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Zine-blende —diamond order-disorder transition in metastable
crystalline (GaAs) t „Ge2„alloys
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A model of a zinc-blende —diamond order-disorder transition is proposed and applied to
(GaAs) l „Ge2„substitutional crystalline alloys. In disordered Ge-rich alloys, the stable

phase is one in which either Ga or As atoms can occupy nominal cation and nominal anion

sites with approximately equal probabilities; in ordered GaAs-rich material, Ga (As) atoms
preferentially occupy nominal cation (anion) sites. A three-component spin Hamiltonian,
mean-field theory, and empirical tight-binding theory are all used in conjunction to predict
equilibrium phase diagrams and the dependence on alloy composition x of the direct band-

gap energy Eo(x). The theory accounts for the observed V-shaped dependence of Eo(x) in

(GaAs)l „Ge2„andfor several qualitative facts concerning the growth of these interesting
metastable crystalline alloys.

I. INTRODUCTION

The possibility of tailoring band gaps and other
properties of semiconductors for specific devices has
motivated experimental attempts to fabricate new
semiconductor alloys. Greene et al. have now suc-
cessfully grown two differing (100)-oriented
metastable alloys of group-IV elements with
III-V compounds, ' (GaAs) I „Ge2„, and

(GaSb) I „Gez„for all compositions x. They
found for (GaAs)i „Ge2, (Ref. 4) that the direct
gap Eo as a function of x does not exhibit conven-
tional bowing, that is, is not parabolic in shape. As
seen in Fig. 1, their data for the band gap of
(GaAs) I ~Gez„are better represented by two
straight lines that intersect with a V shape, namely
with a discontinuous slope at a special composition
x, ( 0.3). Moreover, the absorption coefficient
changes abruptly near x =x„with the sharp edge
for GaAs-rich x &x, becoming suddenly "softer"
for x &x, . It was proposed that there is a phase
transition for x =x, : The composition ranges
x &x, and x & x, would then be different phases of
the alloy, each having different electronic properties.

Here we model the proposed order-disorder phase
transition, and discuss its consequences for the elec-
tronic structure of the alloy (GaAs)i „Gez„.We
suggest that there are. both zinc-blende (as in GaAs)
and diamond (Ge) phases of the alloy that are
separated by a transition at x =x, . Both zinc-
blende and diamond lattices are face-centered-cubic
lattices with a two-atom basis. However, the zinc-

blende lattice is of lower symmetry than the dia-
mond lattice due to the existence of distinct anion
and cation sites; the diamond lattice is a nominal
zince-blende structure whose nominal anions and
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FIG. 1. Experimental data for the direct gap in

(GaAs) l „Ge2„alloyscompared with mean-field theory

(solid curve) and the conventional virtual-crystal approxi-
mation (Refs. 18 and 19) (dashed curve) (after Ref. 4).
The mean-field theory postulates a zinc-blende —diamond

order-disorder phase transition at x, =0.3. This theory

allows for the existence of many antisite defects even for
x =0, lowering the band gap Eo. Furthermore, note that

both theories use 4-K empirical tight-binding parameters,

while experimental data are taken at room temperature,

where the band gaps are smaller.
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TABLE I. For x &x„average occupancies of the nom-

inal "Ga" and "As" sublattices by atoms Ga, As, and Ge
in terms of composition x and the order parameter M.

(a) GaAs Ordered &Po. &

&PA. &

&Po. &

44G ccAss s

(1—x —M)/2
(1—x +M)/2

(b) Ge Disordered

(c) GaAs- Rich Ordered

(d) Ge- Rich Disordered

~ -Ga Q-&s -Ge

FIG. 2. Schematic model of the phases of
(GaAs)~ „Ge2„alloys: (a) GaAs (ordered zinc-blende

structure), (b) Ge (disordered) diamond structure, (c)
GaAs-rich ordered zinc-blende structure of the alloy, and
(d) Ge-rich disordered diamond structure of the alloy,
after Ref. 4. Note that the zinc-blende lattice [(a) and (c)]
is an ordered structure in that virtually all Ga atoms (dark
circles) and As atoms (empty circles) are found on their
correct nominal sites ("Ga" and "As" rows, respectively),
while the presence of as many "antisite" as "on-site" de-

fects in (d) indicates a disordered diamond lattice.

nominal cations are both the same (e.g., Ge). This
nominal zinc-blende lattice may be occupied in this
alloy in either of two different ways (see Fig. 2).

(1) In the GaAs-rich ordered zinc-blende phase
[Fig. 2(c)], virtually all Ga atoms (dark circles) occu-

py nominal Ga sites ("Ga" rows) and virtually all
As atoms (empty circles) occupy nominal As sites
("As" rows), with Ge atoms (shaded circles)
dispersed randomly on either site.

(2) In the disordered diamond phase stable for
Ge-rich material [Fig. 2(d)], there are as many "an-
tisite" as "on-site" atoms in the nominal zinc-blende
lattice, namely Ga atoms (dark circles) on nominal-
As sites ("As" rows) and As atoms (empty circles)

on nominal-Ga sites ("Ga" rows).
The zinc-blende structures of Figs. 2(a) and 2(c)

are referred to as ordered since, on the average, Ga
and As atoms are found on the correct nominal sub-
lattices. The diamond structure of Figs. 2(b) and
2(d) will similarly be referred to as disordered: On
the average, there is not a distinction between "Ga"
and "As" rows.

To treat the order-disorder transition between
these two types of phases, we first define the order
parameter of the transition in terms of the average
sublattice occupancies of each type of atom. For ex-
ample, we define &PG, ) a, .(&PA, )«a,. ) to be the
average occupancy of Ga (As) atoms on the nominal
Ga sublattice ("Ga") [the theory is applicable to
any zinc-blende —to-diamond alloy; not just
(GaAs)i „Ge2„].Then the order parameter M is, to
first approximation, defined

M=(P, )-, „—&P, )..A.. .

