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2pP and 4pP instabilities in a one-quarter-filled-band Hubbard model
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The zero-frequency wave-vector-dependent charge- and spin-density susceptibilities for a
quarter-filled-band extended Hubbard model are calculated with the use of a Monte Carlo
technique. Results for a variety of different temperatures are given. Coulomb interactions

are found to suppress the 2pF charge-density response and enhance the 2pF spin-density

response. While a strictly on-site Coulomb interaction gives rise to only a weak 4pF struc-

ture in the charge-density response, longer-range Coulomb interactions such as the near-

neighbor interaction V in the extended Hubbard model can produce a singularity at 4pF. In

addition to these susceptibilities, both the charge and spin structure factors are calculated,

as well as two-particle, two-hole correlation functions. We also show some results for the

ground-state energy, magnetic susceptibility, and specific heat of the Hubbard model. The
relationship of the results obtained from our Monte Carlo simulations to various limiting

exact results as well as to the well-known weak coupling renormalization-group predictions

are discussed.

I. INTRODUCTION

Quasi-one-dimensional organic charge-transfer
compounds have been the subject of intensive experi-
mental and theoretical research in recent years. '

Basic to an understanding of such materials is a de-
tailed knowledge of the properties of one-
dimensional interacting electron and electron-
phonon systems. In this paper we begin a systemat-
ic study of the extended Hubbard model using a re-
cently developed Monte Carlo (MC) procedure. 56

This approach, proceeding via numerical simulation,
is intermediate between theoretical and experimental
studies, allowing one to obtain insight into the way
thermodynamic properties and correlation functions
depend on the parameters of a model. It has already
proved to be effective for the study of certain one-
dimensional models with electron-electron and
electron-phonon interactions.

Numerical simulations provide a complement to
theoretical calculations. For example, they allow us
to move away from weak or strong coupling solu-
tions as well as various exact solutions to intermedi-
ate regimes which are often closest to experiment.
They allow us to calculate a variety of thermo-
dynamic properties as well as examine both short-
range and long-range correlations. Simulations can

indicate the range of validity of perturbation expan-
sions. Fitted to renormalization-group scaling rela-
tions, they can carry out the first few renormaliza-
tion steps giving the appropriate initial conditions to
describe a specific model. Beyond this, the ap-
proach we have developed generates typical configu-
rations of the system which can give insight into
the physics. In addition, simulations give results for
"measurements" on well-defined model systems,
which can be directly compared with experimental
results on real materials. In this way one may learn
whether a given model contains the essential physics
of a problem. If so, by varying, for example, the
size of the couplings or the band filling, one can sys-
tematically explore the relationship between the mi-
croscopic model and the resulting macroscopic
physics. If the results do not agree with experiment,
one knows to look further for the basic physics rath-
er than argue that the failure is a result of an ap-
proximate solution. Conversely, simulations can
also help one avoid the problem of using an approxi-
mate solution to obtain a rough fit to the data when
in fact an accurate solution would fail to fit showing
that the model does not contain the basic physics.

This paper contains results of a study of a one-
quarter-filled-band extended Hubbard model with
an on-site Coulomb interaction U and a near-
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neighbor Coulomb interaction V. As is well known,
both the charge- and spin-density zero-frequency
susceptibilities of a noninteracting one-dimensional
electron gas have a low-temperature lnT divergence
at a momentum transfer of 2pF. This behavior of
the charge-density susceptibility can give rise to a
giant Kohn anomaly resulting in a peak in the dif-
fuse x-ray scattering at 2pF and, below a critical
temperature, to a Peierls transition.

Following the initial observations of 2pF charge-
density waves in the partially oxidized tetracyano-
platinate complex (Krogmann's salt) (KCP) and
tetrathiafulvalene-tetracyanoquinodimethane (TTF-
TCNQ), structures at 2pF and sometimes also at 4pF
have been found in many quasi-one-dimensional sys-
tems. Torrance' suggested that the structure at
4pF was associated with strong long-range Coulomb
interactions giving rise to the formation of a
Wigner-type crystal.

An alternative explanation of the 4pF anomaly in-
volving moderate to strong Coulomb interactions
was proposed by Emery. " In Emery's picture, the
electron-phonon coupling of the lattice to the elec-
tronic charge density gives, in the usual way, the 2pF
Kohn anomaly and Peierls transition. He then asso-
ciates the 4pF anomaly with an instability arising
from a correlated state of the 2pF charge-density
waves. Specifically, Emery argued that for inter-
mediate to strong Coulomb interactions the two-

particle two-hole susceptibility diverges at low tem-

peratures at a wave vector 4'. Then coupling this
to the .lattice via an electron-phonon interaction
leads to a Kohn-Peierls behavior at 4pz in a similar
manner as the single-particle single-hole susceptibili-

ty gives rise to the 2' behavior.
We have calculated the momentum-dependent

zero-frequency charge- and spin-density susceptibili-
ties, and the effect of Coulomb interactions on the
structure of these susceptibilities at momentum
transfers 2pF and 4pF. The two-particle, two-hole
susceptibilities associated with on-site n;,n;, and
near-neighbor n;+~n; Coulomb couplings were also
evaluated along with the charge and spin structure
factors. In Sec. II these susceptibilities and struc-
ture factors are defined and the form of the extend
ed Hubbard model is given. The Monte Carlo pro-
cedure is introduced and some results for the Hub-
bard model (the near-neighbor coupling V of the ex-
tended Hubbard model is set to zero) are compared
with exact results in the weak and strong U coupling
limits. The calculated ground-state energy and mag-
netic susceptibility for various values of U are com-
pared with Shiba's' exact results, and the tempera-
ture dependence of the specific heat and spin suscep-
tibility for an intermediate value of U are given.

In Sec. III results for the Hubbard-model charge-

and spin-correlation functions are given along with
results for the two-particle, two-hole response. The
temperature dependence of the charge and spin
zero-frequency susceptibilities are shown for various
values of the Coulomb interaction U and the charge
and spin structure factors are plotted. The effect of
the Coulomb interaction U is to suppress the 2pF
peak in the charge-density susceptibility and to
enhance it in the spin-density response. Only a weak
nonsingular structure is found for finite U in the
charge-density response at 4'. The 4' response is
enhanced by longer-range Coulomb interactions, and
in Sec. V we turn to the extended Hubbard model.
No significant structure is observed in the two-
particle, two-hole susceptibilities generated by the
on-site or near-neighbor operators in the Hubbard
model. This is in agreement with calculations in the
U=O and U=ao limits, and we believe that this
type of four-particle process is suppressed by phase
space and is not responsible for the 4pF structure.

