric field, ' and magnetic
field ' '

Experimental measurements of transport proper-
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ties of Si:P have a long history. Alexander and Hol-
comb and Fritzsche ' have written excellent re-
views of the early work and more recent work,
respectively. The experiments which are of concern
to us in this paper are those taken at very low T
( T & 1 K) for samples close to the transition. It is in
this regime where the measured transport properties
distinguish between competing theories.

The temperature correction to o(0) for just metal-
lic samples has been found to vary as T' at low
temperatures while the sign of the correction de-

pends on n. These results are in quantitative agree-
ment with the Coulomb interaction model when ef-
fects of many valleys, mass anisotropy, and interval-
ley scattering are taken into account. ' Recent mea-
surements on Ge:Sb yield similar results, although
the square-root dependence is restricted to a smaller
temperature range than is found for the Si:P case.
Analyzing the Ge:Sb data to higher temperatures re-
quires the addition of a term linear in T which
might be due to inelastic electron-electron scattering,
a localization effect. The variation of cr(0) with n

has been measured for a series of uncompensated
Si:P samples. The transition is extremely sharp
and fits a scaling form for 2osr &o(0) &13o~.
Measurements on Si:P samples under uniaxial
stress have shown that samples which are just lo-
calized at zero stress can be stress tuned through the
transition. g(0) vs nln, thus obtained agrees with
the zero-stress results and extends the fit to the scal-

1

ing form to ——,oM or (n n, )ln, —10 . —Al-
though the variation of o(0) fits a power law in
n —n, as predicted by the scaling theory, the ex-
ponent is quite different, and the prefactor an order
of magnitude larger; thus the transition is sharper
than predicted. Measurements on Ge:Sb (Ref. 26)
samples with small amounts of compensation exhi-
bited a rapid decrease of o (0) as n was reduced to n,
similar to Si:P. Samples with larger compensation
behaved in a manner which increasingly approached
that predicted by the scaling theory of localization, '
prompting the suggestion that the rapid n depen-
dence of the uncompensated Si:P sample is due to
Coulomb interaction effects. In the Anderson local-
ization model cr(0) is zero for n &n, even though
the electron density of states remains finite.
Specific-heat measurements on a series of Si:P
samples have shown that the density of states for
electron-hole excitations does remain finite through
the transition.

Recent measurements of the magnetoresistance
of barely metallic Si:P samples below 100 mK have
found contributions from both the localization' and
Coulomb interaction' models. The positive magne-
toresistance, arising from the Coulomb interactions,
dominates near the transition. The negative magne-

toresistance, which is observed in more metallic
samples at low fields, is thought to be due to locali-
zation effects. Both effects have a square-root field
(H) dependence at sufficiently large H. Low-
temperature magnetoresistance measurements on
metallic Ge:Sb by Ootuka et al. show a similar
square-root dependence which we have interpreted
in the same manner as the Si:P data.

On the insulating side of the transition, the elec-
tronic conduction seems to proceed by electrons
hopping' ' from one localized state to a neighbor-
ing state. The characteristic length obtained from
the data using these models is, however, unexpected-
ly large. Measurements of donor spin susceptibili-
ty ' can be analyzed quantitatively in terms of lo-
calized electrons interacting via Heisenberg antifer-
romagnetic exchange for n &n, . At low tempera-
tures the susceptibility rapidly drops as n is raised
through the transition, indicating a change from lo-
calized electronic states to nearly degenerate states.

The low-frequency dielectric susceptibility 7 has
been measured directly ' and calculated from op-
tical data ' for samples just below the transition.
The divergence of X can be analyzed ' in terms of
a diverging localization length which is the counter-
part to the length which enters o(0) as n approaches
n, from the metallic side.

Many workers have measured the infrared-
absorption spectra of Si:P as a function of donor
concentration. ' ' At low concentrations
(n &2X10' cm ) the spectra of individual donors
are prominent. As n increases, donor pairs appear,
and the spectrum becomes nearly featureless as rela-
tively large, random clusters dominate the absorp-
tion for 0.2X10' &n &4)(10'. The data can be
explained assuming a random distribution of donor
sites.

II. EXPERIMENTAL DETAILS

Low-T, four-probe electrical measurements were
made using commerical quality Czochralski-grown
Si:P crystals. After cutting the samples to the ap-
propriate size the surfaces were etched to remove the
damaged surface layer. Ootuka and co-workers3
have shown that this layer leads to significant sur-
face conduction. Wires of Au:Sn were spot welded
to the freshly etched surfaces to make contacts
whose resistances were less than 1/o of that of the
sample. The contacts were arranged linearly with an
average length between voltage probes of 1 mm
along an average cross-sectional area of 0.8&(0.5
mm . Current flow homogeneity was tested by un-
nesting the voltage and current leads and observing
the check voltages; these voltages were noise-limited
and less than 10 of the nested voltage. Voltages
were measured using phase sensitive detection at low
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frequency ( —10 Hz) and were independent of fre-
quency to at least 1 kHz. Power input to the sample
was in the range of 10 ' —10 ' W. No measur-
able heating of the crystal lattice was observed, al-
though certain samples exhibited an electric-field-
dependent conductivity, as discussed in Sec. III D.
Temperatures down to 1 mK were achieved by di-
lution refrigerators with adiabatic demagnetization
of Cu or PrNi&. Samples and thermometers were at-
tached to a silver bar with a thin layer of Apiezon
grease and were thermally sunk primarily via the
leads.

