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Transverse elastic waves in periodically layered infinite and semi-infinite media
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The propagation of transverse elastic waves both perpendicular and parallel to the lam-
inations of infinite and semi-infinite periodically layered media is studied. The displace-
ment fields and the dispersion relations for such waves are obtained analytically, and the
latter are solved numerically to yield the corresponding dispersion curves. It is shown that a
semi-infinite medium layered periodically parallel to its stress-free surface can support shear
horizontal surface acoustic waves that have no counterpart in a homogeneous medium. Fi-
nally, the dynamical elastic Green s function for a semi-infinite medium layered periodically
parallel to its stress-free surface is obtained, and its possible application to Brillouin scatter-
ing studies of the surface acoustic waves on such a medium is discussed.

I. INTRODUCTION

The propagation of acoustic waves through lay-
ered media has been the object of a great deal of
theoretical study over the past 70 years. The
motivation for much of the earlier work was the
desire for an accurate description of the propagation
of seismic shocks through Earth's crust, whose den-
sity and elastic properties vary with distance from
the surface of Earth. This more or less continuous
variation of the material parameters of Earth's crust
was modeled by first neglecting the curvature of
Earth's surface as large compared with the wave-

lengths of the disturbances of interest, and then re-
garding the crust as a stack of homogeneous elastic
plates, each with its own elastic moduli and density.

The study of elastic waves propagating in such
layered media, parallel to the surface, was thus re-
duced to the solution of the equations of motion of
elasticity theory for the displacement field in each
layer, and the satisfaction of the boundary condition
at each interface. In general, the latter step yields
the dispersion relation for such waves.

In the kinds of calculations described in the
preceding paragraph there was usually no particular
regularity in the thickness of the successive layers
nor in the variation of the material properties from
layer to layer. The number of layers treated was
limited by the computational resources available.
Good summaries of these kinds of calculations are

contained in books by Ewing et al. ' and Bre-
khovskikh. 2

With the development of techniques for fabricat-
ing artificial semiconductor superlattices consisting
of a periodic sequence of very thin layers of, for in-

stance, two different materials such as InAs-GaSb
(compositional superlattices) ' interest is beginning
to turn to the study of elastic waves in such periodi-
cally modulated structures.

Even before the advent of such artificial superlat-
tices elastic wave propagation in a medium that con-
sists of alternating layers of two different materials
had been studied theoretically by several authors.
The focus of much of this work was on the deter-
mination of the effective elastic moduli of such lam-
inated media which, in general, are now anisotropic,
even if the lamina out of which they are constructed
are themselves anisotropic.

While such an approach to wave propagation in
periodically layered systems, usually called an effec-
tive modulus theory, simplifies all subsequent calcu-
lations based on its results, it has the drawback that
it predicts bulk and surface waves that are non-
dispersive, while calculations that take the lamina-
tions into account explicitly yield dispersive
behavior. Recent work dealing with such systems
has avoided the use of effective modulus
theories. '

In this paper we seek to add to the literature deal-
ing with elastic wave propagation in layered media
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by considering several structures and propagation
conditions that do not appear to have been investi-
gated up to now. The emphasis in this work is on
obtaining results analytically as much as possible, al-
though computer calculations are ultimately re-
quired to translate these analytical results into more
easily understood plots. On the basis of continuum
theory, we study here the propagation of transverse
elastic waves both perpendicular and parallel to the
laminations of infinite and semi-infinite periodically
layered media.

After an introductory discussion of the propaga-
tion of transversely polarized elastic waves in an in-

finitely extended layered structure, in Sec. II, we
study the effects on these waves, of introducing vari-
ous types of boundaries into the structure. Specifi-
cally, we consider the cases of a semi-infinite layered
medium, in which the laminations are parallel to the
stress-free surface of the medium; a semi-infinite
layered medium in contact with a semi-infinite
homogeneous medium; and a semi-infinite layered
medium in contact with an elastic film. Of particu-
lar interest are the surface and interface acoustic
waves that can propagate in these structures. The
theoretical results obtained in Sec. II are illustrated

by numerical calculations in Sec. III for specific ex-

amples of the various structures considered. In Sec.
IV we present a determination of the dynamic elas-

tic Green s function for a semi-infinite medium lam-

inated periodically parallel to its stress-free surface.
This function describes the dynamic response of the
medium to a time-dependent, externally applied
point force in it, and can be used in calculations of
various physical properties of the medium, including
Brillouin scattering of light from thermally excited
elastic waves. The conclusions reached on the basis
of the work described in this paper are presented in
Sec. V.
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FIG. 1. Infinitely extended periodic layered structure.
We consider waves propagating in the x&x2 plane with

displacement in the x2 direction.

