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R. A. Tahir-Kheli
Department ofPhysics, Temple University, Philadelphia, Pennsylvania 19122

(Received 27 December 1982)

A detailed calculation of frequency- and wave-vector-dependent correlation functions for
an arbitrary tracer diffusing in a regular crystal against a background of hopping classical
particles has recently been given by Tahir-Kheli and Elliott [Phys. Rev. B 27, 844 (1983)].
Here we present an important generalization of this work to a system with a dynamic back-

ground consisting of tue arbitrary species of particles. In particular, the generalization in-

cludes a system where the tracer concentration itself is finite while an arbitrary concentra-
tion of other atoms is also present in the dynamic stream. The theory is exact to the leading

nontrivial order in particle concentration x~ and x&. In the intermediate-concentration re-

gime, the theory incorporates dominant fluctuations from the mean field. The present
model can serve to usefully describe incoherent neutron scattering in metal-hydride intersti-
tial solutions such as MA„B„with A, B—=H, D, and T and M=Pd and Ti. Moreover, it

can be used to treat tracer diffusion dynamics in nonstoichiornetric metal oxides and, some-

what more simplistically, ionic conduction in the superionic state.

I. INTRODUCTION

The dynamical, space-dependent self-correlation
of a classical tracer, diffusing through a background
of hopping atoms, is materially affected by the
memory effects that result from the exclusion of
double occupancy. ' Despite the presence of the usu-
al ingredients necessary for obtaining uncorrelated
random-walk motion (namely, the stochasticity of
the allowed hops and the absence of interparticle in-
teractions}, the stricture against multiple occupancy
adds nontrivial complexity to the problem. Indeed,
it causes strong correlations to occur between suc-
cessive tracer jumps —correlations that are re-
flected in the behavior of the tracer occupancy even
at distances and times that are large on the scale
specified by an elementary hop.

In a recent paper' [henceforth to be referred to as
I and its equations as I(3.11),etc.] a detailed calcula-
tion of the tracer correlation function was given.
An important asset of this work was its generality
whereby the tracer and the background atom hop-
ping rates, J and J, were kept arbitrary. However,
for certain physical applications, such as incoherent
neutron scattering from a metal hydride with an in-
terstitially dissolved mixture of hydrogen isotopes
(e.g., H, D, and T where at least two species of hy-
drogen atoms have finite concentrations) the treat-
ment given in I is inadequate.

The reason is the following. For the treatment

given in I to be valid, either the concentration of
tracer atoms (with hopping rate J ) must be vanish-
ingly small (i.e., there is only a single tracer in a
crystal with N sites) or, if the tracer concentration is
finite, then the tracer has to be identical to the back-
ground atoms (i.e., J =J, where J is the hopping
rate of the background atoms).

To rectify this shortcoming, we present a generali-
zation of the theory given in I so that it applies to
the case where the labeled atom (with hopping rate
J } diffuses against a background of two varieties of
hopping atoms (with hopping rates J" and J ). For
convenience of presentation, we again assume the
concentration of tracer atoms to be vanishing.
However, because J like J" and J is arbitrary,
when J =J, for example, we obtain a binary mix-
ture where the labeled atom belongs to species A

with concentration xq. Any further generalization,
wherein the background consists of three or more
species, A, B, C, etc., can be achieved straightfor-
wardly along the present lines.

In this context it should be mentioned that the
general case of a random A-B alloy with vacancies
has already received some attention in the literature.
Beginning with the work of Manning, De Bruin
et al. and Murch and Rothman have investigated
tracer diffusion in such an alloy (the tracer being ei-
ther atom A or 8). However, their work is not only
restricted to zero frequency and vanishingly small
wave vectors; it also refers to the very specific limit
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of zero vacancy concentration. Some preliminary
analyses of the more general case with arbitrary va-
cancies have recently been reported by Fukai and
collaborators and Kutner and Kehr, who have em-

ployed numerical simulations for this purpose.

