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Random T-matrix approach to one-dimensional localization
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We develop simple quantitative formulas for the inverse localization length of a one-

dimensional sequence of scatterers that are valid in the strong and in the weak scattering
limits. These formulas are shown to agree with numerical results obtained for chains with

up to 10 scatterers. We discuss the special circumstances under which a recent random-

phase result becomes quantitatively correct.

I. INTRODUCTION

The effect of disorder on the transport properties
of noncrystalline materials has long been a subject of
considerable interest. ' ' Recognition of the impor-
tance of localization has led to many calculations of
inverse localization lengths, but there exist surpris-
ingly few exact results. As a consequence of this
and in view of recent experiments on low-
dimensional systems, much attention has been
directed towards disordered systems described by a
one-dimensional (1D) random potential.

A variety of techniques are available for deter-
mining the inverse localization length a of an infin-
itely long 1D wire (for a recent review see Erdos and
Henderson ). These range from numerical algo-
rithms ' to theories which determine the probability
distribution of a. ' However, many of these tech-
niques are most suited to particular systems; a gen-
eral prescription for extracting the inverse localiza-
tion length from a given Hamiltonian does not exist.
The aim of this paper is to discuss a simple ap-
proach to this problem which is applicable to a wide
range of 1D random systems.

The method is based on a random transfer matrix
approach which was employed recently " to exam-
ine the statistical properties of the inverse localiza-
tion length. In essence, the resistance of a 1D wire
is calculated by breaking it into a series of segments.
If p; is the dimensionless resistance of the ith seg-
ment, it can be shown (a complete discussion is
given in Sec. II) that

where

ai ——(In(1+p) )

with the angular brackets denoting an average over
all segments.

In applications mentioned above, ' cz2 is eliminat-

ed by introducing a random-phase assumption. This
assumption is not generally valid. ' However, it can
be shown analytically for large p; (Ref. 12) and nu-
merically for small p; that by choosing long enough
segments, a2 can be made negligibly small' com-
pared with ai. In view of this, the qualita tiue re-
sults obtained from the random-phase assumption,
which do not depend on a detailed knowledge of the

p;, are expected to apply to a wide variety of 1D sys-
tems. In what follows we consider the possibility of
constructing a quantitatiue theory based on the ran-
dom transfer matrix approach, which possesses a
similar range of applicability.

For sufficiently long but finite segments, a2 can
be ignored and the random-phase result (2) yields a
quantitative expression for a, provided of course
that the resistances p; are known. Unfortunately,
because it is simpler to deal with asymptotic formu-
las, the problem of calculating the resistance pt of a
long but finite segment is much more difficult than
the initial problem of determining the resistance of a
system of length greater than I/a. For this reason
the random-phase assumption is not very useful in
quantitative work.

In the present paper, we derive an exact recursion
relation for the key phase (denoted e in what fol-
lows) of the problem and show how it may be em-

ployed to yield a quantitative result for u in two
limits. In Sec. IV, the large-p limit is discussed and
an efficient numerical algorithm is described. In
Sec. V, the small-p analysis is presented. The final
results are rather general and for purposes of illus-
tration, we apply them to a random sequence of del-
ta functions. Throughout this paper the separations
(rather than positions) of the delta functions are
chosen to be random variables with mean yo and
rectangular distribution of width 2'. The lack of
long-range order arising from the absence of an
underlying crystal lattice has led to this system be-
ing regarded as a model of 1D liquid. In a subse-
quent publication, ' the results are applied to a
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tight-binding Hamiltonian and the connection with
a renormalization-group approach' to this problem
is discussed.

