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Calculation of relaxation functions: A new development within the Mori formalism
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The problem of expanding the correlation functions into continued fractions is considered
in the light of a Mori-type formalism. First, we examine the techniques available in the
literature for extracting the parameters of the Mori chain from the moments; then, on the
basis of physical considerations, we provide a new surprisingly simple and efficient tech-
nique and discuss its significance. Some examples are given to illustrate the elegance and
the convenience of our procedure.

I. INTRODUCTION

In the past few years there has been a growing in-
terest in the foundations of the methods for calcu-
lating correlation functions and spectra. ' It would
be impossible to mention here all possible ways to
approach the actual physical problems in that they
come from very different areas of research, which
are often of an interdisciplinary nature. However,
among the leading formalisms in the literature, a
particular importance is recognized to the Mori
theory, the Pade approxim ants, the Lanczos
method, the recurrence method, and the general-
ized method of recurrence relations.

At first sight it would seem that each approach
involves completely different theoretical back-
grounds; but to a less superficial examination it is
apparent, though sometimes not yet explored in
depth, that these approaches are closely related to
each other. For example, a connection can be estab-
lished between the Lanczos method and the Pade ap-
proximants, ' ' and furthermore, the latter method
can be related to those inspired to the Mori theory.
The recurrence method of Haydock, Heine, and Kel-
ly, which has assumed so much importance in the
calculation of electronic states in disordered sys-
tems as well as of phonons, ' and the generalized
method of recurrence relations have significant
overlaps, whose ultimate consequences are still to be
explored; on the other hand, the generalized method
of recurrence relations, although it is an alternative
to the Mori formalism, borrows from the latter im-
portant concepts such as that of random forces and

their dynamics.
From the above considerations it is evident that

the Mori formalism plays a central role in the prob-
lem of the calculation of relaxation functions. In
our opinion, this is so because the methods based on
a Mori-type theory enjoy the extra bonuses which
come from a foundation mainly physical in nature
rather than mathematical. This provides, for exam-
ple, a firm theoretical basis on which new ap-
proaches for dealing with many-body problems,
such as the reduced model theory" for phonon
thermal baths' and the "doorway method"' in
spectroscopic problems, may be constructed. But an
even more important bonus of the Mori theory is its
extension'" to the case of a non-Hermitian Liouvil-
lian, which allows a new set of problems to be faced,
and which includes nonequilibrium properties be-
sides standard equilibrium ones.

Although the generalized Mori theory is such a
powerful theoretical tool to provide a continued-
fraction expansion of correlation functions, the situ-
ation is not yet satisfactory under the technical, but
rather subtle, aspect of an explicit evaluation of the
parameters of the Mori chain. It is unpleasant that
so important a theoretical tool encounters in several
situations serious difficulties under this aspect.

In this paper we first examine the technique
adopted in the literature for obtaining the parame-
ters of the Mori chain. Except for particular though
relevant models (for instance, the tight-binding
Hamiltonian of Haydock, Heine, and Kelly or the
Kubo stochastic oscillator' ' ), the standard way for
obtaining the parameters of the Mori chain exploits
the knowledge of the spectral moments, with tech-
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niques essentially based on the mathematical results
of Dupuis. ' Then we provide a new, simple, and
efficient technique, exploiting only the physical
foundation of the Mori theory. A couple of exam-
ples are given to illustrate the convenience of the
new procedure.

II. THE GENERALIZED VERSION
OF THE MORI THEORY

A. Survey of the generalized Mori theory

The Mori theory is having an increasing success
in the interpretation of a number of relaxation phe-
nomena; its recent and appealing generalized ver-
sion' has further attracted the attention of research-
ers in the field of correlation functions. To make
this paper reasonably self-contained, we shall con-
cisely survey some relevant points, referring the
reader for a complete account to Refs. 1 and 15.

Consider a dynamical variable A, whose time evo-
lution A (t) is given by

d—A =iLA .
dt

Notice that the dynamical operator L does not
necessarily coincide with the rigorous Liouvillian
operator of the many-body system under study. As
shown in Ref. 12, the Mori theory itself can be used
to replace the rigorous operator iL with an
"equivalent" Fokker-Planck —type operator. ' The

I

advantage of this approach is to significantly reduce
the amount of degrees of freedom, since the friction-
al and diffusional terms of the Fokker-Planck —type
operator simulate indeed an infinite number of
them. Basically, the same ideas are behind the
works of other authors. ' This explains why it is
important to extend the Mori theory to situations
without a definite symmetry (dynamical operator L
neither Hermitian nor anti-Hermitian).

The generalization of the Mori theory can be ar-
rived at as follows. First of all, as in the standard
Mori approach, a suitable scalar product concerning
variables is defined in the form

&a
i

a &
= JW '(r)a(r) W(r)d r, (2)

Notice that also nonequilibrium properties such as
&A (t) & can be expressed under the form of a corre-
lation function. In such a case W(l ) is not an
equilibrium distribution, thereby destroying the
eventual Hermitian property of L with respect to the
scalar product of Eq. (2).