II. EQUATIONS OF MOTION

[The corresponding equation for dB; /dt can be ob-
tained by inspection from (2.5b) by interchanging
letters A and B.] The frequency Fourier transform
of the equation of motion of the tracer occupancy
Green's function is conveniently represented as fol-
lows:

We make the usual simplifying assumptions
regarding the instantaneous nature of the hops, al-
lowed only across nearest-neighbor separation, and
their stochasticity. Accordingly, the relevant rate
equations for the stochastic occupancy variables of
the tracer, p;(t), and the host atoms, n,"(t) with

p =A or B, are the following:

coGss 5ss
——i—v g Jz~j(G~ Giit

—)

J

+ g gJ (G,, —G,, , ).
p, =AB j

In the above we introduced the notation

G~ (t}=—2nie(t)(ps(t)ps (0) )

(2.6)

dOi

j J J J
= —g J,q(o; VJ —oi Vi), (2.1)

where 0.;=p;, n;, or n; as the superscript 0.—:0, 3,A B

or B and

Vi=(1 —p; n; —n; —) .A B
(2.2}

p;(t) =nt'(t) x„, p =A,B—. (2.3)

Because xz is the atomic concentration of species p,

The variable V;(t) specifies the stochastic occupa-
tion variable for a vacancy to be present at the lat-
tice position i at time t. When 0=p; (t)
=n;"(t)=n; (t), then V;(t)=1 and the site i is va-
cant. However, if one of the variables p;(t), n;"(t),
n; (t) is unity (note that at most only one atom can
be present at location i at any time t), then the va-
cancy is absent at location i and hence V;(t) =0.

As in I, it is convenient to work with occupancy
fiuctuation variables. For the AB system there are
two such variables

= ((p, (t);p, (0) ))
+ 00

G~ exp( i cot—}dco, (2.7a)

Gi",(t) = ((pi(t)pi(t);ps (0) )), p =A, B
+ oo= f GP. ,exp(

idiot)dc0

—. (2.7b)

As in I, it is convenient to work in terms of the
inverse-lattice representation such that

G~ =—g G»exp[i K ( g —g ')],gg
K

Gt', = — g g GIr, », exp[iKi (1 —g ')

K) K2

+iK, ( j —g')].
(2.8)

Equation (2.6) can now be written in a compact
form that will be found most useful for the present
treatment:

and

(p;(t) ) =0

( Vi(t)) =v =1—xq —xs,

(2.4a)

(2.4b)

(to+ivto»)G» 1 =iT(K, ro—)G»,

where

(2.9a)

and Eqs. (2.1) can be recast into the following useful
orm:

~$'i
vXJi(p pi—)+ X X—Ji(pii pit ) ~-

j pAB j

(2.5a)

T(K,to) =J g [1—exp(iK 5)]

x[f"(5)+f (5)],

ro» ——J z(1 —y»), o—:A, B,O

(2.9b)

(2.10a)

= —(1—xs) $JJ(A; —AJ ) —xq $Jj(p; —pj )

j y» ———g exp(iK 5),
Z -+

5

(2.10b)

—g J""[p A —p A +xz (B B)—
f"(5)=—gG"K ~ x exp( ikey)/—G» ,.—

+(AiB; A;Bq)] . — (2.5b) (2.11)
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[For brevity, dependence of f"(5) on co and K is not
indicated. ] If the scattering terms on the right-hand
side of Eq. (2.9a) are ignored in comparison with
those on the left-hand side, we get

. (co+ EUNir)Gjr —1 0 . (2.12)

This is the well-known mean-field approximation
I

(MFA). Thus the terms on the right-hand side, pro-
portional to f"(5},represent the additional fluctua-
tions from the MFA.

To treat these fluctuations adequately, it is neces-
sary to examine the equation of motion of the two-
particle Green's function G&. After some algebra,
we find

a)Gij 8
—.x„{i(Jjju+J(~j) [c—o+iz(J v+ J")] 5ijIGig

+iG~~ ~ I(v. —xq )Jjj+Jjj(1—xg ) —z[J v +J"(1 xa)]—j
~ B A 0 A ~ 0 A B

+iGIJ'8'xA(Jlj ~lj J z}+lxA JJ~(Gjl;8'+Gjl 8}'
+i(1—5ij) g [xgJj~(G(; 8+.uJ(;Gq 8+(1. xs—)Jj~G(; 8]+. iRij 8, . (2.13)

where

Rij.g ——g J(; bq) b (q (( (pi Ag p; A j+p—iBg p; Bj)Aj—,'pg )) + g Jijbqq bqj ((pj (AjB; A(Bj };—pg )) (2.14a)

and

5"=I—5" .
&J V' (2.14b}

III. SOLUTION

An inverse-lattice Fourier transform of (2.13} in-
volves a set of coupled integral equations which give