Our aim is to derive simple quantitative formulas
for the inverse localization length. These formulas
may be obtained without a detailed knowledge of the
behavior of the phase e, because an average is taken
over this phase to obtain the inverse localization
length. Nevertheless, an explanation of the proper-
ties of a requires a deeper understanding. For this
reason in Sec. III, we examine the recursion relation
for e in some detail. We demonstrate that in the
limit of zero disorder the behavior of e is intimately
connected with the underlying band structure.
Furthermore, it is noted that the recursion relation
for e possesses many of the features of the finite
difference equations recently studied in theories of
chaos. ' ' In particular we show that e possesses
fixed points and chaotic regions. To begin with,
however, in the next section we present a brief dis-
cussion of the formulation of the problem in terms
of transfer matrices.

tains a single scatterer.
The dimensionless resistance z„ is obtained after

introducing transfer matrices. Consider a plane
wave incident on a sequence of n scatterers as shown
in Fig. 1. The transfer matrix M„of the sequence is
defined to yield the wave amplitudes to the right of
the sequence, given the amplitudes on the left,

Ap
—M„ (4)

n 0

A similar definition applies to the transfer matrix of
a single scatterer. For the jth segment we write

Aj+i Aj
Tj

Comparing Eq. (4) with (5) yields the result

Mn =TnTn-i '

which can be written more compactly in the form of
a recursion relation

Mg ——T„M„]. (7)
II. THE RANDOM T-MATRIX APPROACH

The electrical resistance A of a scattering system
with a single input and a single output channel is
given by

A'=(1't/2e )——13—kQ,2 R R
T T

(3)

where T and R =1—T are the transmission and re-
flection coefficients of the channel (a factor of 2 for
spin has been included).

A one-dimensional potential can always be broken
into a series of segments. In what follows, the di-
mensionless resistance R/T corresponding to a se-
quence of n segments will be denoted z„. The re-

quirement that at some stage in the analysis the di-
mensionless resistance p; (i = 1,2, . . . , n) of the indi-
vidual segments must be calculated, leads one to
adopt a simple choice for this subdivision. An ex-
ample is given in Fig. 1, where each segment con-

The main reason why the following analysis can
be applied to a wide range of ID potentials is that
the form of the transfer matrices is determined by
symmetry arguments. ' It is easy to show that
time-reversal symmetry and current conservation re-
quire the following form for the transfer matrix M„,

( 1 +z )1/2e '&n

&/& '"n

—tV„

(1+z„)'"e""

(&+pi)' 'e

pj e

1/2 ~~J'

pj 8
(9)

This expression involves the dimensionless resistance
z„and two phases p„and v„which depend on the
detailed nature of the scattering system. The
transfer matrix for the jth segment must have the
similar form

Ao~BQ~ B!~
I I

I I

I I

I I

I

I

I I

I I

X)

I I

Az~Bz~
I

I

I

I

I

I

I

I

I

I

XP
I

XPI

I

An-z~ An-l~
B,-z~ Bn-!~

I

I

I

I

I

I I

I

I

I

Xn-p I Xn-l I Xn
I I

~An~ Btl

which again involves two phases Oi, pi and the di-
mensionless resistance pj of the jth scatterer. In
what follows, we assume that 81, Pl, and pj are
known, so the problem of determining z„and hence
the inverse localization length a is reduced to that of
solving Eq. (7).

Substituting Eqs. (8) and (9) into Eq. (7) yields
after some simple algebra, the following recursion
relations:

FIG. 1. A sequence of equal-strength delta functions
with random separations. Each segment is defined to
contain a single delta function.

ln(1+z„)=ln(1+z„!)+In(1+p„)
+ln(1+ t„+2t„cose„), (10)
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s„+r„ Iexp(i e„)
r„exp t(e„+,—5„+,)]= I +s„r„ Iexp(i e„) '

where

en ~n In+An —I+vn —I ~

5..=~.—4.+~.—i+0.-i
(12)

pn

1+pn

1/2

rn= n

1+z„

1/2

and

n

a&
———g ln(1+p;) —= (ln(1+p) )

i=1

] n

az ———g ln(1+t; +2t;cosa;) .
E=2

(15)

(16)

A key feature of our approach is that the localized
nature of the eigenstates of a 10 random system
can be used to simplify the formulas for az and e in
the thermodynamic limit. We note that z„ increases
with n, so for some i &y 1 we can make the replace-
ment r; =1 in Eq. (16). In the limit n ~ oo, the fin-
ite number of terms corresponding to small i, for
which this replacement is not permissible, have a
negligible weight. Hence in this limit, Eq. (16) can
be written

az ——(ln(1+s +2s cosa)) .