Donor concentrations n were determined by
measuring the room T resistivities of samples and
using the calibration of Mousty et al. ' based on
neutron activation analysis. The resistivity ratio
p(4.2 K)/p(293 K) allows a more accurate deter-
mination of relative concentrations.

III. EXPERIMENTAL RESULTS

A. An overview

Figure 1 shows the resistivity p of four different
samples of Si:P plotted over more than 4 orders of
magnitude of temperature. The sample with donor
concentration n =n/10' cm =7.0 clearly behaves
like a metal at low temperature, i.e., p decreases with
decreasing T and is finite at T =0. The sample with
n =3.84 is insulatorlike in its T dependence with an
extrapolated zero T conductivity cr(0) above Mott's INSULATOR

I

I

I

I
METAL

minimum metallic conductivity o.M 0——05e. /Kid,

Here d, is the average spacing between impurity
atoms of concentration n, at the metal-insulator
transition. Using d, = (n, )

' gives oI——20
(Qcm) (1/oM ——0.05 Qcm is shown by the arrow
in Fig. 1). The sample with n =3.75 is very close to
the transition and is insulatorlike in its temperature
dependence with o'(0) & aM. This sample is a metal
by our definition because it has finite 0. in the limit
T~O K. The n =3.70 sample is on the insulating
side of the transition since p increases exponentially
with decreasing T and thus becomes infinite as
T—+0 K. The sensitivity of the low temperature p
to small changes in impurity concentration for sam-
ples near n, is clearly seen in this figure. The three
samples near n, have concentrations which differ by
-4%%uo with nearly identical values of p at room tem-
perature. However, at 4.2 K the value of p for the
n=3.7 sample is nearly an order of magnitude
greater than that for the n =3.84 sample. We have
characterized the samples by measuring the ratio
p(4.2 K)/p(293 K) as mentioned previously. o Sam-
ples with a resistivity ratio near 5 are very close to
the transition.

Figure 2 shows the effect of donor concentration

n = 3,70 x 10 cm

IO—

0
b
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(
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FIG. 1. Resistivity p vs temperature T for several sam-

ples of Si:P with donor density n above and below the crit-
ical density n, =3.74 &( 10' cm . Near n, a small

change in n has a large effect on p( T).

n(IO cm )
IS

FIG. 2. Divergence of the T=O K donor dielectric
susceptibility 4m' in the insulator [open circles, Ref. 34;
solid circles, Ref. 32; solid line, Eq. (6)] and the T =0 K
conductivity o(0) in the metal [solid circles, Ref. 36; open
circles, Ref. 24; solid line, Eq. (4)] as a function of phos-

phorus donor density n. Together these results character-
ize the metal-insulator transition in a disordered system.
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on the low-T values of the two physical quantities
which characterize the metal-insulator transition:
o(0) and X. The plots of cr(0) and X in Fig. 2 are
highly suggestive of critical behavior. The sharp-
ness of this transition is remarkable and is close
qualitatively to the discontinuity predicted by Mott.
Scaling theories of localization predict an expres-
sion for cr(0) which can be written

o(0)=C,e'/A'g, (2)

where CL, is a constant and g is the scale length
which near n, has the critical form

(=go[(n/n, ) —1]

As a function of n, o(0) becomes

o(0)=o,[(n/n, ) —1]".

The scaling models are estimated to be applicable
for o(0) &cr~ or

~

n/n, —1
~

&1% so values of
n /n, of this precision are required to test the critical
behavior. Empirically, we have argued that critical
behavior appears to occur over a wider range, i.e.,
o(0) & otR, where o&R is the Ioffe-Regel conductivity
at which kFl-2. For Si:P, 0.&R-10o.~ and at that
point n/n, -2. For n/n, —1 y 3%, we can deter-
mine n accurately enough to analyze the data from
our series of samples quantitatively. In the Appen-
dix we show that the calculated Boltzmann conduc-
tivity differs substantially from our measured cr(0)
over the large region up to n/n, -2. Using the
range 1.03&n/n, &2, we find that the data fit the
form of Eq. (4) with oo=260+30 (Qcm) ' and
v=0.55+0.1.

The relatively slow variation of p(293 K) with n,
and uncertainties in sample size, combine to give an
absolute error of +5% in n. We have determined
relative concentrations ri/n, to about 1% accuracy
using the resistivity ratios, which vary rapidly near
n, . In addition to uncertainties in average donor
concentration, there is the question of sample inho-
mogeneity on a scale much larger than g. Our con-
tactless and movable probe measurements have
shown variations in n of only -0.04% over a scale
of —1 mm. The reproducibility and consistency
that we have observed in our stress studies shows
that either the nonrandom inhomogeneities on the
scale between 1 mm and g are insignificant or that
they enter in a surprisingly similar way in different
samples.

