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The spin-density-functional formalism has been applied to study electronic properties of
small spherical clusters of an ideal free-electron metal (jellium). The electronic structure of
a hydrogen atom embedded in the center of the cluster has been calculated as a function of
the cluster size. A comparison of the results to the exact limit of the hydrogen atom in an

infinite jellium shows that a large cluster size (about 100 atoms) is needed for an accurate
description of the electronic structure of the impurity. Self-consistent unrestricted Hartree-
Fock calculations have been performed for small Li clusters with a hydrogen impurity, and

the results are compared with those of the jellium model. As an effect of the finite cluster
size, both calculations show similar features in the cluster properties. Methods for calculat-

ing the impurity Knight shift using the cluster technique have been studied.

I. INTRODUCTION

In the cluster method the infinite solid is
described by a finite small cluster of atoms. ' This
cluster can be embedded in an infinite effective
medium or, as in the present study, it can be a free
macromolecule in the vacuum. In the latter case the
computational techniques of quantum chemistry can
be applied to calculate the electronic structure of the
cluster. The cluster method becomes useful when
the periodicity of the lattice is broken and hence the
main application in the metal physics has been ad-
sorbates on metal surfaces' and impurities. On
the other hand, recent progress in experimental
small-metal-cluster techniques will be a test field
for cluster calculations. Here, the possibility of cal-
culating the electronic structure for metal clusters of
arbitrary geometry will be of importance.

The origin of the present work were some intrigu-
ing results of self-consistent unrestricted Hartree-
Fock (UHF) calculations for 6- and 22-Li atom clus-
ters with and without a hydrogen impurity in the
center. There, the question of extrapolation of elec-
tronic cluster properties to bulk metal properties was
raised. Since this question is common to all kinds of
cluster calculations, it is very desirable to have a
simple model where the cluster size can be varied up
to the infinite (bulk) cluster limit.

A comparison of the results of the cluster calcula-
tion to those of an infinite system shows the cluster
size needed in describing the properties of macro-

scopic material. In a perfect metal the comparison
can be made to the results of a band-structure calcu-
lation. In most applications, however, the exact re-
sult for the infinite system is not known and one has
to increase the cluster size in order to find an
asymptotic behavior of the calculated properties, or
compare the results to experiments.

In this paper we make a model calculation for
studying the applicability of the cluster method to
describe the electronic structure of an (hydrogen)
impurity in simple metals. We describe the metal by
a jellium cluster, i.e., an interacting electron gas with
a compensating homogeneous positive background
charge which is enclosed in a finite sphere. In this
model there is no lattice structure and one can create
arbitrary size spherical clusters. A similar jellium
model has been used earlier by Martins et al. for
studying the dependence of the ionization potential
on the cluster size. By embedding the hydrogen nu-
cleus in the center of the cluster the electronic struc-
ture of this impurity can be studied as a function of
the cluster radius. The electronic structure of atoms
embedded in an infinite jellium can be calculated ex-
actly in the same basis and compared to the results
of the cluster calculations. This has been done for
r, =3.25 corresponding to Li metal.

The cluster method has also been applied to study
magnetism of metals. ' ' Owing to the finite num-
ber of electrons the magnetic properties of small me-
tallic clusters may be very different from those of
the bulk metal. "' The ground state of a small
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cluster of nonmagnetic metal is usually magnetic. '"
This is an interesting phenomenon as such but it
causes difficulties in applying the cluster technique
to describe the magnetic properties of the bulk met-
al. We have studied different ways of calculating
Knight shift at a hydrogen atom in jellium using the
cluster method. The results indicate that the main
features of the contact spin density can be described
already with a few tens of atoms, but the extracting
of reliable quantitative results from cluster calcula-
tions is difficult.

In Sec. II we describe our model and specify the
density-functional technique used for calculating the
electronic structure. The results for pure jellium
clusters are discussed in Sec. III, where the density
of states, bandwidth, total energy, and the surface
energy of the cluster are compared to .those of the
infinite jellium. The results for the electronic struc-
ture of the hydrogen impurity are given in Sec. IV.
In Sec. V we compare the charge densities of 22-
atom jellium clusters with and without a -hydrogen

impurity in the center to those obtained from spin-
polarized Hartree-Fock calculations. Methods for
estimating the spin density around the impurity are
studied in Sec. VI and the conclusions are given in
Sec. VII.