motion in the umprimed media for the displacement
u2(x] x3 t) may be written

a' a'
u( 2)x) 3xpt) =cg ~ + up( x), x3yt)

Bx3

Substitution of Eq. (2.2) into Eq. (2.1) gives

2

(c, k3 —co )u2(x& ) =c, 2 uz(x &) .~ a

Bx )

The general solution of this is clearly

u2(x&)=A+e ' '+A e

where

(2.3)

(2.4)

(2.1)

We initially look for a solution of a plane wave form
with propagation along x3. Thus, let

& (k3x3 cot)
uz(x„x3, t)=e uz(x~) . (2.2)

II. THEORY
ai ——[k3 —(co /c, )]' (2.5)

We initially consider propagation of transverse
elastic waves in an infinitely extended layered struc-
ture. We will then consider the effects on these
waves of introducing various types of boundaries
into the structure.

The geometry of our problem is illustrated in Fig.
1. The elastic properties of the media of thickness
d~ are described by two parameters —the density p
and the transverse sound velocity ct. In the media
of thickness d2 the density is p' and the transverse
sound velocity is c,'. We consider transverse elastic
waves where the displacement is in the x2 direction,
parallel to the plane of the layers. The propagation
direction is in the x&x3 plane.

With this assumption, the elastic equation of

However, due to the periodicity of the layered struc-
ture in the x~ direction, we want our solution for
u2(x~) to be in the form of a Bloch wave. Thus
uq(x~ ) must have the form

iqx Iuq(x~)=e uz(q, x&),

where

u2(q, x()=up(qx)+L) .

(2.6)

(2.7)

u2(q, x, )=e '(A+e ' '+A e ' ') . (2.&)

We must make uq(q, x
&

) a periodic function with

Here 1.=d &+82 is the period of the structure in the
x

&
direction.

From Eqs. (2.4) and (2.6) we may find uz(q, x
&
):
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period L. We can do this by replacing x& by
x

~
—nL when x& is in the nth layer, where n indexes

the layers as shown in Fig. 1. This redefines the ar-
bitrary constants A+ and A . Thus

—iq(x
&

—nL)
u3(q, x~ ) =e

a&(x
&

—nL) —a&(x& —nL)
l&&(A e ' ' +A e

(2.9)

where

a&pc, (A+e ' ' —A d ' ')=a3p'c, ' (B+—B ) .

Continuity of displacement at x ~
——nL gives

(2.17)

A++A =e 't (B+e ' +B e ' ') . (2.18)

Continuity of stress at x
&
——nL gives

a pc, (A+ —A )
2

nL &x& &nL+d~ . (2.10) (2.19)

It is easily seen that uq(q, x&) in Eq. (2.9) satisfies
the periodicity condition of Eq. (2.7). Thus, using
Eqs. (2.6) and (2.9) we find

Equations (2.16)—(2.19) are four equations in the
four unknowns A+,A,B+,B . The solvability
condition yields an implicit dispersion relation for co

as a function of q and k3. We find

when

nL &x& &nL+d~ .

(2.1 1)

(2.12)

cos(qL) =cosh(a~d ~ )cosh(a2dz)

+ , (F+ 1/F—)sinh(a &d ~ )sinh(a qdq ),
(2.20)

Similarly, one may obtain an expression for the dis-
placement in the primed regions

iqnL(B 2 1 1

where

2
a~pc,

Q2P Ct
(2.21)

—a&(x& —nL —d t )

)+B e

where

and

ap ——[k3 —(e) /c,
' )]'~

nL+d& &x& g(n+1)L

(2.13)

(2.14)

(2.15)

In general the dispersion relation giving co as a func-
tion of k3 and q must be found numerically from
Eq. (2.20). This relation has been obtained earlier in
Ref. 17.

We may now consider the effects of introducing
additional boundaries into the structure of Fig. 1.