The order parameter can assume any values from
x —1 to 1 —x. The physical interpretation of the or-
der parameter M can be seen as follows: If all the
Ga atoms occupy nominal Ga sites, then we have
M=1 —x; if the Ga atoms are distributed evenly
over nominal Ga and nominal As sites, then we have
M=O; if all Ga atoms are on the nominal As site,
then the order parameter is M =x —1. Thus M has
an amplitude 1 —x, and is up (+ ) or down ( —) if
the Ga is ordered (either almost all on "Ga" sites or
on "As" sites), but zero if the Ge is randomly distri-
buted. In this model, we also have

M=(PA, )-„-—&PA )..a., (1.2)

If we have
~

M
~
+I—x, then some anions and ca-

tions are found on nominally "wrong" sublattice
sites. This fact can be used to construct a table of
average occupancies for x &x„TableI. For x &x„
the disordered Ge-rich diamond-lattice phase, there
is not a distinction between anion and cation sites
and we have M=O. The average occupancies of this
phase are those given by Table I, but with M=O: all
atoms in alloys (GaAs)i „Gez„occupylattice sites
with probabilities determined simply by the atoms'
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FIG. 3. For K =0 [see Eq. (2.6b)], the calculated phase
diagram of a (GaAs)& „Ge2„alloyas a function of tem-

perature T and composition x.

concentrations. Note that for x=0 and M = + 1

(Table I), we recover the expected zinc-blende lattice
structure of GaAs, and similarly, for x = 1 (M=0),
we recover the diamond-lattice structure of Ge. The
order parameter M is a quantity that is nonzero only
in the ordered (zinc-blende) phase, x & x, .

A difficulty in studying the phase transitions of
the crystalline (GaAs) i „Gez, alloys grown by
Greene et a/. is that they are metastable, that is,
grown under nonequilibrium conditions. '

Furthermore, the zinc-blende —diamond order-
disorder transition discussed here does not seem to
occur for most (III-V) i „IV2„alloysgrown at
equilibrium, a fact that must be explained. Rather,
for low temperatures, the equilibrium phase diagram
o (GaAs)i „Gez, shows a miscibility gap (that is,
the alloy phase separates into GaAs-rich and Ge-
rich materials), and, for high temperatures, the alloy
melts. " The growth of the metastable alloys (for all
compositions x) is facilitated by secondary Ar ion
bombardment, which apparently both mixes (ran-
domly) all individual atoms and sputters away
clumps of GaAs-rich or Ge-rich materials. The ion
bombardment affects only the top four or so layers;
the lowest of these layers of the alloy is quenched as
additional layers grow above it. Once the metastable
alloy is formed, its lifetime is of the order of 10 y
at room temperature '; this is probably due to the
small self-diffusion constants characteristic of all
III-V materials. The growth conditions are thus
designed to inhibit phase separation.

In order to circumvent the problems posed by the
nonequilibrium nature of these alloys, we introduce
the notion of equilibrium time scales, arguing that

the possible phases of the metastable alloy must be
the same as those for an alloy grown at equilibrium,
However, in the metastable alloy, certain of these
phases are forbidden from forming by the growth
conditions. Any fluid alloy grown for a composi-
tion x in the miscibility gap will, as it cools, phase
separate; the zinc-blende-rich phase will simultane-
ously undergo an ordering transition. Phase separa-
tion, on a scale noticeable experimentally, can be in-
hibited if the crystal is quickly quenched in the
highly mixed (due to secondary ion bombardment)
state. This is because phase separation involves
movement of ions or atoms over lengths the size of
the domains seen experimentally (30 A) (Ref. 13)
and, for typical self-diffusion constants of As in
GaAs, ' takes on the order of a day at sample-
preparation temperatures (&900 K, the substrate
temperature). Thus phase separation does not occur
in these metastable materials, which are prepared in
less than a day. This argument also explains why
the zinc-blende —diamond order-disorder phase tran-
sition is less easily inhibited experimentally: The
question of an ordered versus disordered state can
be settled by simple interchanges of nearest-neighbor
atomic pairs on a scale of 3 A, and occurs on a time
scale of order minutes. ' Thus we shall execute a
calculation of the equilibrium phase diagram, but do
it in such a way that phase separation, which occurs
on a time scale of order hours, can be discarded.

These ideas can be formulated in terms of a typi-
cal equilibrium phase diagram (see Figs. 3 and 4) of
temperature T versus composition x. Derivation of
these phase diagrams for a particular Hamiltonian
(three-component spin model) and technique (mean-
field theory) will be discussed in the next section and
in Appendix A; here we concentrate on those quali-
tative features of the phase diagram which are gen-
eral. Since GaAs and Ge are immiscible, we assume
that energetics favor Ga atoms being adjacent to As
atoms and Ge adjacent to Ge, so the equilibrium
ground state at zero temperature is phase-separated
pure GaAs and Ge. As temperature is increased and
entropy becomes important, the stable phases are
GaAs with a small concentration of Ge and Ge with
a small concentration of GaAs. The solubility of
the minority species in the separated phases in-
creases with temperature until, at some temperature
T (assuming the material does not melt and the
zinc-blende —diamond structure is retained) the mis-
cibility gap goes to zero. Thus the phase diagram
must include a miscibility curve that increases from
zero at x=O to a maximum [the curve xM(T) in
Figs. 3 and 4, and xi(T) in Fig. 4] and then de-
creases to zero at x=1 [curves x2(T) and xc(T)].
[The miscibility gap is the length of a horizontal line
intersecting both segments of this curve, e.g.,
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FIG. 4. For K/J =4, the calculated phase diagram of
a (GaAs)

& „Ge2„alloyas a function of temperature T and
composition x. Both this phase diagram and that of Fig.
3 should be regarded as schematic, since the theory is a
mean-field theory and also does not allow for melting. If
this diagram were literally the phase diagram for
(GaAs)~ „Ge2„,then x,(T,ff)=0.3 for T =T,ff would fall
on the dashed line and hence be a metastable solution of
Eq. (2.11) (in contrast to Fig. 3).

