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Theory of the nucleation of multicomponent precipitates
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The nucleation kinetics of multicomponent precipitates is studied. For this, asymptotic
solutions of the corresponding stationary Fokker-Planck equation are derived and analyzed.
The nucleation flux in composition space [ n ) is determined by the reaction rates R of the
constituent components (kinetic barrier) and the formation free enthalpy G(n) of the pre-
cipitates (energetic barrier). If the kinetic barrier is small compared with the energetic one,
the nucleation flux goes across the saddle point of 6 ( n ). For significantly different reac-
tion rates the nucleation flux is bent into the directions of the rapidly reacting components,
and the kinetic barrier is controlled by the fastest component i for which )r'G/Bn; &0. If
the kinetic and energetic barriers are comparable, the nucleation flux can go across a ridge
in the direction of a rapidly reacting component. In this case the nucleation barrier is
governed by a balance of the kinetic and the energetic barriers. The condition for this is in
approximate agreement with the one suggested by Stauffer and Kiang. As the simplest ex-
ample for binary nucleation the formation of ideal gas bubbles under gas and vacancy super-
saturation is considered to illustrate and test the most important results of the theory.

I. INTRODUCTION

In a supersaturated solid solution —as well as in a
supersaturated vapor —nucleation of particles of a
new phase usually occurs in a heterogeneous mode,
i.e., at inhomogeneities such as dislocations, grain
boundaries, and interfaces, or at impurities. Often
nucleation is assisted by both matrix inhomo-
geneities and impurities. Since above the tempera-
ture at which nucleation of new phases starts all im-
purities become mobile, the new phases are usually
new solid solutions or compounds. Thus we are
faced with the problem of nucleation of multicom-
ponent phases.

The kinetics of multicomponent nucleation was
first considered by Reiss' who assumed that nu-
cleation goes across the saddle point in the forma-
tion free enthalpy G of the particles of the new

phase, following the steepest descent of G in the
composition space. Based on a general multicluster
coordinate nucleation theory, Stauffer and Kre-
mer showed that both the free enthalpy G and the
reaction rates R of the constituents of the new phase
determine the direction of the nucleation Aux in the
composition space. The limiting behavior of binary
saddle-point nucleation for significantly different re-
action rates (concentrations of the species) has been
discussed by Mirabel and Clavelin. Even earlier,
Stauffer and Kiang had suggested that —if in the
binary case the reaction rates of the two constituents

differ significantly —a nucleation path following the
coordinate of the fast-reaction component across the
ridge of G can be more favorable (i.e., it can result in
a higher nucleation rate) than the saddle-point path.

In the present paper a general theory of nucleation
of multicomponent precipitates is developed. First,
a short derivation of the rate of nucleation across a
saddle point is presented. The general expression for
saddle-point nucleation is discussed for the case of
significantly different reaction rates of the constitu-
ents. Then nucleation across a ridge in the direction
of the fast-reaction components is analyzed.

Though the procedure presented is more general,
we have diffusion-controlled nucleation of mul-
ticomponent precipitates in solids in mind. As the
simplest example for binary nucleation we shall con-
sider the formation of gas bubbles in a monatomic
matrix containing dissolved gas and lattice vacancies
in supersaturation (precipitation of gas atoms and
lattice vacancies).

II. BASIC APPROXIMATIONS

For the derivation of the basic equation three im-
portant approximations are used:

(I) Concerning possible cluster configurations,
consideration is restricted to clusters of (or around)
equilibrium shape such that the only coordinates
remaining are the numbers n; of particles i consti-
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tuting the clusters which may be summarized in a
composition vector n.

(2) By considering the particle numbers to be con-
tinuous variables, the system of rate equations
describing clustering kinetics is approximated by the
corresponding Fokker-Planck equation.

(3) In confining the treatment to low cluster con-
centrations the clusters are considered to form an
ideal solution.

With these approximations the temporal change
of the cluster concentrations c( n ) may be written as

Bc(n)
at

R(n)e ttG " e+tr " c(n) .
Bn Bn

Here, J (n) is the cluster current density in cornposi-
tion space. G(n) is the formation free enthalpy of
the clusters which, because of the positive contribu-
tion of the interface between the clusters and the
matrix, establishes a nucleation barrier; P=1/kT,
where k is Boltzmann's constant and T is the abso-
lute temperature. R(n) is the generally strongly an-
isotropic matrix of the second moments of the clus-
ter reaction rates.