A. Boundaries at x3 ——kd/2
There are now four arbitrary constants

A+, A, B+, and B which determine the dis-
placement field. To find these constants and to
determine the dispersion relation, we employ the
boundary conditions at the interfaces between the
different elastic materials. The boundary conditions
are (1) the continuity of displacement and (2) the
continuity of the normal components of the stress
across the interface. Condition (2) is that
T», T&2, and T&3 be continuous. Of these only T~2
is nonzero for the wave considered here. T&2 is
given by pc, (Buq/Bx ~) in the unprimed media and
by p'c,'

(Bu &/c)x, ) in the primed media.
Continuity of displacement at x ~

——nL +d
&

gives

(2.16)

, Bu, (x„x„t)
T32 ——pc]

BX3 x3 ——+d/2
=0, (2.22)

if x
&

lies in the unprimed media, and

~ Bu~(x),x„t)
T32 ——p'ct

Bx3 x3 ——+d/2
(2.23)

if x& lies in the primed media. It is easy to see that
one way to satisfy these boundary conditions is to let

This geometry is shown in Fig. 2. We now must
consider the boundary conditions at x3 ——+d/2.
The stress-free conditions at these two surfaces re-
quire that T3~, T32, and T33 be zero. For the wave
considered here only T32 is not identically zero
everywhere. Thus we must have

Continuity of stress at x
&

nL+d
&
gives——

uz(x&, xz, t)=cos(k3x3)e ' 'uq(x~),

where k 3 is quantized by

(2.24)
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FIG. 2. Slab composed of a periodic layered structure.
We find solutions with a standing wave character in the

x3 direction and propagating in the x
&

direction.
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Similarly there is also a solution

Q3(x) x3t)=sin(k3x3)e ' 'u2(x) )

where k3 is quantized by

(2.25)

(2.26)

FIG. 3. Semi-infinite periodic layered structure. Propa-
gation is in the x3 direction, parallel to the surface.

k3 —— , n =1,3,5. . . .
d

(2.27) In the primed region [nL+d( &x( & (n +1)L] the
displacement now has the form

It is now easy to show that the dispersion relation
for the modes in the bounded layered structure of
Fig. 2 is still given by Eq. (2.20), but with a), a3,
and F depending now on the quantized values of k3.

+B e )—

a&(x& —nL —d& )
(2.29)

B. Semi-infinite layered geometry

We next consider the semi-infinite layered
geometry illustrated in Fig. 3. In this case we no
longer have perfect periodicity in the x& direction,
the direction normal to the layering. As a result,
Eqs. (2.11) and (2.13) are no longer valid.

Instead, we now look for surface wave solutions,
i.e., solutions that are localized near the surface of
the semi-infinite layered structure and which decay
exponentially as one travels through the layers away
from the surface. Thus, in the unprimed region
(nL &x) &nL+d) we replace Eq. (2.11) for the dis-
placement by

pnL(+ a&(x) —nL) +
—a&(x& —nL))

(2.28)

The constant p governs the exponential decay of the
displacement field as one penetrates into the stack.
Exponential increase is excluded by requiring P y 0.

It is readily seen that Eqs. (2.28) and (2.29) satisfy
the differential equations of motion in the appropri-
ate regions. We proceed by matching the expres-
sions for the displacement in the various regions
through the use of the boundary conditions.

To obtain the surface wave dispersion relation, it
is sufficient to consider the boundary conditions
along three interfaces: (1) xz nL, (2) X3 ——nL +d), ——
and (3) x2 ——0. The application of the boundary con-
ditions at x2 ——nL and x2 ——nL +d& gives a set of
four equations for A+, A, B+, and B which are
identical to Eqs. (2.16)—(2.19) except that iq is re-

placed by —p everywhere. If the coefficients
B+ and B are eliminated from this set of four
equations, we obtain two equations for A+ and A

=0.(I+~)(e ' ' e~ e ' ') (1——+)(e ' ' — ~ ' ') "+
(1 P)(e 1 1 e PL 2 2) ( I+—y')(e & & e PLe 2 &) A— (2.30)

The remaining boundary condition is that the sur-
face xz ——0 be stress free. For the geometry con-
sidered here this condition is that T~2 ——0 at x2 ——0.
This leads to

a)A+ —a)A =0 . (2.31)