The filled circles for cr(0) shown in Fig. 2 are
from samples with different values of n. An alter-
nate approach to studying the transition is to start
with a single barely localized sample and change n,
by applying uniaxial stress. Application of stress
mixes extended excited state wave functions with the

ground state thereby increasing az. This reduces n,
as shown by Eq. (1). Such stress tuning through the
transition has recently been reported and the open
circles in Fig. 2 are from the stress results.

In that paper we show that over a narrow range,
n, is nearly linear with the stress s. In Fig. 3 we
plot o.(s) at three temperatures to illustrate the im-
portance of measurements in the millikelvin regime.
Considering Eq. (4), we have extrapolated ' our re-
sults to T=0 K and have tested for critical behavior
of the form

o.(0) 0: (s —s, )',
where s, is a critical value of stress which depends
on n. Analyzing the data in this fashion has yielded
reproducible values of o(0) for n/n, —1 as low as
10 . The results for one sample are shown in Fig.
4 versus both uniaxial stress and corresponding den-
sity n/n, —1. For comparison, we plot the predic-
tions of Mott and the scaling theory of localization
as dashed lines on the same scale. We find that the
critical behavior of 0(0) within this region is the
same as that in the precursive region, with
v=0.48+0.07. This smooth variation from critical
to precursive regions suggests that these two regions
are indistinguishable or that the critical region is as
large as n/n, —1 & 1 (see also recent theoretical ar-

25

20

b
IO

S (kbar)

FIG. 3. Conductivity 0. as a function of uniaxial stress
s at three temperatures for a sample tuned through the
metal-insulator transition. Low T is essential for deter-
mining the true T =0 K behavior.
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a different value of g (-2), consistent with strong
interactions within his formalism.

The open circles for g in Fig. 2 were obtained us-

ing a Kramers-Kronig transformation of infrared-
absorption spectra. The results are in agreement
with the far-infrared interference measurements of
Townsend and the low-frequency capacitance mea-
surements of Castner et al. ' The latter have em-

phasized the divergent behavior of 7 near n, . More
recent data (filled circles) obtained using a
transmission cavity at 400 MHz and temperatures
down to 20 mK agree with the infrared results.

In Fig. 5 we summarize our results on the metal-
insulator transition by plotting both o(0) and X
against density on a logarithmic scale. The data for
o(0) fits the form of Eq. (4) with oo=260 (Oem)
and v=0.48+0.07 while 7 fits the form

0.2—
4~1=Xo(n, /n —1) (6)

~ ~

7
STRESS (kbar)

FIG. 4. Extrapolated T =0 K values of 0 normalized

to Mott s minimum metallic conductivity OM as a func-

tion of uniaxial stress s (bottom scale) and reduced phos-

phorus density n/n, —1 (top scale). The solid line gives

v= —in Eq. (4), the dashed lines are Mott's prediction of
a discontinuity at OM and that of the scaling theory of lo-

calization multiplied by a factor of 100.

with go ——7.0 and g= l. 15+0.15.
There are several important features concerning

Fig. 5. First, if o(0) and P are analyzed in terms of
a divergent length, this length behaves critically
with the same form as n, is approached from either

1

above or below. Next, the value of v-g/2- —,

differs from that expected from scaling theory' (and

from results on compensated semiconductors and

on a-Sii „Nb„) (v=1), while the prefactor oo is

roughly 13 times greater than the predicted value

[oM -=20 (0 cm) ']. Finally, we see that there is no

guments ). The tail for s &6.5 kbar in Fig. 4 is ex-

ponential in s but does not reproduce in magnitude.
A similar critical approach to the transition is ex-

hibited by the zero-frequency dielectric constant on
the insulating side, as shown in Fig. 2. By a simple
dimensional argument we obtain X cc ngL, where gL
is the localization length. Within a metallic region
at wave vector q, P=~, /q, where ~, ' is the
Thomas-Fermi screening length. As q~0 for local-
ized states, 1/q must be cutoff by gL, giving
X(q~0) =X(0)=a', gi. . Gotze finds X(0) ~ 1/o at
equal values of

I

n n,
I

so —that g would be 2v.
Imry also finds X ~n/L within a scaling theory
approach. Using a scaling theory and quantum dif-
fusion, McMillian' finds X ~ gI" ", where

1~q g3. Within McMillian s formulation, we ob-
tain g=3.3+0.5 implying that the system is near
the limit of no Coulomb interactions where g=3.
However, a variety of measurements. on doped semi-
conductors (see below) suggests that these interac-
tions are strong. McMillan has interpreted the tun-

neling results in metallic granular Al as indicating

IO

b
2

0
b

0.2

X
O

O. I

0.05

0.5

0.2
IO IO

n/nc-
IO

FIG. 5. Data of Fig. 2 plotted on a logarithmic scale to
emphasize the symmetry of Eqs. (4) and (6), with

v=g/2=0. 5. The region over which a critical form can

be fitted, n /n, —1 & 1, is considerably larger than the con-

ventional expectation of n /n, —1 (0.01.
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indication of a discontinuous drop in o.(0) close to
the transition. We interpret these results as indicat-
ing that the existence of Mott's minimum metallic
conductivity for this system is unlikely. The numer-
ical disagreement of v and oc may be an indication
of Coulomb interaction effects. Recent measure-
ments on Ge:Sb (Ref. 26) show that samples with