xo(T) x~(T).] A—t very high temperatures (assum-
ing melting does not intervene) the completely
mixed and disordered phase must occur at all com-
positions x (even for pure GaAs); in this phase, Ga,
As, and Ge atoms randomly occupy all sites with
probabilities depending exclusively on their concen-
trations. As the temperature is lowered, first for
GaAs and then for alloys (GaAs)~i „pe~„,t»s
disordered high-temperature gas of atoms on lattice
points must order, with the Ga atoms preferentially
occupying Ga sites (surrounded by As) and the As
atoms occupying As sites. The curve x, (T) forms
the boundary between the ordered and disordered
phases. In pure Ge (x= 1), a zinc-blende —diamond
order-disorder transition is not possible because
there are neither distinct anions nor cations; hence,
we must have 0 &x, ( T=0) & l. In the present
model, which does not include percolation effects,
we have x, ( T =0)= 1. In general, the order-
disorder transition boundary of the phase diagram,
x, (T), will intersect the miscibility curve [x~(T),
xi(T), xq(T), and xo(T)] at a temperature T with
one of two possible topologies: in Fig. 4, the misci-
bility gap goes to zero at an ordinary critical point,
T =T,„„and,in Fig. 3, at a special point that is
(historically) labeled a tricritical point, T=T, . 's

The details of the phase diagram depend upon such
experimental parameters as the relative strengths of
the energies of interactions of Ga atoms with Ga,
As, and Ge atoms. Thus, there are (at least) turbo

types of nonmelting transitions that are important
for these alloys: phase-separation and order-
disorder. And, as shown in Fig. 4, there can be a
range of temperatures T3 & T & T,„., at which both
types of transitions can occur (for some x). [Note,
however, that the order-disorder transition has not
been seen experimentally for equilibrium (III-
V), „Vz„,presumably because the melting-
transition temperature is less than T3 or T, . ] Final-
ly, note that for low temperatures, T & T, (Fig. 3) or
T & T3 (Fig. 4), the phase-separation transition
"masks" the (dashed) order-disorder transition.
Thus, at a co~position x such that the alloy phase-
separates, the resulting GaAs-rich phase also orders
and the Ge-rich phase also disorders. The order-
disorder transition thus persists unobserved in the
equilibrium phase-separated material and continues
(shown by the dashed line) in the forbidden region of
the phase diagram. In the metastable alloy, we pro-
pose that it is the "unmasked" order-disorder phase
transition that is seen experimentally.

With a mean-field theory of the order-disorder
transition of metastable (GaAs)i „Ge2„alloys,we
can calculate the alloy's electronic properties.
Specifically, results for the order parameter are in-

put to an empirical tight-binding theory' and to a
generalized mean-field and virtual-crystal approxi-
mation in order to determine the alloy's band struc-
ture. The success of our theory is seen in Fig. 1,
where we compare our results for the direct gap Eo
as a function of x with experimental data. Further
results for the band gaps as functions of x are found
in Fig. 5 (mean-field theory) and compared with the
predictions of the virtual-crystal model' ' (Fig. 6).

This paper is organized as follows. A three-
component spin model for the alloy is introduced in
Sec. II, and a derivation of the order parameter M of
Eqs. (1.1) and (1.2) is discussed. Details of the cal-
culation of the phase diagram are found in Appen-
dix A. Discussion of the calculation of band struc-
ture is found in Sec. III and Appendix B. Con-
clusions are presented in Sec. IV.

II. THREE-COMPONENT SPIN MODEL
AND EQUILIBRIUM PHASE DIAGRAMS

Here we propose a three-component spin model
for the equilibrium phase transitions of
(GaAs)i „Ge2„.This model has two advantages.
First, it is simple —it contains the minimum number
of physical parameters necessary to obtain both
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FIG. 5. Conduction-band edges, as functions of x in

(GaAs) ~ „Ge2„,relative to the valence-band maximum, at
I'&, L ~, X~, and X3 points of the Brillouin zone. These
were calculated using the modified mean-field virtual-

crystal approximation, assuming that a zinc-
blende —diamond order-disorder phase transition occurs
for x, =0.3.

FIG. 6. Conduction-band edges, as functions of x in

(GaAs) ~ „Ge2„,relative to the valence-band maximum, at
I

&
L

& X& and X3 points of the Brillouin zone. These
were calculated using the conventional virtual-crystal ap-
proximation (Refs. 18 and 19).

order-disorder and phase-separation transitions.
Namely, we include as parameters only six nearest-
neighbor energies of interaction JJ (e,g., JG, G„
JG, G„etc.) and three chemical potentials po„pA„
and iuG, . We neglect for now all interactions of the
substrate with the crystal, we assume that there are
exactly as many Ga as As atoms, that there are not
vacancies, that atoms only occupy lattice sites, that
there are not structural phase transitions, and that
the crystal does not melt as the temperature is in-

creased. A second reason for studying a three-
cornponent spin model of the alloys is that similar

spin models have been extensively studied. A three-
component spin model was proposed originally for
the study of He- He mixtures; since then, three-

component spin models have been applied to binary
and ternary mixtures of fluids, ' and, more recently,
to the melting of a binary alloy.

The alloy (GaAs), „Ge2„is modeled as a lattice
gas. That is, an ideal zinc-blende lattice is divided
into nominal "Ga" and nominal "As" sites, and
each site is assumed to be singly occupied by a Ga,

I

Poa(Si) =Si(S; + 1)/2,

PG, (Si)=1—S;,2

PA, (S; ) =S;(S;—1)I2 .