II. JELLIUM CLUSTER MODEL

In the jellium model a metal is described by a
homogeneous electron gas with a compensating pos-

where N is the number of electrons in the cluster
(which is assumed to be neutral). When an impurity
atom is added in the center of the cluster the posi-
tive charge distribution will be

n+(r)=n08(R r)+Z5(r), —r=
I

. r
I

(3)

where Z is the nuclear charge of the impurity. The
total number of electrons in the neutral cluster with
an impurity is X+Z.

Owing to the spherical symmetry of n+(r) the
cluster is like a large atom (with an unusual nuclear
charge distribution) and the electronic structure is
straightforward to compute numerically. In the

itive background charge which corresponds to the
positive ions in the real metal. Surfaces, ' vacancies,
voids, and impurities' in simple metals have been
studied extensively by starting from the jellium
model. Consistently with earlier studies we define
the jellium cluster as a spherical rigid positive
charge distribution and a corresponding amount of
interacting electrons. The positive background
charge distribution is

n+(r)=no8(R —
I
r

I
),

where no is the density of the jellium, usually de-
fined with help of the electron-gas density parameter
r, =(4mnol3. )

'~ 8i.s the unit step function and
R the cluster radius,
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FIG. 1. One-electron eigenvalues for the 125-electron jellium cluster with and without a hydrogen impurity. The
dashed lines denote empty levels above the Fermi energy. The length of each line is proportional to the degeneracy of the
state.
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FIG. 2. Integrated density of states of the 125-electron
jellium cluster compared to that of the infinite jellium
(dashed line). The lower solid line gives the integrated
density of states for the spin-down electrons. The Fermi
surface is denoted by a vertical line and the bottom of the
band with an arrow.

present work we use the density-functional formal-
ism with the local spin-density approximation of
Gunnarsson and Lundquist, ' and compute the elec-
tronic structure fully self-consistently with a modi-
fied Herman-Skillman' code.

III. RESULTS FOR PURE CLUSTERS

The jellium is characterized only by the electron
density parameter r, for which we have chosen the
value r, =3.25, corresponding to Li metal. The en-

ergy eigenvalues for a cluster with 125 electrons are
shown in Fig. 1. For smaller clusters the occupation
of the levels follows nearly the same picture. When
the cluster size increases, more and more electrons
are in states with a large angular momentum eigen-
value whereas only a few electrons have s character.
(Throughout the paper, the s character of the one-
electron-cluster wave functions is always referred to
the center of the cluster. ) It is interesting to notice
that for each spin in the 125-electron clusters there
are only three s states occupied. In the ground state
the 3p and li states are only partially filled leading
to a polarized state with a total polarization of
go

——0.088, where go is defined as
go (N' N, )l(N" +N'), ——N" a—nd N' being the
numbers of spin-up and spin-down electrons in the
cluster, respectively. For smaller clusters the popu-
lation of the levels follows Hund's rules leading
practically always to a polarized ground state.

The integrated density of states of the 125-
electron cluster is shown in Fig. 2 and compared to
the result of an infinite jelliurn. The overall agree-
ment between the two results is good but the density
of states of the cluster calculation has still fairly
much structure. One pecularity is the wide plateau
below the Fermi level. This corresponds to a large
gap in the density of state and averaging the 6-
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FIG. 3. Bandwidth as a function of the cluster radius.
The black dots are results for the jellium clusters, the tri-
angles for Xa calculations of Ref. 7, and the open circles
for Hartree-Fock calculations of Ref. 17. The cluster
bandwidth is given in the units of the bandwidth of the
infinite system.
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FIG. 4. Total energy per electron in the cluster as a
function of the cluster radius (crosses). The dots are the
results after subtracting the surface energy.

function states by Gaussians would lead to a
minimum in the density of states. This kind of
minimum is also seen by Salahub and Messmer in
their molecular-orbital cluster calculations for the
same size of Al cluster (129 electrons). In the light
of the present calculation the existence of the
minimum may be an artifact of the cluster size: De-
crease of the cluster size would move the minimum
towards the Fermi energy and finally above the Fer-
mi energy. Thus the comparison of the detailed
structure of the density of states of the cluster calcu-
lations to the experimental results has to be taken
with caution.

The bandwidth can be defined as the difference of
the highest and the lowest occupied states. Figure 3
shows the calculated bandwidth as a function of the
cluster radius. The bandwidth approaches to the
asymptotic value slowly and fluctuates strongly de-
pending on the configuration of the cluster. This is
due to the large degeneracy of the single-particle
states: The bandwidth has a minimum when the
highest occupied state is full. For comparison to the
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FIG. 5. Electron density in a 22-electron cluster with
(dashed line) and without (solid line) the hydrogen impuri-

ty. The homogeneous positive background charge is also
shown.
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jellium results Fig. 3 also shows some results for
molecular-orbital Xa calculations of Al clusters
and Hartree-Fock calculations of Li clusters. ' It is
interesting to see that in these metals the jellium
clusters give very well the general trend of the in-
crease of the density of states with the cluster size.