1

low compensation have v= —, and op&0.~. As
compensation is increased the values of v and O.

p ap-
proach the localization predictions. One interpreta-
tion of these results is that, by increasing the com-
pensation but keeping n constant, the effects of lo-
calization are increased while the density of donor
electrons, hence interaction effects, remain constant.
We also note that a contribution from interaction ef-
fects are required to explain the temperature and
magnetic field dependence of 0. for both Si:P and
Ge:Sb, as described below.

220 0.2 0, 4 0.6
I

0.8
I

I.O

219
I

E

B. Temperature dependence of the conductivity

We have found that at low temperature (T & 1 K)
cr( T) for our metallic samples can be fit to the form

o(T) =o(0)+mT~.

Figure 6 shows both linear and logarithmic plots of
o ( T) vs T for a sample with o.(0)= 1 lo ~. The
cusplike approach to T=O indicates p&1; this

shape is characteristic of our samples with
cr(0)ycrM .Averaged over our metallic samples
we find P- —, for T & 1 K. The solid lines in Fig. 6
are for p= —, with experimentally determined values

of o.(0) and m. The cusplike behavior at low T is
quite different from that of crystalline metals for
which p& 1. (Although the P donors occupy sites in
the crystalline Si lattice, their arrangement provides
an apparently random potential. ' )

For disordered metals there are two approaches to
calculate the first-order temperature correction to
o(0) [Eq. (7)j. The first model is the zero-T scaling
theory of localization extended to include inelastic
scattering but neglecting Coulomb interactions. '"
This yields a positive correction factor with p deter-
mined by the dominant inelastic scattering mechan-
ism. Because the sign of m in this model is opposite
to that observed, this contribution must be extreme-

ly small. Thomas et al. have interpreted similar
results in Ge:Sb as indicating a possible contribution
of this localization type with electron-electron in-
elastic scattering.

The second approach, due originally to Altshuler
and Aronov and later to others' ' predicts an ex-

1

ponent p= —, and a magnitude m which can change
sign with donor density. They consider Coulomb in-
teractions with electron-electron scattering in the
presence of the random impurities. These calcula-
tions are valid for kFl »1.

The following free-electron formulas ' are used
in the calculation of o ( T): Fermi wave vector

1/3

k.= "," (g)
U

where U'=6 for Si and U'=4 for Ge. The Fermi en-

218
b

ergy

eF ——A kF/2m

2I7

I

O

b
b IO-&

IO-I

TF ——eF/k~ .

The mean free path

(10)

3~ A o.(0) 3m*D
4 e2 kF2 AkF

where D is the diffusion constant. The screening
wave vector

where the effective mass m*=0.26m, for Si and
0. 11m, for Ge. The Fermi temperature

FIG. 6. (a) o. vs T for a sample with n =7.0 and
o(0)=11o.~. o.(0) is determined by extrapolating to
T =0. The solid ine is calculated from Eq. (7) with P= —,.
(b) Log plot of cr/o. (0)—1 vs T. Solid line has a slope of

1

2'

1/2
12mnm*e

ePR kF
(12)

where the dielectric constant ep ——11.4 for Si and
15.36 for Ge. In Si only two valleys are effective in
the screening process, ' so kF that enters' E has
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v'=2.
The theoretical conductivity is given by

o(T)=o(0)+a( —, AF—)v T, (13)

where A, =2 for a single, isotropic valley, but because
of anisotropy factors, ' k=4 for Si:P and A, =12 for
Ge:Sb. For both cases

m*D
Q= TF

—1/2

The dimensionless term F is a function of
X:(2kF/—E) and results from the Hartree interac-
tion. It is given by

F= in[( 1+X)/X], (14)

and ranges from 0 to 1. Bhatt and Lee' show that
Si:P can be described by moderate anisotropy and
Ge:Sb by large anisotropy, with negligible interval-
ley scattering in both, so that

(n /1018)1/3 2.3 for Ge

0.5 for Si.
(15)

Far above the transition X is large and F~O. This
produces a positive value for m in some systems.
Closer to the transition, where most of our data is
taken, X(1 and A,F& —,, yielding negative values of
m. Near n„K may become small and F~0 again,
explaining qualitatively the observed sign change in
m.

Figure 7 shows m plotted against n for five sam-
ples, where m is found from a least-squares fit to
Eq. (7) with P= —, . Below n=6, kzl is no longer

significantly greater than 1, the condition required
for the derivation of Eq. (13). Nonetheless, this ex-
pression still describes qualitatively the behavior of
m. The rapid increase in the value of m as n ~n, is
consistent with Eq. (13). Using Eq. (11) we see that
D ceo(0) which makes a proportional to o(0)
As n~n, the precipitous drop in cr(0) causes the
magnitude of e to increase rapidly. The solid line in
Fig. 7 is calculated from Eq. (13) using the mea-
sured values of cr(0) The lin. e is given by the
theory' and fits the data without adjustable param-
eters.