(2.1)

This allows us to define simply a lattice-gas spin
Harniltonian H,

As, or Ge atom. The three components of a discrete
spin variable S are associated with each type of
atom: S =+1 (Ga), 0 (Ge), and —1 (As). Thus
GaAs is an "antiferromagnet, " having alternating
"up" (Ga) and "down" (As) spins at each site. The
role of the Ge in the metastable alloy, then, is to di-
lute the antiferromagnet with "spin-0" atoms. (The
present model thus differs from the Blume-Emery-
Griffiths model of He- He superfluid —normal-fluid
transitions, which employ "ferromagnetic" cou-

plings. )
Using spin S, projection operators such as PG, (S; )

are defined so that PG, (S; ) is either unity (if site i is
occupied by a Ga atom) or zero (unoccupied). These
operators are given by

JGa-Ga g Poa(Si }PGa(Sj }+JAs-As g PAs(Si }PAs(Sj} JGa-As g [PGa(Si }PAs(Sj }+ As(Si )PGa(Sj ))

—JG, G, g [PG, (S;)PG,(SJ )+PG.(S;)PG.(Sj)]—JAs Ge Q [PAs(Si }PGe(Sj)+PGe(Si )PAs(Sj) ~

lsJ l,J

JG G QPG (S,.}PG,(Sj ) jjoa QPG, (S; ) ——@As QPAs( i} j Ge +
l,J

(2.2}
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(where the sum i,j is taken over nearest-neighbor
pairs), a partition function Z,

Z =Trexp[ —H/(k~T)],

and a free energy F,

F = (kg—T)lnZ,

(2.3)

(2.4)

where kz is Boltzmann's constant. Note that the
Ga-Ga and the As-As interactions are taken to be
repulsive, but all others are attractive. Using defini-
tions (2.1), the spin Hamiltonian can be rewritten in
terms of the three-component spin (with a constant
term subtracted out):

H =Jg S;SJ Eg S—; SJ~+L g (S; SJ +S;SJ )

cally conjugate to the composition x, while h is con-
jugate to an order parameter Q that is nonzero only
if there are phase-separated materials such as GaGe
or GeAs [see definition (A8)]. Note that h is not an
ordering field. (Our model does not include the
staggered magnetic field, which is the ordering field
for antiferromagnetic models. ) The term L has an
effect like a magnetic field. Since L is made up of
differences of terms that are probably of the same
magnitude, we argue that L (to first approximation)
may be set to zero (and leave the effects of small
nonzero values of L to further refinements of this
theory).

Here we use a generalized definition of the order
parameter M of Ga and As atoms on sublattices
"Ga" and "As" (Ref. 8):

+h QS;+b, +S (2.5)

+ (FAS ~ "As" (FAs ) "G ")/2 (2.8)
where we have

J=(Jo, Ga+ JA, A, )/4+ Jo, A, /2,

(Jo.o.+—JA A. )/4-
+ Ga-As ~ JGa-Ge As-Ge+ JGe-Ge ~

(Joa-Ga JAs As )/4+ (Jo-a-Ge JAs-Ge )/2 i

(2.6a)

(2.6b)

(2.6c)

Calculation of the order parameter M proceeds as
follows. (Details and references will be found in
Appendix A.) First, we calculate the free energy F,
Eq. (2.4), in a mean-field approximation. This is
done variationally: a trial form for F is found and
minimized with respect to its parameters, producing
an equation of the Curie-Weiss form for M [see Eq.
(A 15)]:

Ii =z (JAs-Ge Joa-Ge ) +@As I Ga & (2.6d)
JzM i M= tanh
k T 1— (2.9)

Ge-Ge JAs-Ge Ga-Ge) PAs Poa+ Roe ' This equation is formally equivalent to that of the
Blume-Emery-Griffiths model, and is solved numer-
ically for M as a function of x and T (Fig. 7). The

and z is the lattice coordination number (4 for zinc
blende). We use the sign convention that all J's are
positive.

Note the meaning of the terms in the three-
component spin Hamiltonian, Eq. (2.5). Interaction
J, Eq. (2.6a), is the term that prefers to place Ga
atoms next to As atoms. That is, S= + 1 (Ga) is
aligned preferentially adjacent to S= —1 (As). J is
thus an antiferromagnetic coupling and is positive.
The sign of E, Eq. (2.6b), is less obvious. If IC is
negative, then there would be a tendency (for J=O)
to form the phase-separated materials GaGe and
GeAs. It seems likely, however, that J+E &0,
where

J+I:=(Jo, A, Jo, G.)+(Jo.G. —Jo. A. .)—

I.O

0.8

x

0.4

0.2

Order Parameter M (x j

I I

(2.7)

That is, J+E&0 implies that the system prefers to
form GaAs and Ge to GaGe and GeAs compounds.
The quantities h and 6 are primarily important as
chemical-potential differences. 4 is thermodynami-

0.0
0.0 O. l 0. 2 0.5

Composition x

I

0.4 05

FIG. 7. Absolute value of the order parameter M(x)
for (GaAs)

& „Ge2„,computed assuming a constant
sample-preparation temperature.
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E(s,c)
.E(s,a)
E(p, c)
E(p, a)
E(s*,c)
E(s*,a)
V(s,s)
V(x,x)
V(-,'y)

V(sc,pa)
V(sa,pc)
V(s*c,pa)
V(s*a,pc)
e(sa,p„a')
e(sc,p„c')
e(p„a,p„a')
6(p~c,pic )

GaAs

—2.6713
—8.3593

3.6690
1.0410
6.7386
8.5914

—6.4342
1.9543
5.0777
5.2671
4.2485
4.7525
4.2547

—0.21
—0.21

0.0
0.0

—5.8800
—5.8800

1.6100
1.6100
6.3900
6.3900

—6.7800
1.6100
4.9000
4.9617
4.9617
4.5434
4.5434
0.0
0.0
0.157
0.157

TABLE II. Empirical tight-binding matrix elements of
the sp s* Hamiltonian in eV. Here c =Ga or Ge and
a =As or Ge for GaAs and Ge, respectively, and a' (c') is
the second neighbor of atom a (c). The parameters
E(s*,c) and E(s*,a) for GaAs are the same as obtained in
Ref. 17, and all parameters for Ge are the same as used in
Ref. 27.