The asymptotic limit for the total energy of the
cluster is Ne, where e is the energy per electron in
an infinite electron gas. For small clusters the sur-
face energy is a large contribution to the total ener-

gy. For large clusters the surface energy approaches
that of a flat jellium surface, ' ' and e can be es-
timated as

F.=E„,/N 4rrR 5/N—, (4)

where E„, is the total energy of the cluster, and 5
the surface energy for a flat jellium surface. The
calculated E as a function of the cluster radius is
shown in Fig. 4, where also the results without sub-

stracting the surface term are plotted. Both results
approach the asymptotic limit of an infinite jellium
very slowly. The surface energies of the sphere are
larger than that of a flat surface (5=200 erg/cm
for r, =3.25) and thus even after substracting the
surface energy e stays above the asymptotic limit.

IV. HYDROGEN IMPURITY IN THE CLUSTER

5n (r) =n„(r)—n (r), (5)

In order to test the applicability of the cluster ap-
proach to the impurity problem we calculated the
electronic structure of a hydrogen in the center of
the jellium cluster (r, =3.25). The electron-density
profiles in a cluster of 22 electrons with and without
the hydrogen atom are shown in Fig. 5. In small
clusters the electron density of the pure cluster is
fairly inhomogeneous and in studying the effect of
the hydrogen atom one can define the density differ-
ence,

0
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FIG. 6. Radial-electron density around hydrogen for
3-, 22-, and 92-electron clusters (dashed lines). The solid
line in each figure indicates the density for an infinite sys-
tem. The dot-dashed line in the uppermost figure the
density of a free hydrogen atom. The cluster radius is

denoted by R (for the 92-electron cluster R =14.7 a.u. ).

where nH(r) and n(r) are the electron densities of
the cluster with and without the hydrogen atom. In
5n (r) the errors due to the finite size of the cluster
will be largely canceled and 5n (r) approaches to the
asymptotic limit much faster than, e.g. , nH(r). In
Fig. 6, r 5n(r) calculated for 3-, 22-, and 92-electron
clusters are compared to the exact result of the in-
finite jellium. The appearing of the Friedel oscilla-
tions can be seen already in the result for three-
electron cluster and when the cluster increases, more
and more oscillations will be reproduced. Already a
22-electron cluster gives a fairly good description of
the induced charge density around the proton in jel-
lium.

The eigenvalue spectrum of the cluster of 125
electrons and the hydrogen atom is shown in Fig. 1.
The hydrogen impurity causes major charges only in
the s states which are pulled down so that finally the
2s state replaces the 1s state of the pure cluster and
the 1s state forms an impurity bound state slightly
below the conduction band. In the infinite jellium
this doubly occupied bound state is only 0.009
Hartree's below the bottom of the conduction band.
This downward shift of the 1s state has also been
observed in other cluster calculations. '

The total energy of the hydrogen in the electron
gas can be determined from the cluster calculations
simply by taking the difference of the total energies
of the cluster with and without the hydrogen atom.
This energy difference is shown in Fig. 7 as a func-
tion of the cluster radius. The energy difference
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Auctuates around the asymptotic value showing that
a large cluster (about 100 electrons) is needed for an
accurate description of the hydrogen energy. Figure
7 also shows the contact electron density at the pro-
ton. Like the total energy, the contact density may
also have large departures from the asymptotic
value even for very large clusters. For example, the
contact density in the 125-electron cluster is much
smaller than the asymptotic value due to the empty
4s level just above the Fermi level. When the 4s
state is filled (139-electron cluster, see Fig. 1) the
contact density will be too large. Owing to this pop-
ulation mechanism, this kind of fluctuation as a
function of the cluster size can be seen in all calcu-
lated quantities.

)Z
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FIG. 7. Contact density at the hydrogen impurity and
the hydrogen heat of solution as a function of the cluster
radius. The results up to 6-atom cluster are connected
with a line. For larger clusters all possible sizes were not
studied.

In more realistic cluster calculations, the lattice
geometry must also be included. Unfortunately, this
increases the computational effort such that only
clusters with very few atoms can be handled.