A similar negative T'~ correction to cr(0) has
been found by Thomas et a/. for Ge:Sb. Again the
sign of the temperature correction becomes positive
for n just above n, =1.55X10' cm . Unlike Si:P,
the Ge:Sb system has a very restricted range of T
( (170 mK) for which Eq. (5) provides a good fit.
This small-T range may be due to the smaller
characteristic electronic and lattice energies for Ge
compared to Si. Adding a positive term proportion-
al to T to Eq. (7) extends the applicable temperature

nc--

!

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

8 IO

n (l0~8cm-~)

14

FIG. 7. Factor m from Eq. (7), determined via a least-
squares fit with P= —,, plotted for several samples. m be-

comes large and negative as n, is approached per Eq. (13).
Very close to n, screening breaks down causing m to
change sign (the dashed line is a guide to the eye). The
solid line is calculated from Eq. (13) multiplied by 6.7.

C. Magnetic field dependence of the conductivity

We have seen that there is a temperature correc-
tion for o.(0) which is positive for the localization

range to -0.5 K. The positive T term is based on
the scaling theory of localization' where the inelas-
tic scattering rate is dominated by electron-electron
scattering.

As with the Si:P case, the magnitude of m for
Ge:Sb dramatically increases as n —+n„ in qualita-
tive agreement with Eq. (11). However, at a given
value of n the experimental value of m is in good
agreement with the theoretical value, if fewer valleys
than v are included in the screening. ' The observed
temperature correction to cr(0) is larger for Ge:Sb
than for Si:P, as predicted by Eq. (12) with anisotro-

py taken into account. '
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model' and of either sign for the Coulomb interac-
tion model. "' Application of a magnetic field H
gives H'~ corrections to a(0) which are positive for
the localization model' and negative (positive mag-
netoresistance) for the Coulomb interaction model. '

Magnetic field studies should, therefore, give impor-
tant clues to the magnitudes of these competing ef-
fects.

Lee and Ramakrishnan have shown" that for the
interaction model in the limit of m, D/A &~1 a posi-
tive magnetoresistance is produced due to the spin
splitting of electrons with opposite spin. The energy
splitting is of the usual form, gp&H.

In the presence of a magnetic field H, Eq. (13) be-
comes'

—0.918p(0,0)
p(0, 0)

+ 0.77op(0, 0}F RPa
K

' 1/2

scattering time. Estimates of ~;„ for our Si:P sam-
ples indicate that H, is small compared to the fields
used so that Eq. (19) applies.

In general, both the positive and negative magne-
toresistance contributions from Eq. (18) and (19)
should be present. If we assume that the separate
contributions are additive, the overall magnetoresis-
tance at large fields becomes

0(H, T)='o(0, 0)+a( —, F)V T—

—aFv TG(h)/G(0),
where

—up(0, 0)( —, F)v T-

—:(A(+A, )V H BV T .— (20)

G(h)= f dW
BR'

and h =gp~H/kT. The resistivity p(H, T)
=1/o(H, T) is easily found from Eq. (16). For
small corrections we get

p(H, T)= p(0, 0)—up (0,0)( —, F)VT-
+ap (0,0)FV TG(h)/G(0) .

Since A, is proportional to [p(0,0)] ~ we expect it
to dominate near the transition.

The important features of Eq. (20) are demon-
strated by Fig. 8, which shows p(H, T) plotted
against V H at four temperatures for a sample with
o(0)=2oM. The solid lines are best fits to the data
and show the v H dependence above 300 Oe. The
slopes for the four temperatures are nearly the same,

2.45

At the low temperature of these experiments h ~~1
for 0 of only a few hundred oersted. In this limit
G (h)/G (0)=0.77v h . In the low-field limit,
& «1, G(h)/G(0)=1+0(h ). Equation (15) shows
us that the magnetoresistance is always positive and
in the high-field limit we get

p(H, T)= p(0, 0}—ap (0,0)( —, F)v T—
+0.77ap (0,0)F(gpzlk)' v H . (18)

OJ

O

2.55—

2.35

2.50—
2.25

0 O. I 0.2 0.5
T i/2(K I/2)

The last term in Eq. (18) gives a positive magne-
toresistance proportional to v H and independent of
T. The V T temperature dependence in the second
term is always negative since I' & 1.