to the composition x and the order parameter M [we
study here solutions with Q=O, Eq. (A8)]. For low
temperatures, it is found that there is one special
value of 6, hy, at which the trial free-energy func-
tion has three simultaneous minima. Two are at
x =x~(T) with M =+MD [where Mo is the solution
of Eq. (2.9) for x =xM(T)]. The other minimum is
at M=O and x =xo(T). These solutions thus
represent the phase separation of a GaAs-rich zinc-
blende phase from a Ge-rich diamond phase, shown
in Figs. 3 and 4 for low temperatures. Similarly,
equilibrium phase separation of a Ge-rich disordered
phase from a GaAs-rich disordered phase (as shown
in Fig. 4) is found by searching for a value of the
chemical-potential difference 6 at which two simul-
taneous minima of the trial free-energy function are
found: one each at x =x~(T) and x =xz(T), both
solutions found for M=O. Of course, application of
mean-field theory to the metastable alloy specifies
that such solutions be ignored. That is, the system
does not have sufficient time to sense that solutions
xM(T)&x&x, (T) or x, (T)&x&x2(T) are to be
found for identical values of b, . Thus, only Eq. (2.9)
is of interest in the case of the metastable alloy.

critical transitio-n line, x, (T), is the locus of points
that demarks solutions M=O (the disordered high-
temperature large-x diamond phase) from M&0 (the
ordered low-temperature small-x zinc-blende phase).
That is, x, (T) is found by equating derivatives with
respect to M of left- and right-hand sides of Eq.
(2.9) for M=O; hence we have

kBTeff =Jz [1—x, (T,ff)] . (2.10)

This result is plotted in Figs. 3 and 4. Here T,~~ is
the effectiue (unknown) sample-preparation tempera-
ture. If this temperature is assumed to be a con-
stant, then Eqs. (2.9) and (2.10) may be solved for
the order parameter M(x), provided x, is known:

M M=tanh
1 —x 1 —x,

(2.11)

In this paper, we take x, =0.3, the experimental
value for (GaAs)& „Gez„.Equation (2.11), plus
Table I (which relates M to sublattice occupation
probabilities), are the central results of this paper.

Discussion of the calculation of the phase-
separation curves, and other details of the phase dia-

gram for different ratios of J to E, will be found in
Appendix A. Briefly, the trial free energy is mini-
mized and an equation (A18) is derived which re-
lates the chemical-potential difference 5 [Eq. (2.6e)]

III. CALCULATION OF BAND STRUCTURE
FROM MODIFIED VIRTUAL-CRYSTAL

APPROXIMATION

The spin-Hamiltonian model [Eq. (2.5)] provides
a simple means for minimizing the total free energy
of the system and for determining the order parame-
ter M(x). It is, however, ill suited for the computa-
tion of electronic structure or optical spectra. For
example, the important parameters of the phase-
transition model are the differences in the energies
of interaction of various nearest neighbors, such as

JG, o, vs JG, A, . But, for electronic structure, the
on-site terms of the Hamiltonian are of greatest im-

portance. This is illustrated by the empirical tight-
binding models for band structure, which have
nearest-neighbor interactions nearly equal for all
semiconductors with similar lattice constants. '

Thus, if we are to predict the band gap Eo(x) for
(GaAs)~ „Geq„,we must develop a bridge between
our total-energy phase-transition model and a model
of the band structure. We do this by developing a
modified virtual-crystal approximation for the band
structure of the rnetastable alloy, which depends on
the order parameter M (x).

In the virtual-crystal approximation, the matrix
elements of the tight-binding Hamiltonian are sirn-

ply interpolated as functions of alloy composition x.
For example, the "Ga"-site (cation-site) diagonal
matrix element of s symmetry is an average of the
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and

(Po &«o» ——1 —x

(Po, & o ——x, (3.2)

This approximation is based on the assumption that
antisite defects (e.g. , As on a Ga site) rarely occur.
However, in all the metastable alloys considered
here, antisite defects occur in high concentrations.
Hence, a generalized virtual-crystal approximation is
needed. We simply modify the conventional
virtual-crystal approximation, Eq. (3.1), by taking
the values of Table I, instead of those of Eq. (3.2),
making occupation probabilities such as (Po, & de-

pend on the order parameter M(x):

corresponding matrix elements for the constituents:

E (s;"Ga") = (Po, & «o,»E (s,Ga; GaAs)

+(Po & o»E(s, Ge;Ge)

+ (P~, & -o;E(s,As; GaAs) . (3.1)

In the conUentional virtual-crystal approximation'
for (GaAs)~ „Gez„,we have

features. Thus, taking the nature of the average
anions and cations in (GaAs)& „Ge2„from Table I,
we have a tight-binding Hamiltonian and a theory of
the energy-band structure which depends on the or-
der parameter M(x). The resulting band structure
exhibits singularities corresponding to the singulari-

ty of M(x) at x, .
To compute the band structure, we use the Uogl

nearest-neighbor empirical sp s* tight-binding
theory, ' but modify it to include some second-
neighbor interactions while retaining its fit to the
band structure determined by Chelikowsky and
Cohen. The Vogl model is a ten-band model with
five basis orbitals per atom (s, p„,p~, p„and s*,
where s~ is an excited s state). It treats only
nearest-neighbor interactions, and its parameters for
GaAs and Ge have been fixed so that the model
reproduces the band structures at the principle
symmetry points I [k=(0,0,0)] and X
[k =(2~/al. )(1,0,0), where al is the lattice constant]
of the Brillouin zone. The conduction-band minima

1 1 1of Ge are at the L points, (2vrlaL )( —, , —,, —, ), and so
we improved the model at point I. by adding the
second-neighbor parameters e of Table II.

Within this model, Eo, the direct band gap at
point I, is

and

(Po & -o ——(1—x +M) /2,

(Po & «o (3.3)

Eo E, +[D,——+ V (s,s)]'~

E~+[Dp+ V'(x—,x)]'~ .

Here we have for GaAs,

(3.4)

(PA, &-o,» ——(1—x —M)/2 .

This prescription accounts for the antisite defects
omitted in the conventional virtual-crystal approxi-
mation, is (in retrospect) intuitively obvious, and is
justified by the algebra of the spin Hamiltonian,
Eqs. (A3) to (AS). With it, we have the needed
bridge between the spin-Harniltonian total-energy
model and the virtual-crystal empirical tight-binding
Hamiltonian of band structure.