The study of a hydrogen impurity in small Li
clusters by means of spin-polarized Hartree Pock
(UHF) calculations has been performed in Ref. 6, to
which we also refer for more details. In that paper,
a 6- and 22-Li-atom cluster with and without a hy-
drogen in the cluster center was considered. The hy-
drogen impurity was supposed to be at the octahe-
dral interstitial site as shown in Fig. 8. The energy
levels of these UHF calculations do not show the
high degeneracy as those of Fig. 1. This is due to
the reduction of the cluster symmetry (there is only
the fourfold symmetry around the z axis). However,
as in the jellium cluster, the "1s states" are pulled
downwards when the hydrogen is in the cluster
center. The same fact was also observed in Xe cal-
culations where these states were named the hydro-
gen bonding states. '

This kind of cluster calculation allows us to study
orientationally dependent effects, which is not possi-
ble in the structureless jellium model. The total
charge density for the ground state of a 22-Li-atom
cluster with and without hydrogen in the cluster
center is shown in Fig. 9, where r is the distance
from the cluster center in the [101]direction. Both
Li22 and Li22H clusters were neutral. The first one
has 34 spin-up and 32 spin-down electrons, whereas
the latter one has 34 spin-up and 33 spin-down elec-
trons. Comparing with the jellium-cluster charge
density (Fig. 5), we realize that both models, al-
though very different, yield surprisingly similar
charge-density profiles.

The radial-induced electron density around the
hydrogen impurity as a function of the radial dis-
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FIG. 8. Geometry of the 22-Li-atom cluster investigat-
ed by the unrestricted Hartree-Fock method.
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FIG. 9. Hartree-Fock electron density in the 22-Li-
atom cluster along [101] direction. The solid line is the
result for the pure cluster and the dashed line is the result
with the hydrogen impurity in the center of the cluster.
The rectangle corresponds to the homogeneous positive
jellium background of Fig. 6.
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tance is shown along four different directions in Fig.
10. In all directions Friedel-type oscillations occur,
where the deep minimas of the [001] and [110)
directions correspond to the nearest-neighbor and
next-nearest-neighbor Li atoms, respectively. We
notice that both amplitudes and phases of the oscil-
lations strongly depend on the radial direction.
However, the wavelengths are comparable to that of
the 22-atom jellium cluster in Fig. 6.

n (r)= g 1f( )r1',
l

E, (E

(9)

where o.=t, l and the sum goes over all energy
states below the Fermi level. In an infinite electron
gas the energy states (in the conduction band} form
a continuum and the sum in Eq. (9) is replaced by
an integral. In this case the spin-density enhance-

p, (r) = [n '(r) —n'(r}]/(n o
—no ),

where n '(r) and n '(r) are the spin-up and spin-down
electron densities in the system with the impurity
and no —no is the average spin density in the metal
without the impurity. In a self-consistent calcula-
tion Eq. (7) includes a contribution due to the re-
population of the energy levels and the so-called
core contribution arising from small changes of the
bound states and the conduction-electron wave func-
tions below the Fermi level. If the latter is neglected

p, (0) can be written as

p, (0}=I«1@(0}1'&Fs,

where V is the normalization volume and
( 1$(0)

1 )Fs is the square of the wave function at
the impurity averaged over all states at the Fermi
surface.

In the spin-density-functional method the electron
densities are calculated as sums over squares of
single-particle wave functions".

The ground state of a finite jellium cluster is in
general magnetic: If the highest energy level is not
completely filled, the ground state maximizes the to-
tal spin as in free atoms (Hund's rules). This leads
to a nonzero spin-density distribution in the cluster
and to an energy splitting between spin-up and
spin-down electrons. The magnetism of small metal
clusters is an interesting feature as such' ' and is
the origin of the difficulties in estimating magnetic
properties of the bulk metal using the cluster tech-
nique. Our special case of interest is the spin-
density distribution around a hydrogen impurity in
simple metals (jellium}, and particularly the contact
spin density which gives the major contribution to
the Knight shift.