Equations (2.30) and (2.31) provide three equations
for the three unknowns P, A+, and A . Solving
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these equations we obtain an implicit dispersion re-
lation

F tanh(a~d ~ )+tanh(azd2) =0

and the equation for the decay parameter P

cosh(aidi)—PL

cosh(a2d2)

(2.32)

(2.33)

X( =0

X) =d(

p, Ct

p, Ct

co =cbk~t(1 ebk(~) ~—

where

2 d )c44+d2c44
cb =

d ~P+d2P'

and

(2.34)

(2.35)

In general Eq. (2.32) must be solved numerically to
obtain the dispersion curves. We will find that
several different types of solutions are possible. For
some solutions a~ will be imaginary and a2 will be
real, and we can have a surface wave of the layered
structure composed of surface waves in one film and
bulk waves in the other film. Other solutions will
have both e& and a2 imaginary and we will then
have a surface mode of the layered structure com-
posed of bulk standing waves in each film.

In the limit that a~d& and a2d2 are small, and to
low order in k~~ one may obtain an analytic solution
for the dispersion relation for the surface mode. We
find that in this limit the bottom of the bulk band is
given by the equation

X(=d(+dp

X) = 2d(+ dp

I I

p, Ct

p, Ct

I I

p~Ct

XI
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FIG. 4. Semi-infinite periodic layered structure in con-
tact with an elastic half-space.

this structure there are localized elastic waves near
the interface between the layered structure and the
semi-infinte elastic medium. These waves corre-
spond to bulk standing waves in the unprimed medi-
um, and decaying solutions in the unprimed medi-
um. A simple solution for the dispersion relation
may be obtained:

2

E'b =
Id &d2c44c44 d&c44+d2c44

12 dic44+ I2c44

(1/c, —1/c,' )

(d ip+d2p)
(2.36)

u'=c,2 k2+
Gf ]

The parameter a& is given by

n =0, 1,2, 3, . . . .

(2.38)

The frequency of the surface wave is given by
a~ ——in~/d &, (2.39)

~s cbk(/(1 4~bk/[) (2.37)
which corresponds to standing waves of differing or-
ders. The decay parameter P is given by

Comparing Eqs. (2.37) and (2.34) we see that this
surface mode lies below the lowest bulk modes.
From Eq. (2.33) we find that this mode exists only if

I

tX282P= for n even,I.
CX282

P= + f rnoodd.

(2.40)

(2.41)

C. A semi-infinite layered structure in contact
with a semi-infinite homogeneous

elastic medium

The geometry is illustrated in Fig. 4. The calcula-
tion is similar to that of the preceding section except
that at x& ——0 one must match the displacement and
stresses in the semi-infinite medium to those in the
layered structure.

We present here only the results We find t.hat for

In order that P have a real part, a2 must be real.
Since

2 1/2

(2.42)

this restricts the number n of standing modes al-
lowed. We obtain
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n&
kd) c,'~ —1

C2

' 1/2

(2.43)
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2

0
di
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P ci
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D. A semi-infinite layered structure in contact
with an elastic film

3di~+d~
3di—+2dz2

p, C,

pi Cl

The geometry under consideration is illustrated in
Fig. 5. The calculation is similar to that of Sec. II B
except that the free surface is now at xt ——d, /2,
where d, may range from —d i to +d&. Thus the
width of the last layer near the surface can now be
different from that of the same kind of material in
the bulk.

We find for this structure that the dispersion rela-
tion fo the surface waves is given by

p, C,

I I

p, Ct

P ct

x,

FIG. 5. Semi-infinite periodic layered structure in con-
tact with an elastic film.

sinh(a~d ~ )cosh(azdq)+ —,(F+F ')cosh(a&d
& )sinh(azdq) ——,(F—F ')cosh(a~d, )sinh(azdz) =0, (2.44)

together with the condition

cosh(azdz) F F—' sinh(azdz)
sinh[a)(d)+d, )] & 1,

cosh a&d~ 2 cosh a)d)
(2.45)

co, =cbk3[1 (eh+a~)—k3]

where

(2.46)

which ensures that one has exponentially decaying
solutions inside the layered structure.