For the materials considered here, a generalized
virtual-crystal approximation to the electronic struc-
ture should be adequate. For III-V and group-IV
semiconductive alloys, the differences in the diago-
nal tight-binding matrix elements of the constituents
(e.g.,

~
E(s,Ga) —E(s,Ge) ~) are small in comparison

with typical nearest-neighbor transfer-matrix ele-
ments [e.g., V(s,s)]. (See Table II.) Therefore, these
materials are in the "amalgamated" regime of alloy
theory' 6 for which the virtual-crystal approxima-
tion provides an adequate theoretical starting point.
In the amalgamated regime, the density-of-states
spectrum of (GaAs)

& „Ge2„is expected to be
characteristic of a single "average" semiconductor,
rather than exhibiting separate GaAs-like or Ge-like

and

E, =[E(s,Ga)+E(s, As)]/2,

E&
——[E(p,Ga)+E(p, As)]/2,

D, =[E(s,Ga) —E(s,As)]/2, (3.5)

D~ =[E(p,Ga) —E(p, As)]/2 .

For Ge, we replace Ga and As by Ge in Eqs. (3.5).
Here, for example, E(p, As) is the on-site energy in
the solid of p symmetry, and V(s,s) and V(x,x) are
nearest-neighbor matrix elements between s and p
states, respectively.

In the metastable alloy, we interpolate the diago-
nal matrix elements E according to the generalized
mean field virtual-cry-stal rule, Eqs. (3.1) and (3.3),
with the order parameter M given by the mean-field
theory, Eq. (2.11). Similar rules are used for inter-
polating the square of the bond length d times the
off-diagonal matrix elements V and e (see Appendix
B).

The V-shaped "bowing" of Eo(x) (see Fig. 1) fol-
lows from Eq. (3.4), which for (GaAs)

& „Ge2„
predicts dEo/dx g0 for x &x, and dEo/dx &0 for
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x &x,. This can be seen by noting that we have
M=O for x yx, in the Ge-rich virtual-diamond
(disordered) phase: thus we have E (s, "Ga")
=E(s,"As"). That is, D, and D~ in Eqs. (3.4) and
(3.5) are zero, and we cannot distinguish anion from
cation sites. For x &x„we have M+0, and
E(s,"Ga")&E(s,"As"). The phase is ordered and
the anion and cation sites are distinct.

Note that the predicted band gap for GaAs in Fig.
1 is smaller than the usual zero-temperature gap of
the tight-binding theory, 1.52 eV. ' ' This is be-
cause the predictions of Fig. 1 correspond to metast-
able alloys grown at an unknown effective sample-
preparation temperature T,fr (due to ion bombard-
ment of the samples during growth), and therefore
involve materials with 1M(x =0)1=0.8&1, i.e.,
there are many antisite defects, such as As on Ga
sites. Thus the theory predicts that the band gap of
sputter-produced metastable GaAs is smaller than
the gap of fully annealed material. Additionally,
note that the square-root singularity of M (x) (Fig. 7)
is an artifact of the mean-field approximation;
renormalization-group calculations would obtain for
x near x a singularity of the form 1M (x)

1

-(x, —x), with P=0.325.
Results for the conduction-band edge, relative to

the valence-band maximum, at I &, L& X] and
X3 are given in Fig. 5. Comparing with Fig. 6 for
the conventional virtual-crystal approximation, we
note several important changes due to the phase
transition. First, the splitting in X~ and X3 due to
the distinct anion and cation sites, disappears at the
transition point x, because well-defined anions and
cations do not exist in the disordered phase, x &x, .
Second, L& shows a similar behavior to I

~
at the

transition point, x„and crosses with I
&

at x =0.75.
This means that the crystalline alloy has a direct gap
at I for x&0.75 and an indirect gap at L for
xg0.75. The band gap thus has two kinks as a
function of x: one at x, =0.3, due to the phase tran-
sition, and one at x=0.75, due to the crossing of I i

with L ~. We emphasize that the observed kink or
V-shaped bowing at x,=0.3 is due to the phase tran-
sition and not to the I

~
-L

&
direct-indirect crossover

of the conduction-band structure.
Finally, we exhibit the density of electronic states

(Fig. 8) calculated for (GaAs)i „Ge2„alloys,in the
hopes of stimulating independent experimental tests
of the proposed phase-transition model. These den-
sities of states were calculated using the Lehmann-
Taut method for the tight-binding model, and
should be especially reliable for the valence bands.
Some features of the conduction bands, especially
those above 6 eV, are unphysical (and the price to be
paid for obtaining a simple two-neighbor tight-

18
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18—
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& 12—
QP

x=1.Q

x= p.8

O
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x=p.4

binding description of a complex band structure).
The most prominent feature of these state densi-

ties is the gap at approximately —8 eV in GaAs

0 x=x,=p.g
12.0 8.0 4.0 0.0 4-0 8.0 12.0

Energy (eV)

FIG. 8. Density of states [(eV) '] vs energy E (eV) for
(GaAs)~ „Ge2„.(a) For x =0, 0.1, 0.2, 0.25, and 0.29,
and x, =0.3 and (b) for x =x, =0.3, 0.4, 0.6, 0.8, and 1.0.
Note that the gap at approximately —8 eV disappears as
x approaches x, . The calculation uses an empirical tight-
binding sp's* band structure (Ref. 17), and thus is quanti-
tatively reliable for E &0, and semiquantitatively reliable
only for the lowest of the conduction bands. Neverthe-
less, for completeness, we include the features for E ~ 6
eV.



7504 KATHIE E. NEWMAN AND JOHN D. DOW

(characteristic of III-V compounds) which suddenly
fills in for x near x„producing the characteristic
triangular diamond-structure density of states. This
filling occurs because the distinction between anions
and cations is suddenly lost for x =x„'there is no
splitting of Xi and X3 for x &x, (see also Fig. 5).
Note also the disappearance of sharp features
present for x=0 as x —ix, . This is a result of the
phase transition, and not of alloy broadening (which
is not taken into account in the present theory). We
hope that experiments will be performed to deter-
mine if (GaAs) i „Ge2„alloyssuddenly lose the gap
at —8 eV in their densities of states, as x approaches
&c.