Using a localization model, Kawabata' has
predicted a negative magnetoresistance contribution
given by

/

P
T=32 mK rrr«-—52

2.40—
&~—75
t~-95

I

0.8
I

l.6 2.4
= —0 918 (0 0)H'

p(0, 0) p(0, 0)

for H &)0, (19)

where p(0, 0) is given in Qcm and H in kOe. Here
4eH, /Pic =(Dr;„) ', where r;„ is the inelastic

Hl/2t k0 l/2)

FIG. 8. p vs H' ' at four temperatures for a sample
with o.(0)=2o.~. At high fields p is proportional to H'
with a slope independent of T, in agreement with Eq. (18).
The intercepts of the solid lines, as well as p measured in
zero field, are proportional to T', as shown in the inset.
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in agreement with theory. The extensions of these
straight lines to ~H ~0 provide values of p which
should be linear in v T as shown by Eq. (20). This
plot is shown in the inset to Fig. 8. At H =0 the
resistivity becomes

0.20

0.15

p(O, T)=p(0,0)—ap (0,0)( —, AF—)~T, (21)

and this ~T dependence is also shown in the inset,
where both curves are constrained to go through the
same value of p(0, 0). From the average of the
slopes of the solid lines in Fig. 8 we can obtain an
experimental value for A —=Hi+A, in Eq. (20). We
get A =0.044+0.004 koe —In. From the fit jn the
inset we get B =0.26+0.06 K ' . The theoretical
evaluations of A, and AI are uncertain for this sam-
ple both because of the unknown scattering rates
that enter F and because the sample has a dimen-
sionless diffusion constant m, D/%=0. 4, rather than
m, D/fi»1 as assumed theoretically. However, we
can make a less ambiguous comparison of theory
and experiment by assuming Eq. (19) for Ai and
considering the ratio B/A„ in which aF
cancels. Theoretically B/A, =1.3(k/gpii)'i =3.5
(kOe/K)' for g =2, independent of other sample
parameters. Combining A,„~ and Eq. (19) for Ai,
we find B/A, =0.26/(0. 044+0.023)=4+1(kOe/
K)'i, in agreement with theory.

Similar qualitative features are found in the mag-
netoresistance data of Ootuka et a/. for Ge:Sb.
Their sample has a donor concentration of n =0.33,
well above n, =0.155. We have replotted their data
for 10, 20, 30, and 40 mK in Fig. 9. To separate the
data for the four temperatures we have plotted

[p(H, T) p(0, T)) /p(0, —T)=b p/p,

against V H rather than p(H, T) vs v H The solid.
lines again show that the magnetoresistance is pro-
portional to v H with a slope independent of tem-

perature. The inset of Fig. 9 shows that the inter-

cepts found by extending the straight line to
v H ~0 are linear in ~T, as are the measured
values for H =0. Analyzing this data in the same
manner as the Si:P data of Fig. 8 we obtain
B/A, =0.8 (kOe/K)' as compared to the theoreti-
cal value of 3.5 (kOe/K) 'i .

In principle, a better test of the theory embodied
in Eq. (20) requires samples with miD/fi»1. Fig-
ure 10 shows data for our most metallic Si:P sample,
having cr(0) = 1 loM and miD/A-2 For this dono.r
concentration 1Ai

1

and A, are nearly equal, as indi-

cated by the very small values of hp/p(0, 0). For
low fields the magnetoresistance is negative. For
H & 5 koe the Coulomb interaction term dominates
and we find positive magnetoresistance proportional
to H' as shown in Fig. 10. In zero field this sam-

0.10

0.05
cj

0.0(

—0.05

0.0 10 2 0 30
H

I/2
( g0 I /2)

4.0 5.0

FIG. 9. bp/p vs H' at 10, 20, 30, and 40 mK for a
Ge:Sb sample from Ref. 28. At high fields Ap/p is pro-
portional to H' . Extrapolations of the linear region to
H' —+0 yield values of Ap/p which are proportional to
T', as shown in the inset.

220
2.4

I

HI /2
( k0e I/2

)

2.8
I

3.2

219

b 218

217

I.20 0.4 0,8

T I /2( K I /2)

FIG. 10. o. vs T' and H', the predictions of the
Coulomb interactions model, for a sample with
0.(0)=11'~. The slopes of these curves yield values

which can be used to calculate a and F from Eqs. (18) and
(19).

pie also exhibits a negative temperature correction to
o(0) proportional to T' as previously discussed.
This T' dependence is also shown in Fig. 10. If
we assume that the localization factor AI given by
Eq. (19) is exact, we can combine the experimental
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values of A and m (slopes of the plots in Fig. 10) to
evalute F and n separately. We find F=0.80 and
a = 11 (0 cm K'~

)
' compared to the theoretical

values of F =0.84 and a=1.2 (Qcm K'~ ) '. This
discrepancy in a is also evident in the temperature
correction to o(0) for the series of metallic samples
shown in Fig. 7 where we find that the experimental
values of m exceed the theoretical values by a factor
of -7 if corrections for the valley participation in
the screening are not included. '

Using the experimental values of a and F, which
were derived from the slopes of the graphs in Fig.
10, we have calculated the amplitude of hp/p.
Curve I in Fig. 11 is calculated using these experi-
mental values and Eq. (17). Curve II is the localiza-
tion prediction, Eq. (19), and curve III is the sum of
I and II. We see that curve III is reasonably close to
the experimental values, considering that it is found
by taking the sum of two, large and nearly equal but
opposite, effects. In other words, relatively small
changes in the values of curves I and/or II will have
a large influence on curve III, since we are in the re-
gime where IXI I

-2, . This makes precise tests of
the theories difficult. Unfortunately, this is also the
conductivity region (mID/fi»1) where we expect
the theories to apply.