Neglecting the diamagnetic shielding ' the Knight
shift in nonmagnetic metals in a site of a cubic sym-
metry can be written as

E= = Xp (0),8m

0,„, 3

where Hhf and H,„, are the hyperfine and external
magnetic fields, X, the spin susceptibility. p, (0) is
the spin-density enhancement at the hydrogen site
(assumed to be at the origin), defined as

0, 3
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FIG. 11. Partial wave decomposition of the contact
electron density at the hydrogen in a polarized {go——0. 1)
infinite electron gas (r, =3.25). The upper and lower
curves at positive k values give the spin-up and spin-down
densities, respectively. The arrows show the binding ener-

gies of the bound states {e=—V2~ k
~

). The dashed
areas give the contact spin density: I, The Fermi-surface
contribution; II, the core polarization of the conduction
states, and III, the core polarization of the bound state.
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TABLE I. Different contributions to the spin-density
enhancement at the hydrogen. N is the number of elec-
trons in the cluster, C& is the core contribution from the
lowest-energy state, and C~~ that of all other states below
the Fermi surface. FS is the Fermi-surface contribution.

N Cg CII FS Total

22
30
34
50
90
96

—10.1
—9.8

—16.4
—15.6
—15.8
—13.2
—14.4

5.6
5.2

—1.1
11.7
11.1
8.7

11.5

15.0
14.3
14.0
17.3
14.3
14.2
14.1

10.5
9.7

—3.5
13.4
9.6
9.7

11.1

ment, Eq. (7), can be calculated by the self-
consistent solution of the Kohn-Sham equations in a
polarized electron gas (with a small polarization of,
e.g., (0——0.1), or by using a self-consistent pertur-
bation theory. The different contributions to the
spin density at the hydrogen embedded to an infinite
electron gas (r, =3.25) are illustrated in Fig. 11.
The contact spin density can be divided into three
main terms: the positive Fermi-surface term of Eq.
(8), a negative core polarization of the bound states,
and a positive core polarization of the conduction
electrons. The partial mncellation of the two core
polarizations makes the conventional approxima-
tion, Eq. (8), to work fairly well for hydrogen in jel-
lium.

In principle, a self-consistent calculation for a po-
larized cluster with the impurity gives a contact spin
density which approaches to the correct value of the
infinite jellium when the cluster size increases,
However, this direct calculation is in practice not
applicable. For example we can study the 125-
electron cluster with the hydrogen impurity. The
ground state of this cluster is magnetic with a mag-
netic moment of 12pz, corresponding to an average
polarization of about go ——0. 1, the same as in Fig.
11. However, the spin density at the hydrogen site
is negative. This can be readily understood by notic-
ing from Fig. 1 that there are as many spin-up and
spin-down states (s states) below the Fermi level con-
tributing to the electron density at the origin: i.e.,
all spin density comes from core polarization and
the Fermi-surface contribution is missing. By in-
creasing the polarization go the 4s spin-up state will
be filled resulting to a very large positive contact
spin density (too-large Fermi-surface contribution).
This example illustrates that owing to the small
number of s states a huge cluster size (computation-
ally intractable, especially for the more sophisticated
Hartree-Fock calculations) is needed before a direct
self-consistent calculation of a polarized cluster

correctly describes the spin density at the origin. In
actual metal clusters with less symmetry there will
be more states contributing to the contact density
and the problem will be slightly reduced, but still
the Ln calculations of Yang et a/. ' for 15-atom iron
clusters show that the hyperfine field at the central
atom is much too negative. Similar findings were
also observed in Hartree-Fock Li and Be cluster cal-
culations.

Although the direct mlculation for polarized clus-
ters cannot reproduce the total contact spin density,
it can give qualitative understanding of the core po-
iarization as shown in Table I. The contact spin
density was calculated for ground states of different
polarizations of the cluster, and the spin-density
enhancement was determined from the derivative
d [n "(0)—n '(0) ]/d [n o

—n 0] at the polarization

go
——0. 1. In columns 1 and 2 of Table I we show the

contact spin densities arising from the polarization
of the lowest s state (impurity state) and from the
polarization of other s states (conduction band),
respectively. Already for very small clusters both
core contributions are close to the exact asymptotic
limits. In the case of the 34-electron cluster there is
an s state just above the Fermi level and thus, due to
the discreteness of the levels, the contribution of s
states to the conduction band is smaller than in the
infinite jellium. This leads to a too-small positive
core contribution as seen in Table I (column 2). In
the cases where the Fermi level stays in the middle
of two s states the direct calculation gives good esti-
mates for the core polarizations.