In Sec. IV we compare the Monte Carlo data with
the weak coupling renormalization-group (RG) pre-
dictions. This is of interest both as a check on the
Monte Carlo calculation and to gain insight into the
RG results. In the usual phase diagram constructed
from the RG calculations, the zero-frequency 2pF
charge-density-wave (CDW) and spin-density-wave
(SDW) susceptibilities both diverge as (e, /kT)~ with
a=N(0) U/2to leading order in N(0)U. However,
as discussed in Sec. III, the Monte Carlo data show
that the 2p~ peak in the charge-density response is
suppressed while that in the spin-density response is
enhanced as U is increased. The resolution of this
puzzle is discussed in Sec. IV, where we find on in-

tegrating the nonlinear RG equations that indeed
the 2pF peak in the charge-density response is first
suppressed by U and only at unphysically low tem-
peratures is the fixed-point behavior (e, /kT)
achieved.

In Sec. V results obtained for the extended Hub-
bard model are given. Here, with both U and V
present, structure is observed in the charge-density
susceptibility at 4pF, and the structure at 2pz is
strongly suppressed. We thus find that for a one-
quarter-filled band (p=0. 5), Coulomb interaction
can produce a 4pF peak in the charge-density sus-
ceptibility but that when this happens the 2pF peak
is suppressed. In Sec. VI we summarize our find-
ings.

II. THE MODEL AND SOME LIMITING
RESULTS

In quasi-one-dimensional organic materials the
molecules form stacks along which the intermolecu-
lar electronic orbital overlap is much greater than
the overlap between molecules from different stacks.
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The relative separation of the stacks also has the
consequence that the electron-electron Coulomb in-
teractions and the electron-ion interactions along a
stack are stronger than those between stacks. Here
we focus on the properties of a single chain leaving
the question of how to treat the interchain coupling
open. One approach which has been used to treat
arrays of weakly coupled chains is to determine the
properties of a single chain and to then treat the
weak coupling between chains by a mean-field
description. '

Consider a one-dimensional tight-binding electron
system of bandwidth 4t, with t the nearest-neighbor
hopping matrix element. We will assume that the
dominant Coulomb interactions are given by the
on-site repulsion of electrons of opposite spin on the
same molecule U. We will also consider the effect
of adding a nearest-neighbor repulsion between elec-
trons on neighboring molecules V. There is no diffi-
culty in studying longer-range interactions with our
Monte Carlo technique, but in this paper we restrict
our attention to U and V, which are presumably the
dominant interactions in most cases. The model of
interest is then defined by

I= t g ( C; C—;+ i +H.c. ) + U g n; „n;,
i,a

X [n;+t, (0)+n;+t, (0)])e't

and

(2.3)

X[n;+t, (0)—n; +t(0)])e'q',

For an interacting system, calculations based upon
the fixed-point limit of the weak coupling RG
predict power-law divergences (e, /kT) for the
low-temperature susceptibilities. The actual phase
transition of a quasi-one-dimensional system de-

pends on both the size of the single-chain suscepti-
bility and the strength of the appropriate interchain
coupling.

Here we will study the single-chain zero-
frequency charge-density and spin-density suscepti-
bilities

+ Vg n;n;+i, (2.1)
(2.4)

with sr = g, l and n; =n;, +n;, . Here, as noted in the
Introduction, we consider only the one-quarter-
filled-band sector.

For V=O, the Hubbard model defined by (2.1)
can be studied exactly by Bethe-Ansatz techniques,
as shown by Lieb and Wu. ' However, this solution
provides only limited information about the system:
The ground-state energy, the energy gap, the zero-
temperature magnetic susceptibility, ' and the
nearest-neighbor correlation function have been ob-
tained exactly. It appears very difficult to obtain ex-
act results for long-range correlation functions and
for thermodynamic properties. For more than on-
site interactions ( V+0), the model does not seem to
be solvable by Bethe-Ansatz techniques.

The strictly one-dimensional system defined by
Eq. (2.1) will, of course, not have a phase transition
at any finite temperature but rather is characterized
by the behavior of various low-temperature zero-
frequency susceptibilities. For example, for a nonin-
teracting system the charge-density susceptibility

N(q)= f d (p ( )p (0)), (2.2)

with p~ = g, Cz+e, C~„exhibits the well-known

In(e, lkT) low-temperature divergence at q =2pF.
Here e, is a cutoff energy related to the bandwidth.

respectively, as a function of the temperature and
the coupling constants. With an appropriate inter-
chain Coulomb coupling (or electron transfer in-
teraction leading to an effective spin exchange cou-
pling) these susceptibilities can produce three-
dimensional charge-density-wave (or spin-density-
wave) phase transitions. It is also possible to have
lattice instabilities associated with N(q). Thus if the
single-particle on-site energy [set equal to zero in
Eq. (2.1)] were to vary under a lattice distortion, "a
random-phase-approximation (RPA) treatment
predicts a Peierls transition at a wave vector q and
temperature T, where

1= N(q) .
2

I gq I'
(2.5)

Here gq is the electron-phonon coupling constant
and coq is the phonon frequency. At temperatures
just above T„ the large amplitude vibration of the

phonon associated with this soft-mode Kohn anom-

aly can give rise to a peak in the diffuse x-ray
scattering.

We will also study the two-particle, two-hole sus-

ceptibility
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P
Nv(q, 0)= dr+ (n;+&(r)n;(r)

'1

X n;+t+ I (0)n; +I (0) )e'e,

exp[ h—r(Hi +H2+HUi )]

bw —avH,
=exp — HU& e 'exp — HU&4 2

(2.6)

which enters in determining the instability of the
lattice associated with a phonon modulation of the
near-neighbor Coulomb interaction of the extended
Hubbard model, Eq. (2.1). Alternatively, internal
molecular vibrations can modulate the on-site
Coulomb repulsion U. ' In this case the relevant
susceptibility is given by

I3

&~(q, 0)= dr g (n;, (r)n, ,(r)
i, l

Xnt „,(0)n, „,(0) )e'e' .

(2.7)

It is also interesting to determine various charge
and spin structure factors corresponding to the
equal-time correlation functions

Sz(q)= —g ((n;, +n;, )(n; +t, +n; +i, ))e' '

i, l

(2.8)

and

1S (q)= —y ((n;, n;, )(n;+i, —n;+t, ))e'—
i, l

(2.9)

L
Z =Tre ~ =Tr g e (2.10)

with hr=P/L. The Hamiltonian is decomposed
into three parts as follows:

Hi —— t g (Ct~~C—;~i +H.c.),
i(even), cr

H2 t $ (Ct~Ct+——i +H. c—),
i (odd), cr

(2.11)

H„i,= Ugn;, n;, + Vgn;n;+, ,

and the exponential is approximated by

In order to calculate these quantities we will use
the Monte Carlo technique discussed in Refs. 5 and
6. The partition function for the system is written
as

r

—h,~H2 2Xe exp — HUi +O((hr) ) .
4

(2.12)

Upon inserting complete sets of intermediate states
between exponential factors, one obtains a represen-
tation of the one-dimensional quantum problem as a
two-dimensional classical system on a "checker-
board" space-time lattice, as shown in Fig. 1 of Ref.
5. The degrees of freedom at each lattice point are
the occupation number of spin-up and spin-down
electrons. A repulsive interaction of strength U/2
acts between electrons of opposite spin at the same
site, and a repulsion of strength V/2 between elec-
trons at neighboring sites.