0.020

0.016

A compensated sample of n-type Si:As:B,
K-20%, with net carrier density 7.5)(10" cm
determined from Hall data at low T, still shows the
large influence of Coulomb effects. Although the
compensation increases the ratio of scattering
centers to effective charge carriers, the magne-
toresistance remains +H' as shown in Fig. 12 for
T =50 mK and fields up to 50 kOe. This sample
does, however, provide a vivid demonstration of the
effect of large H on cr(T). If F& —,, then o(T)
changes sign because of the difference between the
( —, 2F)T—'~ and ( —, F)T'—~ terms in Eqs. (13) and

(16), respectively. We plot ho/u vs T'~ for both
H =0 and H =50 kOe in Fig. 13 and note the sim-
ple physical meaning of complicated equations.

Magnetoresistance measurements of doped
semiconductors at higher T show numerous in-
stances of negative Ap at low field and positive Ap
at high field, similar to what we have discussed here.
The mechanisms described above may be responsible
for some of these cases.

Very close to n, the interaction term should dom-
inate the localization term and we should find posi-
tive Ap even at small fields. However, one should be
careful in applying either Eq. (18) or Eq. (19) for
samples very close to the transition, Both calcula-
tions are done in the weak scattering limit,
mID/fi»1, and near the transition this condition is
not satisfied. We have previously reported a large
positive magnetoresistance for a sample with
0(0,0)=0.16aM Alth. ough hp/p(0, 0) is propor-
tional to v H at high fields the precise shape of the
Ap/p(0, 0) vs H curve does not agree with Eq. (18).

O, OI 2

0.008
O.I2—

~ 0,004
cj

12 0.08—

0.004

0.008
0.04—

0.012

FIG. 11. Interactions theory, Eq. (18), gives curve I
while localization calculations, Eq. (19), give curve II.
The sum is shown in curve III, producing negative and
then positive magnetoresistance as a function of 0 in

qualitative agreement with the data.

4

HI/2( ~0
I /2

)

FIG. 12. Magnetoresistance of compensated Si:As:8
(E-20%%uo) vs 0' up to 50 kOe. The interaction effect
of +0' ' at high field still dominates.
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FIG. 14. o/o. M vs T at three current levels for a sam-

ple very close to n, . The dotted line is the extrapolation
to zero electric field. Extrapolation to both zero E and T
yields 0.(0)/0.~——0.07, so that n is too close to n, to give a
reliable value of n /n, —1 within our uncertainty in deter-
mining n.

FIG. 13. Switch in sign of T' dependence of cr with

application of large magnetic field H [compare Eqs. (13)
and (16)].

D. Electric field effects

For samples with donor concentrations just below

n, we have previously shown that the electric field
dependence of the dc resistivity suggests that the
electronic transport proceeds by hopping. The tem-
perature and electric field dependence of the resis-
tivity for samples with barely localized electrons
takes the form

p(T,E) ~ p(T)exp(eEL/k~T),

where E is the electric field and L is a characteristic
length. A resistivity which varies exponentially with
E/T is characteristic of hopping' '; however, the
behavior of the p(T) term does not unequivocally
support either fixed range hopping or variable range
hopping as the dominant mechanism. For transport
dominated by fixed range hopping we expect the
form lnp(T) cc 1/T, while for phonon-activated vari-
able range hopping the form is' ln(p/pc)
=(T/To) '~. Neither form fits over an extended
temperature range.

For samples with donor concentrations above n,
there is also an electric field which is not related to
simple lattice heating. Figure 14 shows o./o.~ plot-
ted against T for three different current levels. The
lowest current level of 10 ampere corresponds to a
power input of only -10 ' W. It is evident that

over the entire T range in Fig. 14 the value of o. is
tending to a nonzero saturation value as the electric
field is reduced. The dotted line represents the
E—+0 extrapolated value of o(T), based on the data.
Figure 15 shows one possible method of extrapolat-
ing the finite field data. We have plotted the mea-
sured values of o/o~ at finite T and E as a function
of E'~ for T values of 3, 25, and 41 mK. We see
that in this low-field limit o is consistent with the
form E'/ . At higher values of E the effect of elec-
tronic heating is masked by lattice heating. Using
the values of o. extrapolated to zero field, we then
plot o. against T. This sample is very close to n, and
has a positive T correction to cr(0). Extrapolating to
zero E and zero T we find cr/crM ——0.07 for this
sample, as indicated by the arrow in Fig. 15.

The effect of E is reduced for both higher tem-
peratures and higher donor concentrations. Figure
16 shows o./o.~ plotted against E' for two sam-
ples above o.~. For the 2oM sample there is a mod-
est electric field effect (note the expanded vertical
scale) which is largest at low T. This sample has a
temperature correction to cr(0) given by Eq. (7) with
P- —, and positive m. The 1lo~ sample has a
negligible electric field effect and has P- —, with

negative m.