If in a solid only single particles are diffusing be-
tween the matrix and the clusters the elements R;( n)
of R&~(n)=R;(n)5& are given by

III. NUCLEATION ACROSS A SADDLE
POINT

If the reaction rates of the particles constituting
the new phase are large or comparable in magnitude,
nucleation occurs across the lowest part of the bar-
rier, i.e., across the saddle point n ~ of 6 where
BG/Bn =0 and G—:8 G/Bn has one negative eigen-
value and, otherwise, positive ones. (The detailed
conditions for saddle-point nucleation will be given
later. ) Assuming that only the immediate vicinity of
n * contributes to nucleation we expand 6 at n * up
to second-order terms:

G=G*+—,hn G* hn, b, n=n —n *, (4)

a -. .- a
exp( —Pv I' v/2) exp(+Pv I 'v/2)(=0

Bv

where the asterisk indicates values at n=n *. For
sufficiently smooth G(n) this is justified if
PG' »1.

Since R(n) is slowly varying compared with the
exponentials in Eq. (1), it may be set constant:
R(n)=R(n ~)—=R*. Using this we can remove the
anisotropy of Eq. (1) by transforming n, J, and c
into new variables v, 7 and g, respectively:

b, n=(R*)' .v J =(R~)' 7/(detR. *)'

c =g/(detR~)'~

which in the stationary case leads to

R;(n) =4m'c;(n)D;r(n), (2) with

where c;(n) is the equilibrium concentration of par-
ticle i at the surface of a cluster with radius r(n)
while D; is the diffusion coefficient of particle i
Thus E.; is proportional to the permeation coeffi-
cient c;D;, and accordingly its activation free enthal-

py consists of a solution and a diffusion free enthal-

Equation (1) must be completed by appropriate
boundary conditions. Since small clusters may be
assumed to be in thermal equilibrium and infinitely
large clusters do not exist we take, respectively,

c(
(

n
)
~0)=coe ~ '"' and c(( n

)
~oo)=0,

(3)

where co is the concentration of potential nucleation
sites.

Thus Eq. (1), together with the boundary condi-
tions (3), describe anisotropic and inhomogeneous
diffusion subject to the field G(n) in the composi-
tion space. In the following we restrict our con-
siderations to the stationary case Bc(n)/Bt=0.

I =(R~)' G* (R~)'

This is the general form of a transformation intro-
duced by Feder et al.

In the principle axes system of I Eq. (5) becomes
separable, and thus the problem reduces to the well-
known one-dimensional problem for single-
component nucleation. In the transformed system
nucleation goes in the direction of the eigenvector
belonging to the negative eigenvalue of I, while in
the directions perpendicular to the latter one,
exp(+ PG)c is constant.

Using the boundary conditions (3) we find for the
region close to the saddle point

c =coexp[ —PG(n )]—,erfc(v'P
~

A.
~

/2g),

J =v'P
~

A,
i
/(2n)(R*)'i v (6)

X co exp[ —PG ( n ) + —,Pkg~],

where A, is the negative eigenvalue of I (or equally
of R G), v =Bg/Bv, is the corresponding eigenvec-
tor I v =A, v, and f is the coordinate in the direc-
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tion of v in the transformed system. J is an eigen-
vector of R ~ G ~ and thus is bent off the direction
of steepest descent toward the directions of the com-
ponents with the highest reaction rates.

The nucleation rate I, i.e., the temporal change of
the concentration of stably growing precipitates, is
obtained by integrating J over a surface in the com-
position space, most simply over a plane through
n *and perpendicular to v. The final result is

P i
A,

i
/(27r) pGe

V det[PG~/(2~)]

This formula is the explicit version of results de-
rived earlier.

As in one-component nucleation the nucleation
rate is proportional to the equilibrium cluster densi-

ty coexp( —PG~), and to the reaction rates at the
saddle point. But in multicomponent nucleation the
reaction rates (contained in A,) are coupled with the
second derivatives of G. The latter ones together
with those in the determinant in the denominator of
Eq (7} t.ake fluctuations between the subcritical and
the supercritical regions (reducing the nucleation
rate), as well as the available configuration space at
the saddle point (enhancing the nucleation rate), into
account. In binary nucleation this "Zeldovich fac-
tor" is of the order of 1.