In the limit k3~0, one may obtain an explicit
dispersion relation of the form

E' =3E'bd /d i (2.47)

The use of Eq. (45) then gives the existence condi-
tion for the surface wave with dispersion relation
given by Eq. (246). If c, &c,' the surface wave ex-
ists if d, & 0 (thinner surface layer than in the bulk).
If c,

'
& c„one must have d, & 0 (thicker surface layer

than in the bulk).
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III. RESULTS

c~ (10"dyn/cm ) p (g/cm ) c, (10 cm/sec)

Nb
CU

2.87
7.53

8.57
8.92

1.83
2.905

We now illustrate the theoretical results obtained
in the preceding section by calculations for specific
examples of the various geometries considered. Un-
less otherwise indicated the calculations here are
performed using the following parameters, which
are appropriate for a Nb-Cu layered structure:

0
0 2 4 6 8

kid)
FIG. 6. Dispersion relation for transverse elastic waves

propagating in the infinitely extended layered structure
shown in Fig. 1. Calculations are performed with
d l

——1000 A of Nb and d& ——500 A of Cu.

The behavior of Rayleigh waves on a Nb-Cu super-
lattice has been studied recently both experimental-
ly' and theoretically. '

We first consider the infinitely extended layered
structure illustrated in Fig. 1. The implicit disper-
sion relation, Eq. (2.20) was solved numerically and
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I I

n=0
I I I

n=l
I I I

n= 2

0I
U~ IO

Cl

O

3

the results are shown in Fig. 6. Here we plot fre-
quency versus k3d&. We see in this figure that the
dispersion curves essentially break up into different
bands depending on the value of qI. where q is the
component of the wave vector perpendicular to the
layering. The band edges occur at qI. =nm, where
n=0, 1,2, . . . . The boundaries of the bands are
drawn with solid lines. The nearly horizontal dotted

20

0 I I I I I I

0.0 0.5 I.O 0.0 0.5 I.O 0.0 0.5 I.O

qL (units of vr}

FIG. 7. Dispersion relations for the first three standing
modes in the slab geometry of Fig. 2. Note the gaps at
the zone edges. Calculations are performed with

d~ ——1000 A of Nb and d2 ——500A of Cu. The thickness
of the slab is 2000 A.

lines show the dispersion curves with qI. /m in-
creased incrementally by 0.2 as one moves up in fre-
quency away from the band edges.

In Fig. 7 we plot the dispersion relation for the
slab geometry illustrated in Fig. 2. As we saw in the
preceding section, the wave vector perpendicular to
the slab, k3, is quantized by k3 ——nm/d where d is
the thickness of the slab. Each value of n corre-
sponds to a different standing mode. In Fig. 7 the
dispersion relations for the first three standing
modes are presented in the reduced zone scheme.
We see that as the order of the mode increases, the
frequency of the wave increases for a fixed qL. Also
there are gaps at the zone edges (qL =0, 1). These
gaps correspond to frequency regions where propa-
gation is not allowed. The position and width of
these stop bands can be easily varied by changing
the thickness of the slab.

We next turn to the results for surface waves on
the semi-infinite layered structure. First, we consid-
er the case c, &c,'. Equation (2.32) was solved nu-
merically and the results are presented in Fig. 8. In
this figure, the bulk bands are the shaded regions,
and the surface modes are shown by dotted curves.
The surface waves are found to exist below the
lowest bulk band, and in the gaps between bulk
bands. The surface waves in the gaps between the
bulk bands were found earlier by Auld et al. ' using
a different method.

The surface mode lying below the lowest bulk
band is similar to Love waves in several respects.
First this surface mode of the layered structure has
a sinusoidal variation through the thickness of the
material with the lower transverse sound velocity,

l5

O
Cl

2 IO
0
0
3

0
0

k~dI

FIG. 8. Dispersion curves for surface modes in the
semi-infinite layered structure shown in Fig. 3. Dotted
lines show the surface modes. Shaded areas show regions
where bulk modes propagate. The lowest-frequency sur-
face mode merges with the bulk band at k~d 1

——0. Calcu-
lations are performed with d ~

——1000 A of Nb and
d2 ——500 A of Cu.
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FIG. 9. Displacement patterns for surface modes. (a)
shows the displacement of the surface wave at
k3d] —0.5,co = 1.12 &( 10' rad/sec and (b) shows the dis-
placement for the surface wave at k3d ~