I

Equation (2.13) is exact. However, the terms indi-
cated by Rij.g represent higher-order fluctuations.
They involve, in addition to the tracer variable p, at
least two additional renormalized particle fields —all
at different locations. As explained in I, we expect
these fluctuations to be O(x&v(1 —u)(1 —x&)) and
O(xzxg(1 —xz )(1—xs)). Accordingly, in the small
concentration limit, i.e., when x&(&1, or xq and
u «0 (or xg and u «0), the neglect of R terms is
rigorously justified. On the other hand, while in the
intermediate-concentration regime R is not vanish-
ingly small, it is, nonetheless, smaller than the MFA
terms which are of order v. As a reasonable approx-
imation, therefore, in what follows the remainder R
will be neglected.

1

Gx ir, in terms of Gx g, Gx, x, , and sums of

the form

(3.1)

1Ii ———gyxG~R +g +i, p .

For general K, and K2, exact solution of these equa-
tions seems nearly impossible to obtain. It turns;
out, however, that as in I an appropriate integral of
these equations makes it possible to relate f"(5)'s to
themselves, thus providing us with a set of 2z linear
equations for the 2z unknowns f&(5). Some of the
essential manipulations are similar to those carried
out in I, although the notation is different and many
details of the algebra are more cumbersome. The re-
sult can be presented in the following form:

f"(5)=~(5)+g [I."(5,5 ')f"(5 ')+x&M"(5,5 ')f'(5 ')],
5'

fs(5)=48(5)+ g[Ls(5, 5 ')fs(5 ')+xgMg(5, 5 ')f"(5 ')],
(3.2)

where

4"(5)=—g exp( —i A, 5)N"(A, )/D(A, ), (3.3a)

N"(1)=—xg [a)+i [va) g q+(1—xg)a)i]I [a)+i(cuiu+coj„)]+ixgxsa)j„[co+i(vcoi+coj„)], (3.3b)



7232 R. A. TAHIR-KHELI 27

D(&)=t~+i[u~'g;+(1 —xs)~x]II~+i[u~'g i-+(I —x~)~i, l]+x~xs~M
and

(3.3c)

L"(5,5 ') = [ (u —xz )J +J"(1 —xs )]P"( 5 —5 ')+xz J exp(iK 5 ')P"( 5+ 5 ')

—[vJ exp(iK. 5 ')+(1—xs)J"]P"(5)

+xzxs[(J —J )Q"(5—5')+J exp(iK 5')Q (5+5')—J Q"(5)],
M"(5,5')= (J" J)P—"(5—5')+J exp(iK 5')P"(5+5')—J"P"(5)

+[(v —xs)J +J (1—xz)]Q"(5—5')+xsJ exp(iK 5').Q"(5+5')
—[uJ exp(iK. 5 ')+ (1—xg )J ]Q"( 5 ) .

(3.4)

(3.5)

The quantities P&( r ) and Q&( r ) are related to the generalized Watson sums that depend on both co and K:

P"(r)=—g exp( i l—r){,co+i [vcorc i+(I —xq )coi„]I/D(A), (3.6a)E

Q"(r)=—+exp( i I, r)co—i„/D(A, ) .
N

(3.6b)

Once the quantities f"(5) have been obtained, the
mass operator of the Green's function is readily
found, i.e.,

Gx [co+iu——colcF(K, co)]

where

(3.7a)

F(K;co)=1 T(K,co)/(v—cd) . (3.7b)

[Note T(K,co) depends on a simple sum of f&(5)'s
as given in Eq. (2.9b). Also note that @s(5),
L (5,5 '), and M (5, 5 ') need not be given explicit-
ly since the relevant expressions can be readily found
from those for 4"(5 ), L"(5,5 '), and M"(5,5 ').]