The time-slice size h~ is determined by the accu-
racy desired. We have found that for the nonin-
teracting problem, taking h~t =0.25 gave reasonable
accuracy (within a few percent) for most quantities
of interest. The accuracy is best for the energy, and
worst for correlation functions at points where
divergences occur. For the interacting system, we
have chosen b,rmax(U, V) (0.5. Since the error in
the decomposition (2.12) is proportional to the com-
mutators of the different parts of the Hamiltonian, a
smaller h~ has to be taken when the interaction
strength is increased. This limits somewhat the pos-
sibility of going to regimes of very large U and V,
since increasingly more time slices have to be taken
for a given temperature.

Throughout most of our study, we have taken a
chain of twenty sites with periodic boundary condi-
tions. By studying the effect of finite size in the
noninteracting system, we concluded that finite-size
effects are negligible for temperatures higher than
Pt-10. Since the computation time increases only
linearly with the size of the system, it is quite feasi-
ble to study lower temperatures by taking larger lat-
tices in the space and time directions. Here, in units
such that t =1, we have studied temperatures rang-
ing from P=3 to P=14.5. For a bandwidth
4t =O.S eV, these correspond to temperatures rang-
ing from approximately 500 to 100 K. There are
small finite-size effects at the lowest temperature
studied, P= 14.5, on a 20-site lattice, but we estimat-
ed them to be within our statistical accuracy. The
strength of the Coulomb interaction U is given in
terms of t so that a U of 4 corresponds to a
Coulomb coupling equal to the bandwidth. Results
are given for U =0, 2, 4, 8, and 00.
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Figure 1 shows the charge-density susceptibility
N(q) at P=7.25 (T-200 K for 4t =0.5 eV) for the
cases U =0 and U = oo. Here, and throughout the
paper, N(q) and X(q) will be measured in units of
2/vruF with Uz ~2. This is just the low-
temperature q~0 limit of N(q) for a noninteracting
one-quarter-filled chain. For U =0, N(q) diverges
logarithmically at q =2pF, signaling the Peierls in-
stability. At U = 00, the Peierls instability occurs at
q =2p~, with pz the Fermi wave vector for the
noninteracting spinless fermions, which is twice the
original one. Thus in terms of the original pz one
obtains a logarithmic divergence at q=4pF. The
agreement between MC and exact results is reason-
able in both limits, and converges for 6~&&1. For

N(q)

As=0. 2S the Monte Carlo data overestimate the
U=O peak at 2pF and underestimate the U=co
peak at 4pF by about 10%%uo. We expect similar accu-
racy in our numerical results for intermediate
values of the coupling.

For U =0, the spin-density correlation function is
identical to the charge density. For large U and
V=O, the model can be shown to be equivalent to
an antiferromagnetic Heisenberg model as far as the
spin degrees of freedom are concerned. ' Therefore,
the equal-time spin-density correlations are expected
to decay as 1/R with distance. ' Thus the spin-
density structure factor will have a logarithmic
divergence at q =2pF, while the co=0 spin-density
susceptibility will have a linear divergence at
q =2pF. For a finite system at finite temperatures,
these divergences are cut off by the finite size or in-
verse temperature, whichever is smaller.

In Figs. 2(a) and 2(b) we show the charge-density
structure function Sz(q) for the cases U=O and
U = ac, compared with exact results for the grand-

(a)

0
0

I

I

q/2pF Sp(q)

0.2

N(q)
(b) 0

0
q/2pF

0.6
(b)

0
0

I I I I I I I I I I

0.4 0.8 l.2 l.6 2.0
q/2p

0.4

s~(q)

0.2
FIG. 1. (a) Zero-frequency charge-density susceptibili-

ty W(q) normalized to 2/mvF vs q for a 20-site system
with U=0 and P=7.25. The solid line passes through
the exact canonical result for a 20-site system with U =0
and P=7.25 and the points are Monte Carlo data with
hz=0. 25. A similar Monte Carlo calculation with
6~=0.125 gives results which sit approximately midway
between the points shown and the solid curve. Two of
these are marked by X's. As A~ goes to zero the Monte
Carlo result converges to the exact canonical result. (b)

N(q) vs q with U= 00 and P=7.25. As in Fig. 1(a), the
solid line is the exact canonical result, the points are
Monte Carlo data with 5~=0.25, and the )('s are Monte
Carlo data with 6~=0.125. Only two &('s are shown be-
cause the others lay on the dots. Note that in the U= oo

limit the peak occurs at 4pF.

0;.
0 04 0.8

q/2p„
l.2 l.6 2.0

FIG. 2. (a) Charge-density structure factor Sz(q) vs q
for a noninteracting U =0, quarter-filled system with 20
sites at P=7.25. The solid line passes through the exact
20-site result for a grand-canonical ensemble at P=7.25
and the points are the Monte Carlo data for a canonical
ensemble with 5~=0.25. (b) Charge-density structure
factor S~(q) vs q for the quarter-filled U= 00 limit. As in
Fig. 2(a), the solid line represents the exact result for a
grand-canonical ensemble while the points are Monte Car-
lo data appropriate to a canonical ensemble with
8 v=0.25.
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TABLE I. Singular behavior of the charge and spin structure factors and zero-frequency
susceptibilities for an infinite chain in the limits U =0 and U = ao.

U=O
U=oo

s,(q) x(q)

lnT at 2pF
lnT at 4pF

s (q)

lnT at 2pF

X(q)

lnT at 2p+
1/T at 2pF

canonical ensemble, at a temperature 13=7.25. The
case of the one-quarter-filled band at U = oo is ex-
actly equivalent to a half-filled band of noninteract-
ing spinless electrons as far as the charge degrees of
freedom are concerned (except for certain small
boundary effects). The agreement between the MC
and exact results is very good except at some special
points. Since our MC algorithm works in the
canonical ensemble, it gives Sz(q) =0 for q =0. In
the grand-canonical ensemble instead, Sz(0) gives
the fluctuation in particle number and is nonzero at
finite temperatures. For the case U =0, the MC re-
sults give a sharper kink at q =m /2 than the grand-
canonical results. The reason is that the smearing of
the Fermi surface at finite temperature is larger in
the grand-canonical than in the canonical ensemble.
At T =0, the exact answer is a straight line up to
q =2@+ and a constant value for q &2pz. Table I
summarizes the singular behavior of the charge and
spin structure factors and the static susceptibilities
for an infinite chain in the limits U =0 and U = oo.

We now discuss other properties of the system.
Figure 3 shows the ground-state energy of the sys-
tem as a function of U. The solid line is the exact
result for the one-quarter-filled case calculated nu-

merically by Shiba. ' The curve starts from the
U =0 result Eo ———2V 2/m and approaches the
U = 00 result of Eo ———2/~ for a half-filled band of

noninteracting spinless fermions. The agreement
with the Monte Carlo data obtained for P=14.5,
our lowest temperature, is satisfactory.