It is convenient to construct a biorthogonal set of
vectors and the corresponding projection operators

where W(I ) is an appropriate weighting function so
as to perform averaging operations, A and B are two
generic variables of the coordinates I of the physi-
cal space under study. We are interested in evaluat-
ing the correlation function

&a iw(t)& &w ie"'ia&

0 - ~ 0

ifi&=(1—Po)iL Ifo&, &fii =&foiiL(1 Po)
Ifi &&fi I

(4)

if2&=(1—Pi)(1 Po)iL f, &, —&f2 i
=&f, iiL(1 —Po)(l —Pi) Pp—=&flf, &

'

etc. By a suitable extension of the standard Mori approach, we obtain for the motion of the variables
i f; (t) &

the interdependent integral equations:

—
i
f;(t) & =&;

i f;(t) &
—&;+i I C;+ i(t —r)

i f;(~)&«+
i f;+ i(t) &,

where

2

&f, i
iL if, )

&f

&f;+i if +i t

and
i f;+,(t) & is driven by the projected Liouvillian
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C;(r)—=A,;4;(r) 6, +, —4;+,(r r)4;(r—)dr,
t

By Laplace-transforming Eqs. (9) we finally arrive
at the continued-fraction expansion

40(z) =
Z —A,p+

Q2

Q2
Z g1+

Z —A2+

(10)

B. Mathematical procedures for the evaluation
of the continued-fraction parameters

The direct evaluation of the Mori chain parame-
ters A,; and b,;, expressed formally by Eqs. (6) and

(7), becomes so tedious in most practical situations
that one seeks to limit the direct evaluation to the
first few steps only. The best way to cope with the
problem at this time is to proceed through the intro-
duction of a set of orthogonal polynomials and ex-
ploit the properties of the Hankel determinants. We
call this mathematical procedure the Dupuis algo-
rithm' from the author who first gave a detailed ac-
count of it, although several papers' ' have given
important contributions in this field.

The Dupuis algorithm for extracting the parame-
ters of the Mori chain from the knowledge of the
spectral moments

Sn = (fo
~

('L)"
~ fo)

can be outlined as follows.

The physical meaning of Eq. (5) is quite appeal-
ing. Equation (5) is a generalized Langevin equa-
tion. The motion of

~
f;+i(t)) depends on the in-

teraction with the following infinite states of the
Mori chain, thereby making often its explicit evalua-
tion practically inacessible. The variable

~
f;+i(t))

can therefore be regarded as being a stochastic force
related to the memory kernel 4;+1 by the
fluctuation-dissipation relationship embodied in Eq.
(5) and (8); we will exploit these physical aspects
later in the paper.

It is convenient to multiply Eq. (5) by (f; on the
left. Using Eq. (8), we then obtain the hierarchy of
equations for the memory functions:

2
t

4p(r) =Ap@p(r) —6i 4 i(r —T)C p(r)dv,
dt 0

(9)

One introduces the Hankel determinants
(D i—= 1)

$0 $1

$1 $2
D„=

Sn

Sn+1
(n)0) . (12)

Sn Sn +1 $2n

One then defines the orthogonal set of polynomials
P„(k) given by [Po(A, ) =1]:

P„(A, ) =
Dn-1

SP $1

$1 S2

Sn —1 Sn

Sn

Sn+1

S2n —1

(n & 1) .

P [A,P;(A, )P;(A,)],
D;

—D;Di —2/D;

(14)

(15)

The Dupuis expression (15) for b,; is much more
convenient from a computational point of view than
the corresponding Mori expression (7); but the Du-
puis expression (14) for the A,; is still of limited help.

However, one can further simplify Eq. (14) by in-
troducing the modified Hankel determinants

Rn=

$0

$1 $2

Sn —1 Sn

Sn+1 Sn+1

Sn.

Sn+1

$2n —1

$2n+1

(n & 1) .

Manipulating Eq. (14), it is possible to arrive at the
expression

Rg

D;
(i&1),

D;
(14')

with A,o=—s1. It is interesting to note that the same
result (14') can be arrived at in a completely in-
dependent way

' through the construction of a Jaco-
bi matrix.

Equation (14') and (15) constitute the most con-
venient expressions presently available for actual

(13)

A scalar product for polynomials is defined as

2 (co+ciA, +c2A, + .
)

:—COSO+C1$1+ C2$2+

After some lengthy algebra it can be shown' that
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calculations. But, despite the elegant simplicity of
expressions (14') and (15), this difficult problem is
not yet at its final stage, and rather it offers a new
challenge. In fact, a solution which proceeds
through the evaluation of Hankel determinants be-
comes rapidly ill conditioned as the order n in-
creases. For instance, if one applies the Hankel-
determinant procedure to the moments of a Gauss-
ian spectrum, one gets unreliable parameters as n

approaches ten, or so. Neither the use of double or
more extended precision arithmetic, nor the intro-
duction of an optimized time scale can avoid this
difficulty.