IV. RESULTS

Coefficients of the 2z coupled linear equations
(3.2) for the 2z unknowns f"(5) involve inverse lat-
tice sums W(5), P"(5), Q"(5), Pi'(5+5), and
Q"(5+5 '). While these sums are straightforward to
do on the computer, for arbitrary K directions they
can involve tedious computation. For example, for
general K, the relevant sums over the Brillouin zone
retain none of the 48-fold cubic symmetry that the
K-independent Watson sums possess. Moreover, for
such K's the number of sums needed is of or-
der 3z+2z . In contrast, for K values along high-
symmetry directions, it is usually possible to reduce
the 2z equations to a small number, such as 4 or 6,
etc., and equally importantly it is possible also to ex-
ploit the symmetry property of the Brillouin zone.
Together, these simplifications can result in reduc-
ing the computer time by as much as 2 orders of
magnitude; namely, to the order of a few minutes
rather than many hours.

Another important feature of Eqs. (3.2)—(3.6b) is
the freedom from any requirement for dynamical
self-consistency. Self-consistency, even when it is
rigorously assured, can increase computational ef-
fort by an order of magnitude and, worse still, is at
times quite unachievable (compare, for instance, cer-
tain types of coherent potential approximations' ).

For small K and small frequency co, these equa-
tions can, however, be solved analytically. This
yields the well-known diffusive limit, for which

F(K,co) ~ fu .
JOK2 «co
op((J z

(4.1)

The correlation factor fo is found to be given as fol-
lows

2J (cos8)po
fo '=1-

vo(1+ (cos8) )
'

pu
——uJ (xq+xs)+xq(1 —xz)J

+xs(1—xs)J"—xgxs(J" +J ) y

vo ——[vJ +(1—xs)J"][vJ +(1—x„)J ]

(4.2)

(4.3)

—XAXBJ JA B

Quantity (cos8) depends only on the lattice struc-
ture and is well known for a variety of three-
dimensional lattices [see for example, Eq. I(3.18)].
For two-dimensional square lattice we have comput-
ed it to be approximately equal to —0.3634, whereas
in one dimension it is equal to —1 and hence fu ——0.

It should be noted that Eq. (4.2) reduces to the
corresponding result for a single-component system
with vacancy concentration v whenever J"=J =J
[to compare this with Eq. I(3.19), use the fact that
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TABLE I. To compare our estimate for the diffusion coefficient, or equivalently the tracer
correlation factor f0 given in Eqs. (4.2) and (4.3), with that of Manning (Ref. 4), we show here
the case where the tracer is identical to A atoms (hydrogen, for example), and the background
consists of a mixture of xq (hydrogen atoms) and xz ——1 —xq, deuterium atoms. The hopping
rates have been assumed to have the ratio given in (4.5), i.e., J"/J =V 2. The columns la-
beled fo give the results of the present paper whereas the columns marked "ratio" represent
the ratio of Manning's fo to our f0.

Simple cubic

fo Ratio
Face-centered cubic

fo Ratio

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

0.653 11
0.645 63
0.637 97
0.630 14
0.622 14
0.61397
0.605 66
0.597 19
0.588 60
0.579 88
0.571 06

1.0000
1.0005
1.00 10
1.00 12
1.00 13
1.00 13
1.00 12
1.00 10
1.0007
1.0004
1.0000

0.781 45
0.77600
0.770 34
0.76446
0.758 35
0.752 00
0.745 41
0.738 58
0.731 50
0.724 17
0.716 58

1.0000
1.0006
1.00 10
1.00 15
1.00 17
1.00 18
1.00 17
1.00 15
1.00 12
1.0007
1.0000

here xz+xz ——1 —v =x of paper I]. Moreover,
when either xz or xz is vanishing, the above result
once again reduces to that given in I(3.19).