Figure 4 shows MC results for the specific heat
and susceptibility per site for the case U=4, V=O
as a function of temperature. The specific heat
shows the two-peak structure found by Shiba and
Pincus in their study of short chains. ' The upper
peak is associated with charge and the lower one
with spin excitations of the system. The lower peak
should occur at T-J,ff with J,ff the effective ex-
change interaction for the spins. We determined J,ff
by assuming the relation for the zero-temperature
susceptibility per spin of a Heisenberg chain,

2 2

x= ',"'
(2.13)

27T Jeff

and using for g the susceptibility per electron ob-
tained by Shiba' from the exact solution. The re-
sult for the case under consideration is J,ff —0. 14,
and is indicated by an arrow in Fig. 4. An alterna-
tive way of obtaining J,rr is from the strong cou-
pling perturbation expansion of Klein and Seitz,
which yields'7

2t p sin(2mp)

U+ (4t /n. ) sin(pm. ) 2m p

(2.14)

-07

Eo

and gives J,ff ——0.19. The discrepancy with the pre-
vious result is due to the finite value of U.

Since our MC method works with a canonical en-

—0.8 0.5—

C jo ~
Nk

0"
0$

0
Qf

FIG. 3. Ground-state energy per site vs U for the
quarter-filled sector. The solid curve is taken from
Shiba's (Ref. 12) numerical solution, and the points are
Monte Carlo data for a system of 20 sites at an inverse
temperature P=14.5. All energies are measured in units
of the hopping matrix element t.

FIG. 4. Monte Carlo data for the specific heat and sus-
ceptibility per site of a system with U =4 and V=O. The
arrow denotes a temperature where kT is equal to an ef-
fective exchange interaction J,ff given by Eq. (2.14). In
(b), the solid curve is the Bonner-Fisher result for a
Heisenberg chain and the dashed line is the Curie law for
isolated spins.
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1.2—

I I I I I / I I I I N{q,T)

X
Nits~ 0-

0 q/2p

p
I'
0 2

I I I I I I I

6 8 10
U

x{q,T)

FIG. 5. Zero-temperature susceptibility per site vs U.
The solid line was determined from Shiba's numerical re-
sults (Ref. 12). The short-dashed line is the enhanced
Pauli susceptibility, Eq. (2.16), and the long-dash —short-
dash line is the large U limit, Eq. (2.13). The Monte-
Carlo data were obtained from g(q) at the smallest
nonzero q at the lowest temperature P= 14.5.

semble, which has a fixed number of particles and
fixed total spin, we cannot obtain the magnetic sus-
ceptibility directly. The MC results for X(q =0) are
always 0 because of the conservation of spin. How-
ever, the MC results for finite q should approach the
correct results for the grand-canonical ensemble as
q~0 with a q dependence. We have simply taken
the susceptibility to be the smallest nonzero q value

0
0 q/2p

FIG. 7. Charge- and spin-density susceptibilities vs q
for U =2 show the suppression of the peak at 2pF in (a) N
and the enhancement of the 2pF peak in (b) p produced by
U in this temperature range.

N{q,T) {o)

0~
0 q/2p,

q/2p
x{q,T)

0
0 q/2p

FIG. 6. Zero-frequency charge- and spin-density sus-

ceptibilities normalized to 2/m. uF vs q for U =0 and vari-
ous temperatures. Here P=tikT and taking 4t =0.5 eV
the five profiles from front to back correspond to values

of T approximately 500, 400, 300, 200, and 100 K, respec-
tively. The solid lines are drawn through the Monte Carlo
points as a guide to the eye. To within statistical errors,
the results for (a) N and (b) P are identical as they should
be for U=O.

0 I 2 q/2p

FIG. 8. (a) Charge- and (b) spin-density susceptibilities
vs q for U =4. Note the nearly complete suppression of
the 2pF peak in N at the higher temperatures and the
slight rise near 4pF which goes away at lower tempera-
tures as the peak near 2pF returns.



7176 J. E. HIRSCH AND D. J. SCALAPINO 27

of X for our 20-site system, i.e.,

X(q =0)-X(q =2m. /20) . (2.15}

A somewhat more accurate procedure would be to
fit the first points of X(q) to a quadratic function to
extract the q =0 value. However, we do not think
that within our statistical accuracy that procedure
would give different results. In Fig. 4(b), we indi-
cate by a thin line the Bonner-Fisher results for
the Heisenberg model susceptibility, with J,ff given

by Eq. (2.13). The MC results for the Hubbard
model with U=4 appear to follow this behavior.
The peak in the Bonner-Fisher susceptibility and in
the MC results for the Hubbard model occurs at
T=1.25J,f~. The dashed line in Fig. 4 represents
the susceptibility per site of N/2 isolated spins,

X/Nptr 1/(2T). ——The MC results approach this
behavior at high T, as expected. Although the sta-
tistical errors in Fig. 4 are rather substantial, it illus-

trates the fact that the MC procedures can be used
to obtain thermodynamic properties. Better accura-
cy can be obtained by increasing the number of MC
sweeps, but our primary interest here is in the study
of 2pF and 4pF correlation functions.

Finally, we show in Fig. 5 the zero-temperature
magnetic susceptibility as a function of U for the
one-quarter-filled-band Hubbard model. The dashed
line represents the weak coupling Pauli enhanced
susceptibility ':

pend on U. The spin-density singularity structure is
somewhat simpler, since the divergence occurs at

q =2pF for both U=O and U=aa with different
strengths, so that the most likely behavior is a singu-
larity at 2pF for arbitrary U with a strength that
varies monotonically with U.

Figures 6—9 show the q dependence of the charge-
and spin-density zero-frequency susceptibilities at
various temperatures for the Hubbard model with
U=O, 2, 4, and 8. We have chosen to compute
these correlation functions at P=3, 3.75, 4.5, 7.25,
and 14.5. As previously noted for 4t =0.5 eV, these
correspond approximately to temperatures of 500,
400, 300, 200, and 100 K, respectively. The value of
A~ was taken to be 0.25 for U =0 and U =2, 0.125
for U=4, and 0.0625 for U=8. For U=O and
U=2, 5000 measurements were made with 6 MC
passes between measurements. As he was de-
creased, the number of passes between measure-
ments was increased proportionally, up to 24 for
U =8. This is necessary because the acceptance
fraction for the moves in our MC algorithm de-
creases as b,r is decreased. Before starting the mea-
surements, about 1000 warm-up sweeps were made
to bring the system into equilibrium, with this num-
ber also increasing proportionally as A~ was de-

2/rTUF

g p&~ 1 —U/2auF
(2.16)

For large U, the zero-temperature susceptibility for
a one-quarter-filled band is given by Eq. (2.13}
where to lowest order in t/U, J,tr=2t p/U, which
is t /U for p=0. 5. This is indicated by a dash-dot
line in Fig. 5. The exact result by Shiba interpolates
smoothly between these limits and is shown as the
solid line in Fig. 5. Our MC results for U =0, 2, 4,
and 8 are shown as the solid dots.