The Fermi-surface contribution can be estimated
directly from Eq. (8). In a finite cluster none of the
s states is usually at the Fermi energy and for es-
timating the s-state amplitude,

~ P, (0) ~, we have
used linear interpolation between the highest-
occupied and lowest-unoccupied s states. In order to
do the averaging over the Fermi surface one has to
estimate the s-electron contribution to the density of
states, N, (e), at the Fermi surface, and one can write

~ N, (eF)
(~q(0) ')„=~1(,(O)~'

'
. (10)

N EF

N, and N can be estimated as (average) derivatives
of the integrated density of states. For small clus-
ters this method is fairly inaccurate due to the small
number of energy levels. If the electronic structure
of the infinite host metal is known one can make use
of that and write

&14(0) I'&Fs o, & I
0'(0) I'&Ps

where g' ' denotes the wave function of the (infinite)



27 FEASIBILITY OF CLUSTER CALCULATIONS IN DESCRIBING. . . 7269

(12)
where 1V is the total number of electrons. The spin
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FIG. 12. Spin enhancement at the hydrogen impurity
as a function of the cluster radius. The black dots are the
Fermi-surface contribution from Eq. (8) and the solid line
is the corresponding asymptotic limit. The crosses are the
total spin enhancement estimated using the perturbation
theory and the corresponding asymptotic limit is denoted

by a dashed line.

I I

12 14 16

host without the impurity. If (
~ f (0)

~
)Fs is

known for the infinite system,
~
1(,(0)

~

and

~ g, (0}
~

can be calculated for the same cluster sizes
with and without the impurity. In this way a can-
cellation of errors due to the finite size of the cluster
is expected. The results for the jellium clusters,
using Eq. (11), are shown in Table I and in Fig. 11.
Although being in average in good agreement with
the exact asymptotic limit, the results again fluctu-
ate strongly with the cluster size in the same way as
the contact charge density in Fig. 7.

In small polarized clusters the repopulation of
states close to the Fermi level is not evenly distribut-
ed among the states of different 1 values and the re-
sulting spin distribution might be a poor approxima-
tion to that in the infinite metal. This means that
the exchange-correlation potential has a wrong spa-
tial distribution and may cause large errors in the
above estimation of the core polarization. In fact a
better approximation for the total spin density
might be to apply perturbation theory to a nonpolar-
ized cluster. In an infinite jellium this leads to an
integral equation for the magnetization. In the
case of a finite cluster one can proceed as follows:
In the limit of a small polarization the spin-density
distribution is

density of Eq. (12) causes splitting in the exchange
correlation potential, which changes the wave func-
tions. We have solved this self-consistency problem
by a direct iteration starting from a nonpolarized
solution and determining in each iteration the spin-
dependent exchange-correlation potential from Eq.
(12) (but keeping the population of states un-
changed). The Fermi-surface contribution, first
term in Eq. (12},was estimated by linear interpola-
tion of the squares of the wave functions of states
below and above the Fermi level (separately for each
l value). The resulting total spin enhancement is
shown in Fig. 12. Generally, the perturbation
method does not given any bettter agreement with
the asymptotic limit than in direct calculation of po-
larized clusters.

It should be mentioned that the jellium model is
used here only as a model where the limit of the in-
finite system is exactly known. In calculating the
Knight shift of a positive muon (of hydrogen) in
simple metals the inclusion of the actual lattice po-
tential (or pseudopotential) is essential. '

VII. CONCLUSIONS

The jellium model provides a good test for the ap-
plicability of the cluster calculations in describing
the electronic properties of the infinite simple metal.
Surprisingly large clusters (more than 100 electrons)
are needed for an accurate description of the total
energy, band-width, and density of states of the bulk
metal. In studying the impurity properties a partial
cancellation of errors can be achieved by comparing
the results of cluster calculations with and without
the impurity, but the finite number of energy levels

may still cause large errors. The estimation of mag-
netic properties of metals or impurities from cluster
calculations is more difficult due to the possibility
of a magnetic ground state caused by the finite num-
ber of energy levels. Results of unrestricted
Hartree-Fock calculations for small Li clusters with
a hydrogen impurity show the same trend that the
results are sensitive to the cluster size.

Moreover, almost all the peculiar features (e.g.,
polarized ground state, negative spin density in the
cluster center) are also observed in Hartree-Fock and
Xn calculations. Thus, these peculiarities are a
consequence of the finite cluster size and not an ar-
tifact of approximations of the many-body Hamil-
tonian (Hartree-Fock, Xa, jellium). However, a
proper embedding of the cluster to an infinite effec-
tive medium might give better results for very small
clusters.

Our results clearly show that relevant information
from cluster calculations can only be obtained if all
possibilities are explored (variation of the cluster
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size, cluster polarization, lattice geometry, etc.)

which can only be obtained by considerable compu-
tational effort. An agreement with the experimental

result obtained from one single-cluster calculation
does not guarantee that the physical property is
correctly understood.
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