C. A new physical procedure for the evaluation
of the continued-fraction parameters

The Dupuis algorithm and other similar treat-
ments are basically founded on mathematical con-
siderations, and do not exploit the physical implica-
tions embodied in the hierarchy of Eqs. (9). In this

I

—b, i 4i(t r)4—p(r)dr .
0

(16)

Then we expand in the Taylor series both the corre-
lation function 4p(t) and its memory function 4i(t):

(17a)

00 0"

4,(t)= g
0 n!

(17b)

The convolution integral appearing in Eq. (16) can
be written as follows:

section we give a new and simple way for extracting
the parameters of the Mori chain from the mo-
ments.

We start from the first equation of the hierarchy

C—p(t) =Apd&p(t)
d

n) k
" 1f 4,(t r)4&p(r—)d~= f dr g o„$ ' t" "( r) $ —s~v

n=p ' k=p m=0

1
n

( 1)k tn im+i

p m! "
k p k!(n —k)! m+k+1

Using the identity

( —1)" m!

p k!(n —k)!(m+k+1) (m+n+1)!

we obtain

f 4, (t ~)C p(~)d—r = g g o„s™
(n +m +1)!

tn+m+1 (18)

AP —$1

A2 2F1=$1—$2,

(19a)

(19b)

$1$n+1 Sn+2o„= 2
—g oks„k if +&0,

$1 —$2 k 0

(19c)

sn =si (19d)

Equations (19) constitute the basically new (and
elegant) result of this paper, which allows an effi-

Replacing Eqs. (17) and (18) into Eq. (16), and com-
paring term by term the coefficients of the same
power in t (remember the implicit assumption
sp —=o'p= 1 ), we obtain the following results:

cient and stable procedure for calculating the
parameters of the Mori chain. Suppose that the first
n moments of a correlation function are known.
Then we can say the following:

(i) The first parameter A,p of the Mori chain equals
$1.

(ii) The first parameter 6 of the Mori chain
2

1

equals $1 —$2.
(iii) The first n 2momen—ts of the memory func-

tion are trivially given by Eq. (19c) (except in the
very particular case of exact truncation b, i

—=0).2=

At this stage the procedure can be repeated for the
memory function itself, and the next step parame-
ters of the Mori chain can be easily worked out.
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Our procedure comes to an end when the knowledge
of n moments is fully exploited or if a 6; parameter
vanishes. The latter case implies a severe constraint
on all residual moments, which are automatically
fixed by such an event.

(n —1)!!
(n +2)!!

(22)

As a second example we consider the Hubbard
model. In this case the moments s„are given by

III. A FEW ILLUSTRATIVE EXAMPLES

In this section we give two illustrative examples
of the new procedure in order to make transparent
its simplicity. We consider the case of the Gaussian
spectrum and of the Hubbard model.

In the case of a Gaussian spectrum the moments
s„are given by

s„=(—1)"~ [(n —1)!!]8" (20)

for even n, and are zero for odd n„B is the root-
mean-square amplitude of the Gaussian distribution
(I/v 2n.B)exp[ E /28 —]. The first few moments,
if we measure the energies in units of 8, are

Sp=1, S2= —1~ $4=3, S6= —15

s 8 ——105, s &p
———945,

(21)

C&o(z) = 1

B2

2Bz+ z+ ' ~ ~

etc.
If we calculate the IIankel determinants (12) using

the moments (20) or (21), we verify by inspection the
ill-conditioned nature of the Dupuis procedure; we

have in fact, for instance D5 ———0.3456 && 10,
D~p ———0.6658X10, and D&4 ———0.6911'10 . If
instead we apply our procedure summarized by Eqs.
(19), we have Ao

——0, Ai =1, o2 ———2, o4 ——10,
o6 ———74, 0.

8 ——706, etc. It is straightforward to ap-

ply our procedure more and more, and verify direct-
ly for a number of steps that b,„=n. We thus arrive
at the well-known continued-fraction expansion of a
Gaussian function

ko(z) = 1

B /4
B /4z+ + ~ ~ ~

which can be exactly summed up with the methods
discussed, for instance, by Turchi et al. These ex-
amples show operatively how flexible the computa-
tion of the Mori parameters is from Eqs. (19) once a
number of moments are known.

IV. CONCLUSIONS

In this paper we have provided a new method for
extracting the parameters of the Mori chain from
the knowledge of the moments. The novelty of our
procedure is that it fully exploits the physical impli-
cations of the Mori formalism. The simplicity and
the elegance of the results of this paper further
strengthen the leading role that the Mori-type for-
malism is having in the theory of relaxation.

for even n, , and are zero for odd n; the moments can
be easily obtained starting from the parabolic spec-
tral density (normalized to 1) (2/rrB )(8 E)'—~

for ! E
~

&B. The first few moments are so=i;
I 2 1 4 5 6 7 8

s2 ————B, s4 ———B,s6 ———~ B,s8 ———B, etc.
If we apply our procedure summarized by Eqs.

(19), we have Ac
——0, b, i —,8; t——72

—— ,8,——
o4 ———,B, 06————,4 B, etc. In this case we see that
the memory kernel coincides with the correlation
function; this interesting result is a by-product of
our unorthodox manner to face the model. We ar-
rive at the continued-fraction expansion
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