The activation free enthalpy Gz of nucleation
consists of a kinetic part g, i.e., of that of the reac-
tion matrix, and an energetic part G: G~ ——g+ G.
It becomes especially transparent for the limiting
case of significantly different reaction rates.

To illustrate the limiting behavior of saddle-point
nucleation for significantly different reaction rates
we first consider binary nucleation (generalizing ear-
lier discussions }. What we need is the negative

eigenvalue A, of R* G~ and the corresponding eigen-

vector determining the direction of J.
Taking a coordinate system in which the reaction

matrix R is diagonal we have R G= I R;; G;1 J.
Choosing R» &&R22 and assuming that the ele-

ments of G are comparable in magnitude we meet
two different cases indicated by the small figures in-

serted into Fig. 1:
(a) Gii &0, resulting in

J/J~e), A~R ))G)) .

J is bent into the direction e i of the fast component
1. The kinetic factor in the nucleation rate is con-
trolled by the fast component 1 (activation free
enthalpy gi) and the activation free enthalpy of nu-

cleation is

Gx =gi+G* .

(b) G i i & 0, resulting in

0.2 0.6 0.8 1.0

FIG. 1. Regions of saddle-point and ridge nucleation
for bubble formation under vacancy and gas supersatura-
tion with a small gas reaction rate, R& «R ~ (see Sec. V).
The coordinates are the difference in the activation free
enthalpies of the gas and vacancy reaction rates,
hg =g2 —gi, normalized to Go ——G~ (p=O), and the super-
saturation ratio a=p/(p+o). Nucleation is of ridge type
above and of saddle-point type below the limiting curve
(heavy line of the main figure). The type of nucleation in
each region is indicated by the small inserted figures
showing contour maps of the formation free enthalpy of
the bubble embryos (thin lines) and the nucleation paths
(medium thick lines with arrows) in the composition plane
(horizontal and vertical coordinates define the numbers of
vacancies and gas atoms, respectively).

ei G 'J~Q, g~R22(detG )/Gii .

J follows the line of equilibrium with respect to
component 1, BG/dn i ——0, passing the saddle point.
The kinetic factor is controlled by the slow com-
ponent 2 (activation free enthalpy gz) and

g2+G (8b)

The transition between the two cases occurs in the
narrow range in which G» is so small that the mag-
nitude of R»G» becomes comparable with those of
the other elements of R~ G~.

According to the meaning of these results the lim-
iting behavior of the whole flux line can be defined
as follows: It traces along the equilibrium line
'dG/r}ni ——0, unless it either reaches the coordinate
n 2 of a saddle point with G

& ~ & 0, or it reaches, after
having passed a saddle point with G» & 0, a point
G» ——0 of unstable growth with respect to com-
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ponent 1. At either of these points it bends over
into the direction 1 (see Fig. 1).

The extension to more than two components is
straightforward. If all reaction rates are significant-
ly different the limiting flux line follows the line of
equilibrium with respect to all components but the
slowest one, s, unless it reaches either the saddle-
point coordinate n,

' or, after having passed the sad-
dle point, eventually a point G;;=0 of unstable
growth with respect to one component i, and there
bends off into the corresponding planes of constant
n, As. a result of this the dimension of the problem
is reduced by 1, etc. The kinetic factor in the nu-
cleation rate is controlled by the fastest component j
for which GJJ &0.

IV. NUCLEATION ACROSS A RIDGE

If one reaction rate is essentially smaller than the
other ones the flux line can turn into the directions
of the fast-reacting components and pass a ridge
before the saddle-point coordinate of the slowly
reacting component is reached (see the small middle
figure inserted into Fig. 1).

An asymptotic expression for this case is obtained
by considering the continuous leakage of clusters
from the flux in the "valley" defined by
G;=BG/Bn;=0, G;; &0, and i C ff j, due to nu-
cleation in the direction of the fast-reacting com-
ponents f. To illustrate the approximations we
again start with the binary case and choose
R~»&R22. For small numbers n2 the flux is
strongly concentrated in the "valley" defined by
G~ ——O,G~~ &0, if the barrier in the direction 1 is
high. After a quadratic expansion of G, integration
of Eq. (1) over the valley yields the total cluster
current

that the fiux line bends off sharply into the direction
1, i.e., that the region in which J~ is comparable
with Jz is small compared with the width of Jz,
which is fulfilled if P b,G » l.