Since Ip; I are given, al can immediately be calculat-
ed. On the other hand, until an expression is ob-
tained for e; involving only "local" properties of in-
dividual segments, (17) cannot be evaluated. In the
literature, " this problem has been avoided by in-
troducing the assumption that e is a random phase
distributed uniformly over 2m. Note that for

n=Snrn —1

Equation (10) was originally obtained by Anderson
et al. using a slightly different method and demon-
strates that e is the relevant phase for a determina-
tion of z„. Equation (11) is new and shows further
that e is a cumulative phase which can in general
depend on all previous scatterers on the chain.

These equations are exact and completely general
and we use them to obtain u in the limit n ~~. In
this limit iterating Eq. (10) yields

ln(1+z„)=na =n (al+az),
where

any s,

1 2m

de ln(1+s +2s cosa) =0 .
2a

This "random-phase assumption" yields a vanishing
result for o,2. As mentioned in the Introduction, this
assumption is not generally valid. However, it is
clear from (15) that by choosing long enough seg-
ments, p; and hence a1 can be made arbitrarily large.
On the other hand, for finite disorder uz is bounded
and hence the ratio a2/cz1 can be made negligibly
small. Unfortunately, since an expression for the di-
mensionless resistances p; of long but finite seg-
ments is not available, this observation only yields
the qualitative behavior of a.

To obtain quantitative results, we avoid the
random-phase assumption and instead employ Eq.
(11) to determine e. The analysis for large and small

p; is presented in Secs. IV and V, respectively.
However, before proceeding to this, it is useful to
discuss some properties of the phase e and in the
following section we examine this quantity in the
zero-disorder limit.

III. ENERGY BANDS AND THE PHASE e

In this section we examine the phase e in the
zero-disorder limit and establish a connection be-
tween the behavior of this quantity and the band
edges of the system. For simplicity our discussion
will center on Borland's condition' for the band

gaps of a sequence of equal-strength scatterers with
random separations. This is given in (19) below and
possesses two desirable features. First, the detailed
nature of the scatterers need not be specified.
Second, it is readily written in terms of the local
phases 5; of Eq. (12).

For a sequence of equal-strength scatterers we
have for all i, p; =p. Furthermore, the phases 6; are
in general distributed with some probability over the
interval (5o—b, ) to (50+6,). In its original form, '9

Borland's condition was stated explicitly in terms of
the minimum spacing between adjacent scatterers,
the disorder in this spacing, and the incident elec-
tron energy. However, it is readily verified that in
the notation of the present paper, Borland's condi-
tion can be restated as follows: When the following
inequalities are satisfied, the incident electron energy
lies within a band gap

5
tan p ——+me )—)mm —tan p +—,—1 1/2 ~ O —1 1/2

2 2 2
'

(19)

where m is an integer that can be used to label the
gaps. The band structure obtained by examining the
equalities of (19) is sketched in Fig. 2.
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~ —ALLOWED ENERGIES )

7r -/ /, 4,tan '([/pz)
0

-~ —ALLOWED ENERGIES y 2 ~

2 7T

At zero disorder (i.e., 6=0), the inequality (19)
reduces to the condition

tan (5p/2) &p, (20)

which is readily shown to be equivalent to the
Kronig-Penney condition for the band edges. For
large disorder, the inequalities cannot be simultane-
ously satisfied and all the energy gaps disappear.
This situation arises when