Another feature of the result (4.2) worth noticing
is that we do not expect it to be reliable when either
J" or J, or both J~ and J, lie outside the range
zJ &J &J /z. This is in contrast to paper I where
the validity of the theory was restricted only to the
case where J&J /z. The reason is that here the
relevant fluctuations are proportional to J as well
as J" and J, which are being neglected [compare
the remainder (2.14a) and the one referring to paper
I, the latter being proportional only to J ]. In three
dimensions this restriction is not a serious one in
practice, but it would be useful to have a theory
which is reliable throughout the range
0 &J /J & ac. In order to give a feeling for the ac-
curacy of the theory for only moderately different
hopping rates, in Table I we append a comparison of
the present results with those given by Manning's
calculation for the case of hydrogen atom diffusion
in a hydrogen-deuterium mixture where the vacancy
coricentration is vanishing. (Note Manning's work
is restricted to the case of zero vacancy concentra-
tion. ) We find that the two sets of predictions differ
by at most two parts in a thousand and this occurs
near the worst possible point of 50-50 concentration
of hydrogen and deuterium.

At general K and co, we study a case that cannot
be treated adequately within the restricted format of
I. This happens when the concentrations, x~ and
x~, of both the components are finite. For brevity,
however, in all the discussion that follows we con-
sider only the equiconcentration case, i.e.,

1 —U =2' =2' =C . (4.4)

Also for brevity we consider the tracer to be identi-
cal to the A variety of atoms (say, hydrogen) so that
J =J . Now, after setting the frequency scale, by

).00-
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O
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~ 065-
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FIG. 2. F(K,O) is plotted vs (1—v) =C. The top set of
three curves is for g=4, the middle set for g=1, and the

lowest set for q= —.For each of the sets, the highest

curve at C=1 refers to K=m.(1,0,0), the middle one to
K=@(1,1,0), and the lowest one to K=m.(1,1, 1).
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FIG. 4. (a) Incoherent response S(K,co) is given as a function of co. Here K=+(1,1, 1) and v =0.01. The top four
curves, according to decreasing order of heights at zero frequency, are for r) =—,1/V 2, 1, and 4, respectively. The bot-

tom curve (with triangles) represents the MFA result for all g. (b) Same as (a) for v =0.5. (c) Same as (a) for v =0.9.

limit [e.g., U =0.001 shown in Figs. 1(a)—l(c)] the
composition of the background makes a substantial
difference in the results. Note that the correlation
effects become more prominent with increase in the

deuterium concentration.
To investigate both the K and co dependence of

F(K,co), it is convenient to look at its real and im-
aginary parts separately. We have
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These figores correspond to Figs. 4(a)—4(c), respectively, with the only di fference that here K =0.5(1,1, 1).

lim F(K,co+i e) = U i W . —
g—+0+

(4 7) E=logio~ (4.8)

In Figs. 3(a) and 3(b), the real, U, and the negative
imaginary, W, parts are plotted for a variety of
values of K, q, and the vacancy concentration, u.

For convenience, these are given as functions of E
where

Both the real and the imaginary parts of the general-
ized correlation factor are observed to be smooth
functions of E, the latter displaying a single peak.
Only for small wave vectors do the curves for U
contain a slight shoulder (this is reflected as a weak
secondary maximum in W). Because the quantity
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of experimental interest, referred to as the in-
coherent response function

S(K,to) = —( 1 ltr)lmG~(to+i e), a~0+ (4.7)

contains an co term in the denominator, the effects
of such a shoulder are essentially masked for all the
measurable wave vectors.

The above fact is demonstrated in Figs. 4 and 5,
where we have plotted the response as a function of
to for both large K (i.e., at the zone boundary along
the cube diagonal) and small K (i.e., about 16% of
the way along the diagonal from the zone center).
We observe, firstly, that the curves are completely
smooth with no trace of a cusp at co=0. Secondly,
the relative separation between the ri=(1/~2) and

q = 1 curves (the former refers to the case where the
background is half hydrogen and half deuterium, for
example, while the latter refers to the background
being all hydrogen) is a strong function of the va-

cancy concentration U (being most pronounced for
small U ) but only a weak function of K.