Q~
0 q/2pF

III. RESULTS FOR THE CORRELATION
FUNCTION

In this section we present numerical results for
the Hubbard-model correlation functions. One
question of particular interest is to see how the dou-
bling of the characteristic wave vector for charge ex-
citations occurs, from 2pF at U=0 to 4' at U= oo.
One could imagine various possibilities: (1) The 2p~
peak for U =0 shifts its position continuously to-
ward 4pF as U is increased, (2) the disappearance of
the 2' peak and the appearance of the 4p~ peak at
a critical value of U, or (3). the coexistence of 2pF
and 4p~ singularities with relative strengths that de-

0-
0 2 q/'2 p

FIG. 9. Charge- and spin-density susceptibility vs q for
U=8. Here P=3, 3.75, and 7.25, respectively. In N (a)

there is no evidence of a 2pF peak but there is a clear rise
as q approaches 4p~. g (b) shows a large 2pF peak at low

temperatures.
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2 q/2p

f U=s
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FIG. 11. N(4pF) vs lnN for various sized lattices with
the number of v. slices L =N. With Ax=0. 25 one has
lnN =ln(4t/kT) and one can view the figure as showing
how N(4pF) scales with ln(4t/kT). For U=oo we see
that N(4pF ) -ln(4t /kT) consistent with the expected
ln(e, /kT) behavior. For finite U these results indicate
that N (4pF ) does not diverge as T~O.

q/2pF

8

FIG. 10. (a) Charge- and (b) spin-density susceptibili-
ties at P=7.25 for U =0, 2, 4, and 8. At fixed tempera-
ture, as U increases the peak in N at 2pF decreases and a
new peak appears at 4p~. The peak in g at 2pF is
enhanced as U increases.

creased. For clarity, we do not show the statistical
error in the MC data. In most cases, it was of order
twice the size of the points. As U increased, it be-
came somewhat larger for the spin-density correla-
tion functions, and can be estimated approximately
in the figures from the scatter of the MC data from
a smooth line.

Figure 6 shows results for U =0. The solid lines
here and in the following figures are drawn as
smoothly as possible through the MC points to
guide the eye. The results are identical for X and 7
for this noninteracting case. Note the peak in these
correlation functions at q =2pF, which becomes
sharper as the temperature is decreased. As men-
tioned earlier, the height of the peak diverges as

ln(e, lkT) for small T.
Figure 7 shows the susceptibilities for U =2. No

4pF peak is yet noticeable in the charge-density sus-
ceptibility E. However, note the weaker ZpF peak in
N compared to the U =0 results. This is in contra-
diction to the fixed-point prediction of the RG,
which has both E and 7 diverging more strongly at
2pF as U increases. We will return to this point in
the next section. In contrast to the behavior of X,
the 2pF peak in p has grown substantially in qualita-
tive agreement with the fixed-point RG prediction.

In Fig. 8 we show results for U=4. At the
highest temperature, N shows a small peak at 4pF.
This peak increases slightly at the next lowest T, but
then decreases and disappears as T is lowered. The
2pF peak is almost nonexistent at the higher value of
T, but appears as T is lowered. The spin-density
response at 2pF becomes now appreciably stronger,
particularly at low temperatures.

Finally, we show in Fig. 9 results for U =8. Ow-
ing to the larger number of time slices and MC
sweeps required for this case, we only show results
for three temperatures: /=3, 3.75, and 7.25. The
peak at 2pF in 1V has now disappeared, and the 4pF
peak is somewhat larger, particularly at low tern-
peratures. However, we cannot rule out the possibil-
ity that at even lower temperatures the 2pF peak
could reappear and the 4pF peak disappear, as hap-
pened for U =4. The spin-density response at 2pF is
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s (q)

8
0 I

q/2pF

(b)

s~(q)

8
0

q/2PF

FIG. 12. (a) Charge-density and (b) spin-density struc-
ture factors S~(q) and S (q) vs q for various U values at
P= 7.25.

I
X(2pF) ~

T'x
(3.1)

For U=O, the index 8~ ——0 corresponds to a loga-
rithmic divergence, and for U = oo, Oz ——1 (see Table
I). Within the weak coupling renormalization group
one obtains Hz

——Ul(2v 2vrt), which predicts that
Oz ——1 for Ult =8.9. It appears more likely, how-

greatly enhanced, as expected.
In Fig. 10 we show the dependence of the charge-

and spin-density susceptibilities on the interaction U
for a fixed low temperature, P=7.25. As mentioned
before, in N the 2pz peak disappears, and the 4p~
peak develops as U is increased. For X, the 2' peak
becomes substantially stronger as U is increased.

We can draw some tentative conclusions from
these results. For 7, the MC data indicate that the
2p~ response increases continuously as U is in-
creased. The low-temperature behavior of the 2pz
peaks is most probably given by

ever, that the RG predictions break down before this
and that 0& increases monotonically from 0 at U =0
to 1 at U = 00. We will make a more detailed com-
parison with the RG predictions in the next section.

For the charge-density susceptibility, the results
are somewhat less clear. We certainly do not see a
simple peak that shifts its position from 2p~ to 4pz
as U is increased. The 2p~ peak persists but be-
comes smaller as U increases. However, as we will
see in Sec. IV, there is reason to believe that at suffi-
ciently low T it would increase beyond its T~O
value for small U. The 4@~ peak for small U ap-
pears to grow first but then decrease again as the
temperature is further lowered [see particularly the
U =4 results shown in Fig. 8(a)]. A simple picture
that would explain this behavior is that there exists
a crossover temperature T, ( U) which goes to zero as
U~~. For T g T„ the 4' peakincreases as T is
lowered, and for T & T„ the 4pF peak disappears.
Conversely, the 2' peak only appears below the
crossover temperature T, . This picture implies that
in the ground state there exists a 4pz logarithmic
singularity only at U = ce, and that any finite U re-
moves it. In terms of a global renormalization-
group description, this behavior would correspond
to the existence of an unstable. fixed point for the
charge degrees of freedom at U= ~. The flow for
any finite U would be toward the weak coupling re-
gime, and the temperature T, would measure the en-

ergy region over which the system behaves as if it
were in the weak coupling regime. The dependence
of T, on U would be determined by the nature of the
fixed points at U= oo and U=O.

In order to study the 4pF behavior in more detail,
we have looked at the 4pF charge susceptibility for
lattices of various sizes with N =L, up to %=32.
Figure 11 shows the results plotted versus lnÃ for
U =0, 2, 8, and ~. For U= ao, we see a straight
line corresponding to a logarithmic divergence, as-

expected (see Table I). For finite U, the correlation
function does not appear to diverge. Instead, it first
increases and then levels off or even decreases, in ac-
cordance with the previous discussion. A more ex-
tensive Monte Carlo study using larger lattices
would be needed to determine accurately the cross-
over temperature.