6&2tan 'p' '.
More generally, Eq. (19) and Fig. 2 show that for a
given value of p, there are pairs of values (5p, b) for
which the incident electron energy corresponds to a
gap in the density of states. At zero disorder the
ranges of po which correspond to allowed bands are
of width

(2rr —2 tan 'p' ) —(2 tan 'p ) =4 tan (1/p'/ ),
while corresponding gap regions are of width

I

0
FIG. 2. A sketch of the band structure of a sequence of

equal-strength scatterers with bounded disorder in the
separations. For such a system, the phases 5; are distri-
buted over an interval 60—5 to 60+6, which in general
depends on the incident electron energy and the scattering
strengths. For a given p, this figure shows the pairs of
values (50,6) which correspond to allowed energies and to
band gaps.

I I I I

0 0.2 0.4 0.6 0.8 I.0
S

FIG. 3. For the sequence of scatterers used in Fig. 2,
this figure shows the band structure as a function of the
parameters 5p and s =[p/(1+p)]I~', for two values of the
disorder h. The solid line shows the energy bands and
gaps for 5=1 and the dashed curve for zero disorder
6=0.

2tan 'p'
It is also instructive to examine the band structure

as a function of the parameter s =[p/(1+p)]' in-
troduced in Eq. (13). For a disorder of 6= 1, this is
given by the solid curves of Fig. 3. It can be seen
that for small s the band gaps have disappeared and
all energies are allowed. The dashed curves show
the corresponding band structure in the zero-
disorder limit. At s =0 these show that the energy
gaps are of infinitesimal width centered on values of
5p equal to integral multiples of 2tr. Similarly at
s=1 (p=oa) the energy bands are of vanishing
width occurring at 5p ——(2n + 1)n, where n is some
integer. For 5=0, the above values of 50 and s cor-
respond to cusps in the dashed curve, and in what
follows, it will be shown that to each cusp there is
associated a singularity in the contribution a2 to the
inverse localization length.

Armed with the knowledge of the band structure,
we now proceed to examine the behavior of the
phase e in the zero-disorder limit. In the thermo-
dynamic limit where r„~1,Eq. (11) can be rewrit-
ten

exp[i(e„+ ~
—5„+~ )]=

Sln6n
1+iP„ 1+cosa„

slnEn
1 —iP„

1 +cosE'n

&n
: =exp 2i tan P„tann
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where

Hence

1 —sn

1+sn
(21)

~n+1 ~n+1
tan

&n=p„tan
2

(22)

The complete asymptotic statistics of e are con-
tained in this formula.

To illustrate the behavior of e, consider a se-

quence of equal-strength scatterers in which for all
n, P„=P. Consider also the limit of zero disorder
where for all n, 5„=5p. Then after writing

&nT„=tan and t = tan(5o/2)
2

Tunstable

I

I

I

I
I

I

I

I

I

i~ b

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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I

I

I

I

I
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I 2
I

Eq. (22) becomes

T„+, (t+PT„——)/(1 PtT„) . — (23)
FIG. 4. A flow diagram for e„. Starting from some in-

itial value e] and with 50&5,„„„],the diagram shows how
e„ is "attracted" towards the stable fixed point.

T=' —P 1+ 1- 'P"
2pt (1—p)'

' 1/2

(24)

which shows that for a given pair (P, t) there is a
solution only if

(1—P)'
(25)

4

From (21) this can be written as

We proceed by seeking a fixed point for this equa-
tion. Setting Tn+& ——Tn =T gives the result

~critical
tan

2
(1—P)'

4p
(27)

These features are depicted in Fig. 4.
In view of (24) and (25), it is useful to introduce

the parameter P given by

P2 (1—p)'
(28)

4pt'

The condition for 5o to correspond to a band of the
zero-disorder system is then simply P (1. The
fixed points as a function of P take the form of Fig.

tan (5o/2) (p . (26)

Comparison with the inequality (20) reveals that (26)
is simply the condition for 5o to correspond to a
band gap. Hence, within a band in the zero-disorder
limit Eq. (23) does not possess a fixed point.