E. Metallic samples near the transition

We have already seen that the effects on o. of tem-
perature, electric field, and magnetic field are
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FIG. 18. Experimental values of P vs log[o(0)/ol].
Above o (0)/o ~ —1 we find P-—,. Closer to the transi-

tion p is —2. Stress results (Ref. 24) also find p-2 for
0(0)/oM &0.2.

In Fig. 18 we plot the experimental values of P
against logo (0)/o I .We see that P- —, for
rr(0)/oM &1 and P-2 for cr(0)/oM (0.2, a result
also seen in stress-tuned samples. It is not clear if
this effect is related to finite frequency, Shottky bar-
riers, surface conduction, or a nonrandom impurity
distribution. We are not aware, however, of any
theory which predicts a bulk conductivity given by
o(T)=o(0)+mT near the transition.

Mooij has shown that as a general rule metallic
alloys which are highly disordered, and hence have
large resistivity, exhibit a small (often negative) tem-
perature coefficient of resistivity (TCR). Alloys
with resistivities less than —150 pQ cm tend to have
positive TCR, while those with greater resistivities
have negative TCR. This upper limit of resistivity
is the order of 1/o.l for these systems, which is ap-
proximately a statement that krl &1. Jonson and
Girvin have proposed that the Mooij correlation
between TCR and p is the result of phonon-assisted
hopping of electrons from one site to another. They
argue that this occurs even before the onset of An-
derson localization and limits the value of p for
these high resistivity alloys. In Fig. 19 we have
made a Mooij-type plot of several samples at dif-
ferent temperatures. On the ordinate we plot
(T'/ /p)dp/dT rather than (1/p)dp/dT so that the
plots at different temperatures are conveniently
spaced in the graph. We see that for relatively high
T the plots show the characteristics of phonon ef-
fects, a diminishing (and finally negative) TCR with
increasing )o. The plots of low T are quite different.
At T=0.04 K we see a large increase of TCR with

p. We have already interpreted this temperature
dependence of the resistivity as arising from
Coulomb interactions, rather than a phonon effect.

5K

0
0

N

0
I—
O 2

N 0
I-

0.4
I ~ 70K

0.8
I

l. 2
I

Since the number of phonons decrease as T it is not
surprising that phonon effects are minimal at 0.04
K and that the Mooij correlation breaks down.

In conclusion, we have measured the conductivity
of Si:P samples as a function of donor concentra-
tion, temperature, magnetic field, electric field, and
uniaxial stress. The dielectric constant was also
measured for various donor concentrations. We find
no evidence for a minimum metallic conductivity
near the metal-insulator transition. We also find
disagreement with the quantitative estimates of the
scaling theories of localization. The temperature
and magnetic field dependence of o as well as the
sharpness of the transitions of 0. and X when plotted
against n suggest that Coulomb interaction effects
are important in this disordered system.

Note added in proof For a refine. d analysis of the
conductivity very near n„see Ref. 51.
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negligible, the data deviate from a Mooij-type dependence

[linear region of (b)].
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APPENDIX

e (kpa')

2'* in[1+ I/y] —1/(1+y)

Here k~=(nn/2)' .is an average Fermi rnomen-

(A 1)

In order to quantitatively analyze our o.(0) results
for samples outside the -region where localization
theories are thought to be valid (n/n, —1&0.05),
we have calculated the conductivity for normal me-
tallic behavior. The normal zero-temperature con-
ductivity 0.

& of a Fermi gas of electrons at the same
density distributed in the six conduction-band val-

leys and scattered by the ionized impurities is shown
as the dashed line in Fig. 20. As can be seen, there
is a large "precursive" region extending up to
n In, -2 for which o(0) is suppressed. The calcula-
tion excludes intervalley and multiple scattering and
is done within the Born approximation using
Thomas-Fermi screening. Further, because of the
large mass anisotropy, it has been assumed that each
electron is effectively screened by electrons in only
two valleys —its own and the coaxial valley. This is
because differently oriented ellipsoidal Fermi seas
have very different Fermi momenta (which deter-
mines the wave-vector dependent dielectric constant
and hence the screening) in different directions.
Though strictly time only for infinite mass anisotro-

py, the greater weight given to large momentum
transfer in a resistivity calculation makes the ap-
proximation reasonable for finite, large anisotropy
as well. The result, which can be obtained by gen-
eralizing the calculation for the single-valley case,
1S

b zo—
O zX

10 —y
/ ~

/

0
18

n(IO cm )

FIG. 20. Plot of o. vs n for Si:P. The dashed line is
calculated using the Born approximation. There are signi-
ficant deviations of the data from normal metallic con-
duction even far above the transition.

turn, a*=a%/m*e' is the Bohr radius for an aver-
aged effective mass m', e is the Si dielectric con-
stant, and y=v/m. kza', where U is the number of
valleys screening each electron (u =2 for Si). Except
for the crucial dependence of screening effect of
mass anisotropy has been approximated by ap-
propriately averaged quantities. Such a calculation
is expected to be valid for n &gn„but below where
intervalley and multiple scattering becomes impor-
tant, to a level -20—30%.
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