In Fig. 12 we show the charge- and spin-density
structure factors S&(q) and S (q) for various U with
P=7.25. The charge-density structure factor S~(q)
evolves smoothly from the U =0 behavior (at
T =0), a straight line from 0 to 0.5 for q from 0 to
2p~ and a constant value of 0.5 for 2p~&p &4p~,
toward the U = op behavior which is a straight li.ne
from 0 at q =0 to 0.5 at q =4@~. From Fig. 12(a)
we see that no sharp peak appears at 4pz for any
value of U. The spin-density structure factor S (q)
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starts the same way as Sz(q) for U =0, and develops
a peak at 2' which diverges logarithmically at
U= m. Presumably, for U & Oo it takes a large but
nondivergent value at 2pF as T~O.

Finally, we discuss the behavior of the two-
particle, two-hole correlation functions defined in
Sec. II, Eqs. (2.6) and (2.7). Figure 13 shows NU(q)
for P=7.25 at three values of U ( U =0, 8, and ao ).
Note that NU(q) shows a peak at 2pz for U=O.
This is because a piece of this correlation function
corresponds to the particle-hole susceptibility. For
U =0, we can write

NU(q) =NU(q)+ „N(q)—, (3.2)

N„(q)

and the two-particle, two-hole irreducible part
NU(q) shows no divergence at all. As U is in-
creased, this correlation function is rapidly
suppressed because the number of doubly occupied
sites is reduced.

Figure 14 shows the function Nv(q) for P=7.25
and U=O, 8, and 00. Again we can write a decom-
position such as Eq. (3.2) both for U =0 and U= ae

in which the irreducible two-particle, two-hole part
N f,(q) is separated from the single-particle —hole
part. The irreducible part Ni.(q) can be shown to be
a smooth function with no singularities both at
U =0 and U = ao. In these limits the singularities
in Nv(q) come entirely from the single-

particle —hole channel. In Fig. 15 we reproduce the
single-particle —hole charge-density susceptibility

N(q) for the same parameters as those used in Fig.
14 for Ni (q). The peak that appears in Fig. 14 for
q~4pF at U=oo is solely due to the q~4pF
behavior of the single-particle —hole piece (see Fig.
15). A coherence factor arising from the near-

neighbor nt+tni form of the operators appearing in

Nv(q) suppresses the U=O structure in Ni (q) at

q =2pz which is seen in N(q).

0.3—

J'~~,l 2 q/2p

FIG. 14. Two-particle, two-hole susceptibility Nv(q) at
P=7.25 vs q for U =0, 8, and ao.

IV. COMPARISON OF MONTE CARLO DATA
WITH RENORMALIZATION-GROUP RESULTS

As one knows, the zero-frequency, 2pF charge-
density and spin-density susceptibilities for a nonin-
teracting one-dimensional electron gas have a low-
temperature logarithmic divergence

N(q)

For intermediate values of U we cannot make a
separation such as Eq. (3.2); however, we can study
the behavior of the 4p~ peak in Ni.(q) versus lattice
size. Figure 16 shows how Nz(q) scales with lnN
for U=O, 2, 8, and oo. Note how similar these re-
sults are to those of the charge susceptibility shown
in Fig. 11 and that a divergence seems to occur only
at U = ~. Thus for finite U we find no evidence for
a singular 4pF response in the two-particle, two-hole
channel generated by on-site or near-neighbor opera-
tors in the Hubbard model. Emery has pointed out
that for the one-quarter-filled band one would not
expect a singular 4pF response in Nz due to coher-
ence factors in g&nt+, nte's' but that the susceptibil-

ity associated with the next-nearest-neighbor opera-
tor gtni+2nte' may be singular.

0.05-

0.5

q/2PF

2 q/2pF

8
U/

FIG. 13. Two-particle, two-hole susceptibility NU(q) at
P=7.25 vs q for U =0, 8, and oo. The peak at 2pz in the
U=0 response arises from the single-particle —hole part
of NU(q).

FIG. 15. Single-particle —hole charge-density suscepti-
bility N (q) at P=7.25 vs q for U =0, 8, and ao. Here we
have not divided N(q) by 2/mU~.
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N„(4p )

O.l -Q
0

g U=2

U*O

malized I-dependent couplings.
To implement these ideas, Menyhard and Solyom

used a multiplicative renormalization transforma-
tion calculated in perturbation theory. In second or-
der they found that the effective l-dependent cou-
pling constants are given by

= —[gi (l)+ —,g i (l)],
(4.2)

0
2

I

3
InN

FIG. 16. Ny(4p~) vs lnN for various sized lattices with
N =L. For U = oo, N&(4p&) -lnN implying a ln(e, /kT)
divergence due to the contribution of the single-
particle —hole channel. At finite values of U, N~(4pF)
does not diverge. Compare with Fig. 11.

N(2pF) =X(2pF) = —,in(e, /kT) . (4 1)

Here we have followed our convention of normaliz-
ing these with respect to 2/mU~. Applying perturba-
tion theory to the Hubbard model, Eq. (2.1) with
V=O, generates a sequence of logarithmic correc-
tions involving successive powers of
(U/nv~)ln(e, /kT). Clearly, even when U/nvF is
small, perturbation theory will fail at a sufficiently
low temperature.

To deal with these diverging logarithms, Men-
yhard and Solyom applied a renormalization-group
approach Here . attention is focused on states near
the Fermi surface +pF, and the electron dispersion
relation is approximated by the linear form
ei,

——vF( ~p ~

—pF) with a bandwidth cutoff +e, .
The interaction is parametrized in terms of a cou-
pling constant g2 which characterizes small momen-
tum transfers, and gi which characterizes large
momentum transfers of order 2' in which electrons
are scattered across the Fermi surface. The basic
idea of the renormalization group is to map the orig-
inal problem with a cutoff energy e, and coupling
constants g ~ and g2 onto another equivalent problem
in which the cutoff has been reduced and the cou-
plings correspondingly altered. Reducing the cutoff
implies eliminating degrees of freedom. When the
cutoff is reduced to order kT, the logarithmic terms
are no longer dangerous and, at least for weak cou-
pling, perturbation theory can be used. Since the
cutoff energy e, enters in terms of the parameter
I =ln(e, /kT) we will find it physically more useful
to view e, as fixed and kT as changing. At larger
values of kT where 1=0 we will use perturbation
theory to solve the original problem and then scale
to low temperatures where l is large using the renor-

(e, /kT)

with

(4.3)

a = 1—,,~2
-—g2 +0(g2 ) .