——0.5,
co=8.76' 10' rad/sec.
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FIG. 10. Dispersion curves for the semi-infinite layered
structure shown in Fig. 3 but with c, &c,'. Dotted lines
show the surface modes. Shaded areas are the regions
where bulk waves propagate. Calculations performed
with d

&

——1000 A of Cu and d2 ——500 A of Nb.

and an exponential decay through the thickness of
the material with the higher transverse sound veloci-
ty. Also this surface wave exists only when the
outermost medium has the lower transverse sound
velocity. In the large k3 limit the velocity of this
mode approaches the transverse sound velocity in
the outermost (slower) medium.

In contrast, the surface modes that lie between the
gaps of the bulk modes have sinusoidal variations
through the thickness of both materials, and these
surface modes may also exist even if the outermost
medium has a higher transverse sound velocity.
Sketches of the spatial variation of the displacement
for the two types of surface waves are presented in
Fig. 9.

In Fig. 10 we present dispersion curves for the
case c, &c,'. Here there is no surface mode which
lies below the lowest bulk band. There are, however,
surface modes which lie. in the gaps between bulk
bands.

To this point, we have held the ratio d&/d2 ——2.
We have also performed calculations for different
values of d ~ /d 2. The general features of the
solutions —a set of bulk bands with surface modes
lying in the gaps and below the bulk bands —do not
change upon varying d&/d2. However, the position
of the surface modes within the gaps can be strongly
altered by changing d ~/d2.

We do not give an example for the structure illus-
trated by Fig. 4 (a semi-infinite layered structure in
contact with a semi-infinite elastic medium) since
the equations are quite simple in this case.

-0.5 0 0.5 I.O

-d
S

dl

FIG. 11. Dispersion curves at k3 ——0 for the structure
shown in Fig. S. Shaded regions show the frequency
range for propagation of bulk waves. Solid lines show the
surface waves for a GaAs/A1As structure when GaAs is
on the surface. Dashed lines show the surface modes of a
GaAs/A1As structure when A1As is the surface layer.

We illustrate the solutions for the structure given
in Fig. 5 (a semi-infinite layered structure in contact
with an elastic film) below. We give in this section
curves calculated for a layered structure of GaAs
and A1As. We assume that both materials have the
same value of C44, taken to be that of GaAs, and
differ only by their densities. We take
p(A1As)/p(GaAs)=0. 7. Figure 11 displays the dif-
ferent types of surface modes one obtains (in the
limit k =0) at the surface of a layered structure as a
function of —d, /d&. Note that when —d, /d, =1,
the free surface is at x

~
———d

& /2, and when
—d, /d ~

———0.5, the surface is at x ~

——d
&
/2. Sur-

face modes were found in the first three gaps for
two cases: (1) when the surface layer is made of
GaAs (solid lines) and (2) when the surface layer is
made out of A1As (dashed lines). Bulk waves lie
within the shaded regions.

A more detailed study of these surface waves in
GaAs and Ga„A1~ „As layered structures will ap-
pear elsewhere.

IV. GREEN'S FUNCTIONS FOR THE
SEMI-INFINITE LAYERED STRUCTURE

For many problems of physical interest, it is use-
ful to have the Green's function for the system of
interest, viz. , the response function to an external
perturbation. The Green's function may be used in
a calculation of light scattering from thermally ex-
cited elastic waves, ' of the mean square displace-
ment, and of nonlinear mixing of waves, to name
just a few examples. In addition, one may easily
find the spectral density from the Green's function.
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F(x),x3,co)
(4.1)

c,'(x) )

We have written c, (x)) to indicate that the trans-
verse sound velocity depends on the coordinate x~
due to the layering. The solution of Eq. (4.1) may
be written

il2(x), x3pco) =fdx') fdx3g(x) &XI &x3yx3 geo)

XF(xI, x3N), (4.2)

where the Green's function g (x),x ),x3,x 3,c0) satis-
fies

8 8 Q)
g (X)x )x3x 3 co)

c)x) c)x3 ct (x) )

5(x) —x') )5(x3 —x3 )
(4.3)

e,2(x I )

The spectral density function S(k3,co,x)) gives a
measure of the square of the amplitude of the dis-
placement in a thermal fluctuation with wave vector
k 3 and frequency co at a position x

&
~ %e will calcu-

late the spectral density for our system, and show
the relationship of the spectral density to the disper-
sion curves found earlier.