The current in the valley and the leakage across
the ridge are coupled via the requirement of cluster
number conservation (continuity)

d I2+Ji ——0 .
dn2

(10)

x =C(R»/R zz)' exp( Pb,G/2), —

with

C= —v'2/(mP)
~
GiiG()

~

' /bGz

and

(1 la)

z =exp(PG'/2)c", (1 lb)

Eq. (10) transforms into the differential equation for
the modified Bessel functions

x z"+xz' —(x +m )z=0 (12)

with

0&m= —Gz/EGz&1 for n, &nz .

Hence in the stationary binary case our leakage ap-
proximation defined by Eqs. (12a) and (12b) has re-
duced the basic partial differential equation (1) to an
ordinary differential equation.

Next we derive an asymptotic solution of Eq. (10).
Assuming that the leakage by nucleation in the
direction 1 occurs in a sufficiently narrow interval
5n2 around a presently unknown "nucleation coordi-
nate" n2, we expand 6 linearly around n2 and set
the slowly varying preexponentials in Eqs. (9a) and
(9b) equal to their values at nz ——nz. Introducing the
new coordinates

2'
PGii

' 1/2

Ru —PG" PG" u

n2

(9a)

The solution fulfilling the boundary condition c'~0
for nz~oo is the modified Bessel function K (x).
The other integration constant is obtained from the
boundary condition c"~coexp( —PG") for nz~0
(x —+0). The final result is

where the superscript v indicates values in the valley.
Since R ii »Rzz, the cluster leakage from the valley
may be described by a nucleation current in the easy
direction 1, i.e., by a one-component nucleation at
constant n2..

e"=
m

(x )exp[ —P(G "+G ")/2]c, ,

Ji(nz)= Riie ~~ c".
21T

(9b)

Here, r indicates values on the ridge defined by
G& ——O,G~& &0. EG=G' —G" is the nucleation bar-
rier in the direction 1. Approximation (9) implies

where x is the value of x at nz ——nz and I" is the I
function.

Now we define the "nucleation coordinate" n2 as
the n2 value at which the leakage current J& is max-
imum. This condition results in the transcendental
equation
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xE,(x)=2(1—m)E (x) . (14)

n, & n; or AG'=—&G(n z ) «g . (16)

If nz&nz nucleation goes first across the saddle
point and afterwards across the ridge. In this case
nucleation across the saddle point is rate controlling.

The rate of nucleation across the ridge for nz & n z
is given by the total current Iz in the valley for
nz~0 (x~0):

' 2m

I (1—m) x g tio~X I (m) 2
R 22e

The activation free enthalpy Gz of nucleation is

GW =g2+G"=g i+6"
where Eq. (15) has been used.

(18)

In Fig. 2 the solution x=x is plotted as a function
of m. Note that at the boundaries m~ and m —+1
nucleation goes across a saddle point where our
linear expansion of 6 with respect to n2 becomes
inadequate. Sufficiently off the saddle point, x is of
the order of 1. Considering that the factor C in Eq.
(1 la) is of the order of 1 or somewhat smaller we ar-
rive at the approximate condition

PbG=ln(Rii/Rzz)=Pbg: —P(gz —gi) . (15)

This result confirms a supposition of Stauffer and
Kiang. Ridge nucleation is rate controlling if Eq.
(15) is fulfilled before the saddle point is reached,
i.e., if

The approximations used in deriving these results,
namely that the flux line bends off sharply into the
direction 1, and that leakage across the ridge occurs
in a sufficiently narrow interval, are justified if

PLG =in(R"„/Rz'z)»1.

Finally, we sketch the extension to more than two
components. If the reaction rate of one component
is significantly smaller than of the other ones the
flux first follows the valley defined by the equilibri-
um with respect to the latter ones. The leakage may
be described as nucleation in the (reduced) composi-
tion space of the fast components. By the same pro-
cedure the once reduced space can be further re-
duced, etc.