Thus, in a neutron scattering experiment, the
presence of deuterium background (instead of the
hydrogen background) should be noticeable only as
long as vacancy concentration is less than -90%.
For u-50%, appreciably different results for the
two types of backgrounds can be expected. In this
connection it should be mentioned that for the sys-
tem PdH„D„ the relevant lattice is fcc. This acts to

further reduce the observability of the differences
between the hydrogen and the deuterium back-
grounds, and for constant C =x +y the results are
somewhat insensitive to changes in x and y as long
as C(0.1. For C&0.15, however, the different
blocking rates for different compositions of hydro-
gen and deuterium should affect the results for the
response sufficiently strongly to be measured.

ACKNOWLEDGMENTS

This paper is an outgrowth of work originally
started at University of Oxford with Professor R. J.
Elliott (paper I). I am grateful to Professor Elliott
for advice and discussion. I have also benefited
from discussions with Professor K. Binder and Dr.
K. W. Kehr and Dr. K. Schroder at Julich. This
work was in part carried out at the International
Centre for Theoretical Physics (ICTP), Trieste, Ita-
ly. I am greatly indebted to Professor E. Tossatti
for hospitality at ICTP. Part of the work was writ-

ten up at the University of California, Santa Bar-
bara. I am indebted to the Institute for Theoretical
Physics, the Department of Physics, Professor J. R.
Schrieffer, Professor Douglas Scalapino, Professor
D. Hone, and Professor Vincent Jaccarino for hospi-
tality. Financial support from the National Science
Foundation, Grant No. DMR-80-13700, and a
grant-in-aid of research from Temple University is

gratefully acknowledged.

R. A. Tahir-Kheli and R. J. Elliot, Phys. Rev. 8 27, 844
(1983).

~J. Bardeen and C. Herring, in Imperfections in Nearly
Perfect Crystals, edited by W. Shockley (Wiley, New
York, 1952).

A. D. LeClaire and A. B. Lidiard, Philos. Mag. 1, 518
(1956).

'tJ. R. Manning, Acta. Metallurg. 15, 817 {1967);Dif-
fusion Kinetics for Atoms in Crystals, (Van Nostrand,
Princeton, 1968); Phys. Rev. B 4, 1111(1971).

5H. J. De Bruin, G. E. Murch, H. Bakker, and L. P. Van
der Mey, Thin Solid Films 25, 47 (1975).

G. E. Murch. and S. J. Rothman, Philos. Mag. A43, 229
(1981).

7Y. Fukai, K. Kubo, and S. Kazama, Z. Phys. Chem.
N.F. 115, 181 (1979); H. Sugimoto and Y. Fukai,
Suppl. Trans. Jpn. Inst. of Metallurg. 21, 177 (1980); S.
Kazama and Y. Fukai, ibid. 21, 173 (1980).

R. Kutner and K. W. Kehr (unpublished).
90. F. Sankey and P. A. Fedders, Phys. Rev. 8 15, 3586

(1977);20, 39 (1979);22, 5135 (1980).
'OP. M. Richards, Phys. Rev. B 16, 1393 (1977).

'P. A. Fedders, Phys. Rev. B 17, 40 (1978).
S. Alexander and P. Pincus, Phys. Rev. B 18, 2011
(1978).
K. W. Kehr, R. Kutner, and K. Binder, Phys. Rev. B
23, 4931 (1981).
P. A. Fedders and O. F. Sankey, Phys. Rev. B 15, 3580
(1977); 18, 5938 (1978).

K. W. Kehr, R. Kutner, and K. Binder (unpublished).
J. Van Beijeren, K. W. Kehr, and R. Kutner (unpublish-

ed),
K. Nakazato and K. Kitahara, Prog. Theor. Phys. 64,
2261 (1980).
R. J. Elliott, J. Krumhansl, and P. L. Leath, Rev. Mod.
Phys. 46, 465 (1974).
J. G. Mullen, Phys. Rev. 121, 1649 (1961).

2 H. R. Glyde, Phys. Rev. 180, 722 (1968).
'L. Katz, M. Guinan, and R. J. Borg, Phys. Rev. B 4,

330 (1971).
For a comprehensive recent review, see J. Volkl and G.
Alefeld, in Hydrogen in Metals, Vol. 28 of Topics in Ap-

plied Physics, edited by G. Alefeld and J. Volkl

(Springer, New York, 1978).