To find the response functions we start with the
equation for the displacement u2(x), x3,e)) in the
presence of an external force F(x(,x3,co). We as-
sume both the displacement and the external force
have an e ' ' time variation. The equation of
motion is then

B2 C)2 N2

2 + 2 + 2 &2(X),X3,C0)
c)x( dx3 c, (x()

We will now drop reference to k3 and co for ease of
notation.

If u ~(x) ) is the solution to the homogeneous ver-
sion of Eq. (4.6) in the regionx(&x') and u (x() is
the solution to the homogeneous version of Eq. (4.6)
in the region x& &x~, then the Green's function
g (x),x ) ) is given by

g(x),x') )= [u (x))u (x) )8(x) —x') )8'

+ u ~(x) )u ~(x') )8(x) —x) )],

where the Wronskian is

(4.7)

W'= —c, (x) ) [u ~(x) )]u ~(x) )
2 a

BXl

[u ~(x) )]u ~(x) ) . (4.8)
Bx)

%e will find later that the %ronskian is independent
of the variable x~.

To determine the Green's function completely, we
need expressions for u ~ (x) ) and u ~ (x ( ) which
satisfy all the boundary conditions for the semi-
infinite layered structure considered here. We have
essentially found the appropriate expressions already
in Sec. II. For x~ &x ~, we want a wave propagating
away from the delta function source at x~ toward
+ ao. For xl &x'~ we will have a wave propagating
away from the delta function source toward the sur-
face, and a wave reflected from the surface back to-
ward the source. Thus we take

iqnL(g r a)(x) —nL) + T —a((x( nL))—
Since we have translational invariance parallel to

the surface, we may perform a Fourier transform
over x3. Thus

I I ~g (x ) yx ) yx3 yx 3 (co)

and

a&(x& —nL) y
—a&(x& —nL)

(4.9)

and

dk3, ik3(x3 —x3 )=f g(x)xIk3, co)e ' ' ' (4.4)
277

(4.5)

5(x) —x) )
(4.6)

c,'(x, )

dk3 ik3(x3 x3 )
5(x3 —x3)= e

277

The Green's function g (x)x (,k3, co) satisfies

a'
2 k3+ 2 g(x»x»k3'co

c)x) c, (x) )

iqnL A g a&(x& —nL)
A g —a&(x& —nL),+e iA+e +A e

(4.10)

For a given k3 and co, q and ul may be obtained
from Eqs. (2.20) and (2.5), respectively. In the re-
gion where surface waves propagate, q is imaginary
so that for x& &x& we have exponential decay as
x& —++ oo, and for x& &x ~ both exponential growth
and exponential decay are allowed.

The equations for u ~(x() and u ~(x) ) given
above are appropriate for the unprimed regions.
Similar equations will hold in the primed regions as
shown in Sec. II.

A+ ' ls related to A ' ' by the boundary condl-



27 TRANSVERSE ELASTIC WAVES IN PERIODICALLY LAYERED. . . 7327

tions in the bulk of the layered structure. From Eq.
(30) (with P replaced by iq—) we find

Thus u ~ (x i ) and u ~ (x i ) have the final forms

AR' T=CRAR, T
+

where

(4.11}
(4.18)

(1+F)(e ' ' —e+iqLe ' ')
CR

/qL 2 2)

Similarly

A =CA

where

(4.12)

(4.13)

where

IqaL( CI a)(x) nL) — —a)(x ) nL—)
}A

I

+e iqnI. I ~g a&(X ~
—nL)

—a&(x& —nL)
}

(4.19)

(1+F)( ' ' — ' ' ')
CI

(p 1)( & & iqL 2 2—
)

(4.14) nL &xi &nL+d) . (4.20)

Bu ~(x) ) =0 at x& ——0, n =0 .
Bxi

(4.15)

Using Eqs. (4.9), (4.11), (4.14), and (4.15) we obtain

A =DA (4.16)

where

C —1

1 —C
(4.17)

Now u ~ (x) ) and u ~(x i ) may be written in terms
of A, A", and A only. To determine the Green's
function completely, we need only to relate A to
A". This is done by the boundary condition at
x ~

——0. In the outermost layer

For the primed regions [nL+d) &xi &(n+1)L]
one may find u ~(xi ) and u ~(xi ) by using the inte-
rior boundary conditions and Eqs. (2.13).