V. AN EXAMPLE FOR BINARY
NUCLEATION: NUCLEATION OF GAS

BUBBLESUNDER VACANCY
SUPERSATURATION

The most simple binary example is the nucleation
of gas bubbles in a monatomic matrix containing
solved gas and vacancies in supersaturation (precipi-
tation of gas atoms and lattice vacancies). If for this
case the "capillarity approximation" and the ideal
gas law are used, all approximations introduced
above can be given in explicit analytical form. Here,
we confine ourselves to the discussion of the regions
of saddle-point and ridge nucleation and of the ac-
tiuation free enthalpy G~ of nucleation.

Within the capillarity approximation the forma-
tion free enthalpy of a spherical bubble of radius r,
surface S=4nr, and volume V.=4mr/3 contai.ning
n, vacancies of volume Q and nz ideally behaving
gas atoms is

,~ 1.0

G =yS (p+o ) V+nzk—T ln(p/p),

with

S=(36m)' (niQ) and V=niQ .

(20)

0.5

1.0

Here, y is the surface free energy of the solid, o is a
(real or effective) hydrostatic external stress related
to a relative change of the vacancy concentration
(vacancy supersaturation) b C~/Ci —Po'Q, while
p=nzkT/V is the actual gas pressure in the bubble
and p is the equilibrium gas pressure corresponding
to the gas concentration in the matrix.

The saddle-point coordinates are
'3

(2 la)

FIG. 2. Solution x=x of Eq. (14) as a function of m

(see the text). and the corresponding free enthalpy
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16m.

(p+0)
(21b)

Since the direction of the nucleation flux J at the
saddle point is determined by R * G ~ we must know
the properties of G». Of course, detG* &0, but also

622&0 for all 0&a=p/(p+a) &1, while Gii &0
for 0 &a & —, and G» & 0 for —, & a & 1 (see the right
and left small figures inserted into Fig. 1).

The reaction matrix R is diagonal if the gas atoms
are absorbed and emitted as interstitial atoms in-

dependently of the vacancies. If the gas atoms dif-

fuse via the vacancy mechanism, n i in Eq. (20) must

be substituted by n&+n2 to make R diagonal. Ac-
cording to Eq. (2) the reaction rates of the vacancies
and the gas atoms are proportional to the corre-

sponding permeation coefficients, i.e., in the case of
vacancies proportional to the self-diffusion coeffi-
cient of the matrix. Usually, both quantities differ
distinctly in magnitude.

For significantly different reaction rates of the va-

cancies and the gas atoms two main cases can be
distinguished:

(1) The reaction rate of the gas atoms is much

larger than of the vacancies, R2»Ri (e.g., H in

Nb). Then, since G2z&0 everywhere, only subcase

(b) of saddle-point nucleation described in Sec. III is

possible. Thus during nucleation the gas pressure in

the bubble embryos remains in equilibrium with the

gas concentration in the matrix, i.e., the nucleation
flux follows a straight line defined by p=p (Gq ——0).
The kinetic factor in the nucleation rate is controlled

by the slow-reacting vacancies and the activation
free enthalpy of nucleation is Giv ——gi+G.

(2) The reaction rate of the gas atoms is much

smaller than that of the vacancies, R2 «Ri (e.g.,
irradiation-induced He in metals). Then, since G al-

lows positive and negative Gii and G ii (G» &0 for
small n i and Gii &0 for large n i), both subcases (a)

and (b) of nucleation across the saddle point, as well

as nucleation across the ridge in the direction of the

rapidly reacting vacancies, are possible. In all sub-

cases the nucleation flux first follows the line of
equilibrium with respect to the vacancies, G~ ——0
(p =2y/r), and then turns over into the direction of
the rapidly reacting vacancies as soon as the condi-

tion for this is fulfilled (see Fig. 1).
Thus nucleation goes across the saddle point if in

correspondence with Eq. (16), n2&nz, b,G~&b,g.
The two subspaces are as follows: (a) low gas super-

saturation, 0&+ & —,, G» &0. The nucleation Aux

turns over into the direction of the vacancies as soon

as the saddle-point coordinate nz is reached (left
small figure inserted into Fig. 1). The kinetic factor
in the nucleation rate is controlled by the vacancies