IV. CONCLUSIONS

We have proposed a new type of phase transition,
from an ordered GaAs-rich zinc-blende structure
(x &x, ) to a disordered Ge-rich diamond structure
(x &x, ), as an explanation of the anomalous depen-
dence on alloy composition x of the direct band gap
Eo(x) of (GaAs)i „Ge2„.The order parameter of
the phase transition M(x), is evaluated in a mean-
field approximation, using a three-component "anti-
ferromagnetic" spin model, in which spins "up, "
"zero," and "down" on a site represent occupation
by Ga, Ge, and As atoms. The nonequilibrium na-
ture of the alloys is accounted for by excluding ther-
modynamic states corresponding to phase separa-
tion, which cannot be achieved during the growth
process. The order parameter obtained using mean-
field theory is then inserted into an empirical tight-
binding model of electronic structure, which is
evaluated using a new generalized mean-field
virtual-crystal approximation to the band structure,
Eqs. (3.1) and (3.3). The resulting band edges (Fig.
5) exhibit "kinks" as functions of alloy composition,
which reflect the critical singularity of the order
parameter. The predicted band edge Eo(x) is in
good agreement with the data (Fig. 1). Finally, the
theory offers a first crude step toward first-
principles calculation of the phase diagrams of new
metastable crystalline alloys such as
(GaAs)i „Ge2„.
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pi =[e p«Si+PSi)]/Zi

p2 ——[exp(F2+ }'S2)]/Z2 .
(A2)

Here S~ and S2 sit on the "Ga" and "As" sublat-
tices, respectively, ' therefore,

N/2 N/2
P = IIP =Pi P2

In terms of the spin variables, we define the follow-
ing average sublattice occupancies:

m o ——(S )---Cxa

m«A» ——(S )«+ ti (A3)

and

q cp„» (S. )«~ »

Equations (A3) can be used to find expressions for
the average occupancies [Eqs. (2.1)] of each type of
atom on each type of site; for the "Ga" site, we find

and

(Po ) o»:(q &o si +m«o»)/2

Po. ) -o -=1—q-o-

(PA, ) -o, .——(q«o, » —m-o, »)/2 .

(A4)

In terms of definitions (A3), using Eq. (2.8), the or-
der parameter M is

~:mcco cc —mcc c2 As (A5)

Definitions (A3) are useful also for expressing
mathematically the constraint that we study the ma-
terial (GaAs)i „Ge2„.First, since there are equal
numbers of Ga (S=+1) and As (S = —1) atoms,
using Eqs. (2.1) we find

PPg cco cc+ PPg ccA ~c P (A6)

that is, the average of the spin variable S over the
entire system must be zero. Second, since a fraction

APPENDIX A

We use a variational method to solve approxi-
mately (using mean-field theory) for E, Eq. (2.4).
The trial free energy, E„is given by

F, =Tr(HP, )+ks TTr(p, lnp, ) (Al)

where p, is a trial density matrix that satisifies

Trp, =l .

For each sublattice ("Ga" and "As"), we define
separate density matrices,
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1 —x of spins S represent GaAs (S =+1), the com-
position x is given by

q o, +q-&, ——2(1 —x) .

Finally, it is possible to imagine another type of or-
der parameter, Q:

2Q —=q "oc"—q "As" ~

that measures the tendency of Ga and As atoms to
be adjacent to Ge atoms. For this paper, since we
have J+K &0, Eq. (2.7), we assume Q=0. Then,
using Eqs. (A5) to (A8), Eqs. (A4) reduce to the re-
sults of Table I.

For the trial free energy, assuming L =0, we find

F, /N =Jzm o,-m-&;/2 Kzq—.o, q-&,»/2+6(q-o, +q z,»)/2+h(m o,»«+m z;)
+kaT[am-o, +Pq o, . lnZ—-o, +5m ~;+yq ~,» —1nZ«~, »]/2 (A9)

where 1V is the total number of sites and we have
[from Eqs. (A2) and (A3)]

and

2[ —6+Kz(1 x)]/(k—g T)=13+y . (A14)
m ccrc

m ccAS%%

g cco+ss

and

2 sinha
e-I'+2coshu '

2sinh5

e ~+2 cosh5

2 cosh+

e ~+2 cosh+
(A 10)

8h
1

(1—x) —{Q—M)
(1—x) —(Q+M)

(A15)

Equations (Al 1} to (A14} are similar to those de-
rived for binary alloys. Using Eqs. (A10) and (A5)
to (A8), we can find expressions for a, P, y, and 5 in
terms of M, Q, and x. Equations (All) to (A14) can
then be written as follows:

2 cosh5
ccA c~

e ~+ 2 cosh5

Minimizing (A9) with respect to m «G, , m ..~,„,
q o,», q-~, , and using Eqs. (A5) to (A8), we find

4JzM (1—x +Q +M)(1 —x —Q +M)
ks T (1—x +Q —M)(1 —x —Q M)—=ln

(A16)

h = kgT(a+5)/—4,
2JzM /(ks T)=a 5, —

2KzQ/(k~ T)=y P, —

(Al 1)

(A12)

(A13}

4JzM (1—x +Q +M)(1 —x —Q +M)=ln, (A17)
k~ T (1—x +.Q —M)(1 —x —Q —M)

and

4[5 Kz(1 —x)]/(k—~ T) = —lnI [{1—x +Q) —M ][(1—x —Q) —M ]I+21n[4(x —Qz)] .

Solution of these equations for Q, x, and M as func-
tions of h, b„and T for given values of J and K
yields information about the equilibrium phase dia-
grams of (GaAs)~ „Ge~.