(1+g2 )'~' (4.4)

Based upon this fixed-point behavior, the ground-
state phase is said to be characterized as having both

FIG. 17. Phase diagram of a one-dimensional electron

gas obtained from the second-order renormalization-

group approximation. Coupling constants for the Hub-
bard model lie along the dashed line g~

——g2. The dots
show the cases that have been studied numerically in this

paper.

gi (0) gi (I)
g2(l) =g2(0)—

2 2

Here g2(0) and gi(0) are the unrenormalized cou-
pling constants of the original problem which for
the Hubbard model are both equal to U/m. vz. For
the repulsive Hubbard model (U&0), as the tem-
perature is lowered and l goes from 0 toward ao, the
effective couplings flow toward smaller values end-
ing at the fixed point g2 ——U/2mvF and gi ——0. If
U/mUF is small to start with, perturbation theory
can be used over the entire range to construct the
RG.

Thus in the low-temperature limit, the large
momentum (backward scattering) coupling vanishes
leaving a Tomonoga-Luttinger model whose solution
is known. 3 In particular, the zero-frequency
charge and spin susceptibilities at 2pF both diverge,
neglecting logarithmic correction, as
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g~
——[U+2Vcos(2pz)]/n vF,

gq
——( U+ 2 V)/n vF,

(4.5)

a divergent CDW and SDW response.
As discussed in Sec. II, the low-temperature phase

of a quasi-one-dimensional system depends on both
the strength of the single-chain susceptibility and
the interchain coupling. Within the RG approach,
the fixed-point power-law exponent which deter-
mines the ground-state response has been used to
characterize the strength of the single-chain suscep-
tibilities. With the use of this criterion, one obtains
the well-known phase diagram for the one-
dimensional (1D) Fermi gas shown in Fig. 17. Here
SS and TS stand for singlet and triplet superconduc-
tivity, respectively. The labels denote regions in
which the correspondingly susceptibilities exhibit
power-law divergencies. Parentheses enclose
responses which have a lower power-law degree of
divergence than that of the dominant response in
their region.

In Fig. 17 the Hubbard model corresponds to the
dashed line where g~

——g2
——U/eve. The dots along

this line correspond to values of U =0, 2, 4, and 8.
For the extended Hubbard model

with vF 2——t sinpF. For the one-quarter-filled case
which we are studying pF ——m/4, so that g, = U/~vF
and g2

——(U+2V)/nvF T. he remaining dot in Fig.
17 corresponds to the extended Hubbard model with
U =4, V =2 which is discussed in Sec. V.

From our Monte Carlo results it is apparent that
the zero-frequency, 2pF spin-density susceptibility is
enhanced by U while the corresponding charge-
density susceptibility is suppressed in disagreement
with the fixed-point behavior just discussed. In or-
der to understand this it is useful to examine the
first-order perturbation-theory corrections to the
noninteracting susceptibilities,

N(2pF) = 1

7TVF

Ec
ln

2g (
—g2 &c

1 — ln
2

(4.6)

X(2pF) = 1 &c
ln

up kT
g2 &c

2 kT
ln

Setting g~ ——gq ——U/~vF it is clear that to this order
in perturbation theory, N(2pF) is suppressed and

X(2pF ) is enhanced by the interaction.
By differentiating these expressions with respect

to 1 =In(e, /kT), reduced susceptibilities which scale
can be constructed. Using the second-order results
of Menyhard and Solyom, one finds

and

I I)
N(2pF, l)=C) dl)exp f dl2[g2(12) —2g, (lz) —p(12)]

I l)
X(2pF, l)=C& f dl~exp f dl2[gz(lz) —F(12)] +C2

I

with

(4.7)

F(l) =
~ [g)(l) —g)(l)gq(l)+g2(l)] . (4.8)

(g2 —
2 g2 )

e p[1(g~ ——,g2')]=
kT

(4.10)

In order to proceed, the constants C&,C2 and an ef-
fective cutoff e, must be specified. For the nonin-
teracting system it is also possible to absorb C2 into
an effective value for e, . Monte Carlo data taken as
described below, for the noninteracting system, fits

T

N(2pF) = 11 4t

vp kT
(4.9)

The coefficient 1/mvF is just what one would calcu-
late. A simple choice of constants for Eq. (4.7)
which gives Eq. (4.9) is C& ——I/~vF, Cz ——0, and
e, =4t. We will use these values along with similar
values for C'i, and C2 in our subsequent discus-
sion.

Note that according to Eqs. (4.7) and (4.8), at high
temperature both N and X vary as In(e, /kT} in
agreement with Eq. (4.1). At low temperatures,
where l is large, both N and g diverge as

Here g2
——U/2avF is the leading contribution to the

index a and ——,g2 is just the next term out in the
expansion of the square-root solution of the
Tomonaga-Luttinger model, Eq. (4.4).

It is straightforward to integrate the nonlinear
renormalization-group equations (4.2) to obtain g~(1)
and g2(l}. Using these in Eq. (4.7), we find the
behavior shown in Fig. 18. The long-dash, short-
dash line shows the ln(e, /kT) divergence of the
noninteracting 2pF susceptibilities as the tempera-
ture is lowered. The solid lines give the behavior for
the 2pF spin susceptibility for two values of U and
similarly the dashed lines show the charge-density
response. Initially, for small l, as the temperature is
lowered the effect of the Coulomb interaction is to
enhance 7 and to suppress N. Finally, at ultra low
temperature where l & 10, the charge-density



7182 J. E. HIRSCH AND D. J. SCALAPINO 27

10 I /
( I

u =ay

N(q g) N(q, T)

0
0

I I I I I I

8 12 16 20

0-
0 q/2p

FIG. 18. Renormalization-group results for the 2pF
susceptibilities vs l =ln(e, /kT) for different values of U.
The long-dash —short-dash line is the noninteracting
U =0 result. The solid lines are the spin susceptibility for
U =4 and 2 and the dashed curves are the charge-density
susceptibility for U =4 and 2.

response X rises and eventually diverges with the
same power law as X. As previously discussed we
are interested in systems in which e, is a few tenths
of an electron volt and low temperatures are of order
100 K. This implies l values less than 4. An I value
of 10 would correspond to a temperature less than
one degree well below the typical Peierl's transition
temperature for materials such as TFF-TCNQ.
Hence the fixed-point solution is not relevant.

It is interesting to test our Monte Carlo results
against the renormalization-group results. We have
done this by calculating N(2') and X(2pz) on dif-
ferent sized lattices. Fixing b,r at 0.25 we varied the
number of time slices to obtain different values of
e, /kT. In these calculations the number of lattice
sites X was set equal to the number of time slices so
that t/kT =0.25N and

I =in(e, /kT) =lnN .

%e have plotted in Fig. 19 the Monte Carlo results
for N(2pz) and g(2pF) vs l for different values of
the Coulomb interaction U. This corresponds to a

Qi
0 I 2 p~2p,

FIG. 20. (a) Charge- and (b) spin-density susceptibili-
ties vs q for U =4, V=2 and various temperatures. Note
the sharp peak at 4pF in the charge density, as well as the
complete suppression of the 2pF peak. Note also the
much weaker temperature dependence of the charge-
density 4pF susceptibility as compared to the 2pF peak in
the spin-density response.

blowup of the origin of Fig. 18. The long-dash line
is again the noninteracting result while the solid
lines and dashed lines correspond to X and 7,
respectively, for U =2 and 4. The Monte Carlo re-
sults for the charge density are shown as solid points
and the spin density as open points. Runs were car-
ried out for U =0, 2, and 4.