It is easily shown that the Wronskian may now be
written as

W=2a)(C —C )A A c, . (4.21)

This form of the Wronskian is valid in both the
unprimed and primed regions. It is also seen that
the Wronskian is independent of position.

The general form for the Green's function may
now be easily found by using Eq. (4.7) and Eqs.
(4.18)—(4.21). The result is lengthy, and we do not
reproduce it here. We do give the Green's function
below for the special case that x ~ and x ~ are both in
the outermost layer:

I I

g(x),x)', n=0, n'=0)= „[(C"C+DC"C")e ' ' ' +(1+D)e
2a)(C"—C )

I I

+CR(1+D)e ) ) ) +(CI+CRD) ) ) ) ] (4.22}

We demonstrate the utility of the Green's func-
tion calculated above by calculating the spectral
density of thermal fiuctuations in the outermost
film. The spectral density contains more informa-
tion than the dispersion curves given earlier, since it
is a measure of the probability of a given mode to be
thermally excited. It is easy to show that the spec-
tral density S(k&,co,x) ) is proportional in this case
to the imaginary part of the Green's function calcu-
lated above, if one adds a small positive imaginary
part to the frequency, and sets x =x'.

We examine the spectral density in the following
way. We fix x& ——x~ ——0, so that we are looking at
thermal fluctuations right at the surface of the
semi-infinite layered structure. We then fix

k3d i
——0.5 and plot the spectral density [the ima-

ginary part of g(k3, co+iq), x) ——x'i ——0)] as a func-
tion of the frequency co. The results are presented in
Fig. 12 along with a portion of the dispersion curve
for the same structure for comparison. It is clear in

Fig. 12 that there are sharp peaks at the frequency
of the surface waves with wave vector k3di ——0.5.
The regions in the dispersion curves where bulk
waves propagate are seen as broad bands in the spec-
tral density plot. Thus in the outermost layer, it is
the surface waves of the layered structure which are
most likely to be thermally excited.

We may also examine the spatial variation. of the
spectral density by changing the value of x&. The
results are presented in Fig. 13. We see that the



7328 CAMLEY, DJAFARI-ROUHANI, DOBRZYNSKI, AND MARADUDIN 27

SPECTRAL
DENSITY

DI SPERSION
DENSITY

l2—

O
d) 9—
U
U

D
o '-

N ~ ~ ~ ~ ~ ~ ~ ~ ~ 0

Xi =Bpp A

X) =6QQ A

X1=3QQ A

2 I 0

I m (6} (orb. units)

peak at lowest frequency remains nearly constant in
height as a function of the depth x&. The peak near
r0=9X10' rad/sec has a strong variation with
depth. The behavior of these two peaks is consistent
with the displacement patterns for the two surface
modes displayed in Fig. 9.

V. CONCLUSIONS

k~d)

FIG. 12. The right-hand side shows a portion of the
dispersion curves from Fig. 8. The left-hand side is a plot
of the spectral density [Irn(gk3, rp+ig, x& —xI ——0)] as a
function of frequency. The peaks in the spectral density
occur at frequencies where the surface modes exist with
wave vector k3d~ ——0.5.

Xl=Q A

lowest bulk band. In addition, we have calculated
the Green s function for a semi-infinite layered sys-
tem and from this found the spectral density of
thermal fluctuations in the outermost layer.

The results presented here were calculated within
the continuum theory of elasticity. A microscopic
approach~ yields solutions which (in the long-
wavelength limit) are identical to those developed
here. We also note that the calculations presented
here are limited to transverse waves where the dis-
placement is parallel to the plane of the layering.
An extension of the methods used here to Rayleigh
waves on layered structures is in progress.

Q 3

~ (lo rad/sag)
FIG. 13. Plot of the spectral density as a function of

frequency for different depths.

We have derived the phonon dispersion equations
for transverse waves in several different layered
structures. The results show a variety of interesting
features. There are bands in which the bulk elastic
waves may propagate. In the case of layered struc-
tures with boundaries, surface waves propagate in
the gaps between the bulk bands, and below the
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