1.0

~o 08

I

0.6

0.4

0.2

0
0.2 0.4 0.6 0.8 1.0

FIG. 3. Normalized excess activation free enthalpy of
nucleation (Gz —g&)/Gp vs a for various Ag/Gp. The
black dots mark the transitions from saddle-point to ridge

nucleation (see text).

and Giv
——gi+G . (b) high gas supersaturation,

—, &a&1, Gii &0. The line of equilibrium Gi ——0
passes the saddle point (right small figure inserted
into Fig. 1). The kinetic factor in the nucleation
rate is controlled by the gas atoms and

g2+ G
The nucleation flux turns over into the direction

of the rapidly reacting vacancies and passes the
ridge before the saddle-point coordinate n z is
reached if Eq. (16), ni &n2, b, G &hg, is fulfilled
(middle small figure inserted into Fig. 1). Kinetics
and energetics of nucleation are coupled and

G~ ——g2+ G"=g) + G'.
The transition from nucleation across the saddle

point to nucleation across the ridge occurs at
n2=n2, b,G(a)=kg. In Fig. 1 the corresponding

bg(a)/Go line is shown where Go ——G* (p=O) is the
free enthalpy barrier without gas.

The behavior of the nucleation rate around the
transition line may be taken as an indication of the

quality of the approximations introduced for ridge
nucleation. For this the activation free enthalpy of
nucleation in excess of that of the reaction rate of
the rapidly reacting vacancies (both normalized to

Go) is plotted in Fig. 3 versus a for various b,g/Go.
The curves right and left of each pair of black dots

belong to nucleation across a saddle point with

G» &0 and G» &0, respectively, while the curves

between the black dots belong to nucleation across
the ridge. The smooth transitions of the curves

from the regions of saddle-point nucleation to that
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of ridge nucleation indicate that the approximations
used for ridge nucleation are reasonable.

VI. SUMMARY AND CONCLUSIONS

In this paper asymptotic expressions for the rate
of nucleation of multicomponent precipitates are de-
rived and discussed. The derivations are based on
three fundamental approximations: The particle
clusters are considered to form an ideal solution (low
concentration), the cluster coordinates are restricted
to the numbers n; of particles constituting the clus-
ter, and the system of rate equations describing clus-
ter kinetics is approximated by a Fokker-Planck
equation (large critical clusters). Furthermore, it is
assumed that the free enthalpy of formation G(n) of
the clusters establishes a nucleation barrier which is
sufficiently smooth and high (large compared with
kT). Apart from these conditions, in the general re-
sults G(n) remains unspecified, in particular, the
classical "capillarity approximation" need not be
used.

Two essentially different types of nucleation are
found: nucleation across a saddle point of G(n) if
the kinetic barrier is small compared with the ener-

getic one, and nucleation across a ridge of G(n) if
the kinetic and energetic barriers are comparable
and the reaction rates are significantly different.
The latter type provides a continuous transition be-
tween homogeneous n-component and heterogeneous
(n —1)-component nucleation.

For saddle-point nucleation only the quadratic ap-
proximation of G(n) is needed in addition to the ap-
proximations mentioned above since the stationary
Fokker-Planck equation can be solved exactly for a
quadratic barrier. For ridge nucleation, approxima-
tions concerning the nucleation path are needed in
addition to the expansion of G(n) around the "nu-
cleation points" in the valley and on the ridge. The
derivation of the higher-order asymptotic terms
(e.g., by a more accurate consideration of the flux
direction on the ridge) is straightforward but tedi-
ous.

Therefore, other methods to check or to improve
the approximations used for ridge nucleation are
desirable. A heuristic check consists of considering
the results of an application, e.g., to the nucleation
of gas bubbles under gas and vacancy supersatura-
tion. For this case the smooth behavior of the ac-
tivation free enthalpy of nucleation at the transition
indicates that the ridge approximations are reason-
able. Another possibility is a numerical study of nu-
cleation across a special ridge of simple analytical
form (e.g. , with only one cubic term). A method
which allows improvements of the approximations
consists of the variational principle related to the
stationary Fokker-Planck equation resulting in the
principle of maximum nucleation rate. Finally, it
should be emphasized that the transition from
saddle-point to ridge nucleation is not a rare but a
rather common phenomenon in nucleation kinetics.
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