8

00'

U=4

Q
100
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200 300
T( K)
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FIG. 19. Blowup of the region around the origin of
Fig. 18 comparing Monte Carlo data with the predictions
of the second-order renormalization-group equations.

FIG. 21. Temperature dependence of the 4pF charge-
and spin-density susceptibility peaks for the case
U=4, V=2. The temperature scale corresponds to the
case 4t =0.5 eV.



27 2pF AND 4pp INSTABILITIES IN A ONE-QUARTER-FILLED-BAND. . . 7183

V. EXTENDED HUBBARD MODEL

We have seen in Sec. III that a Hubbard model
with only on-site interactions does not give an ap-
preciable 4pF response for reasonable values of U;
indeed it appears that the response only becomes
singular at U=ao. In principle, the long-range
Coulomb interaction between electrons can give rise
to interactions U, V, Vq, V3, . . . , for electrons lo-
cated on the same molecule, nearest-neighbor mole-
cules, etc. Here we consider the effect of adding the
nearest-neighbor repulsion term V to the Hubbard
Hamiltonian. For the case considered here, the
one-quarter-filled band, it can easily be seen that V
can have a dramatic effect on the 4pF response.
Consider the limiting case U= ao. Then, the system
becomes equivalent to a half-filled band of spinless
fermions with a nearest-neighbor repulsion V. It is
well known that this system undergoes a transition
to a CDW state at V =2t. In the present context,
we would describe the system for V~ 2t as a Wigner
crystal, since there is long-range order in the charge
degrees of freedom, with period 4pF.

We have looked at the particular case
U=4, V=2. The charge-density susceptibility is
shown in Fig. 20(a). Note the sharp rise at q =4pF,
in contrast to the case U=4, V=O [Fig. 8(a)]. It
can be seen that there is only a weak dependence of

the charge-density susceptibility on temperature.
Note also that the 2p~ peak has now completely
disappeared, and the function rises monotonically
from 0 to 4p~. The spin-density response is shown
in Fig. 20(b). There is an enhancement in this corre-
lation function when Vis turned on [compared with
Fig. 8(b)]. In Fig. 21 we have plotted the amplitude
of the 4p~ peak in N and the 2p~ peak in X as a
function of temperature. Note that the 4pz peak
shows little temperature dependence while the 2pF
peak in 7 increases as the temperature is lowered.
Torrance' has argued that the temperature depen-
dence of the charge-density response should be small
because the Coulomb interactions are large com-
pared to kT, while the spin-density response should
be temperature dependent because the effective mag-
netic exchange coupling between the spins is expect-
ed to be a few hundred degrees. (For the case
U =4, V =0, we obtained in Sec. II, J,rr -—200 K.)

In Fig. 22 we show the charge and spin structure
factors Sz(q) and S~(q) for U=4 and V=2 at
P=7.25. In the spin structure factor, we see some
enhancement with respect to the U=4, V=O case,
as expected. The charge structure factor rises gra-
dually as q~4pF but no sharp peak is observed.

VI. CONCLUSIONS

0.5
Sp(q)

0.5

U=4, V=2
p= 7. 25

U=4, V=2
P= 7.25

As shown by these examples, Monte Carlo simu-
lation can provide detailed information on the prop-
erties of a one-dimensional electron system. It al-
lows us to directly calculate a variety of observable
quantities. Furthermore, one can compare the re-
sults of the simulations for various limiting cases
with exact results giving one a measure of confi-
dence in the procedure which is then straightfor-
ward to extend to intermediate regions of parameter
space where one does not have exact results. Also,
as shown, the nature of the singular structure at low
temperatures for an infinite system can be explored
using finite-size scaling techniques.

Naturally, there are a variety of further questions
suggested by this study. An important problem,
currently under investigation, is the effect of dif-
ferent charge fillings on the properties of the Hub-
bard model. We have previously reported some re-
sults for the half-filled-band case (p= 1.0). We are
presently running simulations for intermediate p
values between 0.5 and 1.0. In addition, other
response functions are of interest. For example, the
transfer-charge-density susceptibility

I

q~&vF

FIG. 22. (a} Charge- and (b} spin-density structure fac-
tors vs q for U =4, V =2 at P=7.25.

N(q)= f dr g (C(~+(~(1)C ~I~)~(1)
lo0'

«,„..(o)c,.(0)&, 'I
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determines the response of the electrons to a varia-
tion in the electron-transfer term t. Just as N(q)
determines the stability of the lattice with respect to
deformations which alter the on-site single-particle
energy, N(q) determines the stability of the lattice
with respect to modulations of t. Thus the full ex-
ploration of this system forms a wide area for fur-
ther research. Here we conclude by summarizing
the results which we have so far obtained for the
one quart-er filled -band -Hubbard model.

(1) Coulomb interactions suppress the 2pF peak in
the charge-density susceptibility over the range of
physically relevant temperatures. For the Hubbard
model with only an on-site U, the T—+0 limit may
diverge as predicted by the RG equations, but this
divergence occurs at unphysically low temperatures
and over the temperature range of interest the 2pF
charge-density susceptibility is substantially weaker
at finite U than for U=O. In the presence of a
moderate nearest-neighbor interaction V, the 2pF
peak is completely suppressed. Thus contrary to the
well-known fixed-point RG result, the effect of
Coulomb interactions is to suppress the charge-
density-driven Peierls instability.

(2) The 2pF spin-density susceptibility is greatly
enhanced by a finite U, and even more in the pres-
ence of a finite V.

(3) The 4pF charge-density susceptibility in the
one-dimensional Hubbard model with only an on-
site interaction is very weak. Most probably, it is
only logarithmically divergent at U= oo, and non-
singular for U ~ oo. In the presence of a moderate
nearest-neighbor interaction V, the 4pF charge-

density peak is greatly enhanced. It is interesting to
note that we do not find a (U, V) parameter range
for which there is a coexistence of 2p~ and 4p~
charge-density instabilities.

(4) The irreducible two-particle, two-hole correla-
tion functions of the Hubbard model generated by
n;, n,;, and n;+&n; are not divergent at U=O and
U=op. At intermediate values of U we cannot
separate the single-particle —hole charge-density part
of the response, but our scaling analysis showed that
the behavior of the 4pF peak in these two-particle,
two-hole susceptibilities is similar to the behavior of
the 4pF peak in the charge-density response. In par-
ticular, for finite U, the peak at 4pz is nonsingular
as T~O.

Note added in proof. Preliminary results for N(q),
Eq. (6.1), do show coexistance of 2pF and 4pF insta-
bilities for a certain range of ( U, V) parameters.
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