Solution of Eqs. (A15) and (A18) for phase boun-
daries proceeds as outlined in Ref. 20. [Here, we
take Q =0; thus h =0 in Eq. (A15).] We summarize
some useful formulas. First we find from Eq. (A16)
the order-disorder critical line, Eq. (2.10). Then, as
described in Ref. 20, using definitions

the location of the tricritical point (r„x,) is found
as follows:

1+2Rxr=
3+2R

(A20)

For r & neither three- or four-phase separation [see
Refs. 20 and 31] is possible —this is searched for nu-
merically, using Eqs. (A16) and (A18). The possibil-
ity of two-phase separation is studied using a new
variable, u:

R:K/J— (A19) 0=1—2x (A21)

and

a=aT/{Jz),

To find the two-phase-separation critical point,
(r,„„x,„,) (see Fig. 4), Eq. (A18) is rewritten (for
M =Q =0):
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In2—+4/ks 'r R/—(2&) ~ (A23)

which must be set to zero to see the transition (t»s
is the Griffiths' symmetry, «f. 32)
Eq. (A22) may be written [in a form analogous to
Eq. (2.9)],

Ru
u =tanh

4z
(A24)

The phase-separation critical point is thus at u =0,
r,„,=R/4, or (r,„„x,„,)=(R/ 41/2). Numerical
solution of Eq. (A24) for r &r,„,determines [using
Eq. (A21)] x~(r) and x2(r) (as shown in Fig. 4).
The intersection of the critical line, Eq. (2.10), with
this phase-separation line (see Fig. 4) occurs at a
critical end point: (x3,r3), where r3 is the solution
to

R (2r3 —1)
(2r3 —1)= tanh

4w3
(A25)

1 —exp[ ln—2+6/(kz T) R—(1+u )/(2w) ]
1+exp[ —ln2+ b, /(kg T)—R (1+ u)/(2r)]

(A22)

We thus see that there is an effective "magnetic
field, "hdf,

For phase diagrams determined for other values of
R from mean-field theory, see Ref. 20.

d =( 1 —x)do~ Aq+xdoq oe (Bl)

We then interpolate combinations Vd and ed
using joint-occupancy probabilities such as
(Po, (i)PA, (j)), where i and j label atomic sites (e.g. ,
for V, i labels the central atom and j denotes it
neighbor, and for e, j denotes a second-neighbor po-
sition). (Actually, since GaAs and Ge are well
lattice-matched, interpolating Vd or ed is essen-
tially the same as interpolating V or e.) Here, since
the order parameter g of Eq (A8). is zero, we have
joint occupancy probabilities that are symmetric
under interchange of i and j. For
V(s,s;(GaAs)

~ „Ge2„),for example, we find

APPENDIX B

The mean-field virtual-crystal estimates for the
variation with x of the off-diagonal matrix elements
V and e of Table II are obtained as follows. First,
the bond length d is determined by Vegard's law,
i.e., d' is linearly interpolated as a function of x:

(82)

V(s, s;(GaAs)~ „Ge2„)d= [(Po,(1)PA, (2) ) + (P~, ( l)P&, (2) ) ]V(s, s;GaAs)do, A,

+ (PG, (1)PG,(2) ) V(s,s; GeGe)d G, G, + (Po, (1)P&,(2) ) V(s,s;GaGa)do, o,
+ (PA, (1)Pp„(2))V(s,s;AsAs)dp, p„
+ [(PG,(1)P~,(2) ) + (P«(1)P&,(2) ) ]V(s,s; GeAs)do, A,

+[(Po,(1)P,(2) ) + (P,(1)P,(2) )]V(s,s;GaGe)d,

(Here, 1 is a "Ga" site; 2 is a neighboring "As" site. )
Since matrix elements such as V(s,s;GeAs) are not
known, we make the following simple approxima-
tion. For V(s,s;GaGa)do, o, and V(s,s;
AsAs)d A, z„weuse simply V(s,s;GaAs)do, «. For
V(s,s;GeAs)d o, ~, and V(s,s;GaGe)d o, o„weuse
an average, e.g.,

V(s,s;GeAs)d G, ~, ——[V(s,s;GaAs)d o, A,

+ V(s,s;GeGe)do, G, ]/2 .

(83)

= (1—x) V(s,s;GaAs)d o, A,

+xV(s,s;GeGe)do, o, . (85)

For matrix elements such as V(sc,pa) and
V(sa,pc), we make the following type of prescrip-
tions for the unknown matrix elements:

I

we find

(SS )-o - -„»=(S)-o (S }„-.
Then, Eqs. (83) and (84) allow a great simplification
to Eq. (3.2):

V(s,s;(GaAs)
& „Ge2„)d

Joint-occupancy probabilities are expressible in
terms of spin-spin correlation functions. These are
trivially found for the mean-field approximation
(nontrivial corrections will come from a more so-
phisticated treatment}: For example, using Eq. (A2),

V(pc, sa;GaGe)d o, G,

= [V(pc,sa; GaAs)d~o, A,

+ V(pc, sa; GeGe}do, o, ]/2, (86)
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V(pa, sc;GaGe)d o, o,
= [V(pa, sc;GaAs)d o, p„

+ V(pa, sc ', GeGe)d o„o,]/2,
and

V(pc, sa; AsAs)d A, ~,

(B7)

anion) site. With approximations of this type, we
find matrix elements V(sc,pa;(GaAs)~ „Ge2„)and
V(sa,pc;(GaAs)t „Ge2 ) to have the same form as
Eqs. (3.1) and (3.3), e.g.,

V(sa,pc;(GaAs), „(Ge2)s)d

=(1—x +M) V(sa,pc;GaAs)do, A, /2
= [V(pc, sa;GaAs)d o, ~,

+ V(pa, sc;GaAs)d o, A, ]/2 . (BS)

+ (1—x —M) V(sc,pa; GaAs)d o, A, /2

+xV(sa, pc;GeGe)do, o, . (B9)

In Eq. (B6), we have a Ga atom on a "Ga" (c or ca-
tion), while in Eq. (B7), Ga sits on the "As" (a or

A11 other matrix elements are determined in an
analogous fashion.
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