The origin of this feature is revealed by using a
flow diagram. Figure 4 shows the trajectory of e/2
arising from some initial value EI/2. By expanding
Eq. (23) about the fixed points (24) one can show
that the fixed point corresponding to the plus sign in
(24) is unstable, while the minus sign yields a stable
fixed point. This can also be seen from Fig. 4 by
constructing a few flows of the kind sketched. The
origin of the condition (25) becomes evident when
one seeks the maximum possible value of the differ-
ence

5/2=a/2 —tan '(ptane/2) .

The value of 5 which yields this maximum is 5,„„„~,
where

/I, ' Tune table

I

IAIithin a band,
no fixed points

FIG. 5. A sketch of the fixed points as a function of
the parameter P of Eq. (28). For P & l there are no fixed
points. For P & 1 there is a stable and an unstable fixed
point. These are T„,bt, ——P[1—(1—I/P )'~ ]/pt~~ and

T„„,t,bt, =P [I+ (1—I /P )'~ ]/p'~ .
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5. The behavior of the phase e and its relationship
to the zero-disorder band structure is illustrated by
these two diagrams.

Equations (22) and (23) possess many of the
features of the finite difference equations studied in
the field of chaos. ' ' Outside the region of stabili-
ty the quantity T„of Eq. (23) appears to exhibit
chaotic behavior in certain regimes. Starting from
two initial values Tt and T& which are infini-
tesimally close together, we have found numerically
that after a large number m of iterations, the corre-
sponding quantities T and T' can be very far
apart.

The approach to chaos (inside a band) from the
stable behavior (outside the band) does not appear to
follow any familiar route' (period doubling, inter-
mittency, etc.). It may be that the weak-disorder
limit corresponds to adding a noise term ' to the fin-
ite difference equations for zero disorder. In view of
these features, we feel that further exploration of the
connection between localization and chaos should
prove to be a fruitful subject of future research.

IV. THE LARGE-p LIMIT

We now proceed to obtain an expression for a2 in
the large-p limit. We note from Eqs. (21) and (13)
that the quantity P„&1 and vanishes in the limit
pn~~:

For simplicity we consider a model in which the
separations

yj =xj —x~ (35)

are uniformly distributed over the interval yo+hy.
In this case, the phases 5J are uniformly distributed
over the interval 6O+5, where

the validity of Eq. (32) by examining a sequence of
equal-strength delta functions with random separa-
tions. To calculate a 2 from (32), we need to
know the transfer matrices T; of individual seg-
ments introduced in Eq. (9). When each segment
contains a simple delta function of strength g the
well-known result is

p
1 /2 0 g tan

—1 I/2
ko'

(33)

QJ =2k oxj +n /2,

where ko is the wave vector of the incident electron
and xj the position of the jth delta function. Noting
that

tan-'p'" =~/2 —1/p'"+O(1/p)

yields from Eq. (12),

5, =~ 2/p'/ —2kp(xj ——xj ))+O(1/p) .

(34)

P„=1/4p„+ 0 (p„) . 50——m —2/p' —2koyp+ 0(1/p) (36)

will yield an exact expression for o.2. Noting that
' 1/2

Sg = ps

1+p;
=1+O(1/p), (31)

the resulting expression for a2 from Eq. (17) is

az= (ln(2+2 cos5) )

= f d 5P(5) ln(2+ 2 cos5), (32)

where P(5) is the distribution of the phases 5;.
In the remainder of this section, we demonstrate

Hence in view of Eq. (22), we consider replacing
e„+& by 5„+&

in the large-p limit. This is reasonable
provided the quantity e„/2 on the right-hand side of

1

(22) is not too close to (n + —, )rr. More generally, for
the purpose of computing the average on the right-
hand side of Eq. (17), the replacement of e by 5 will
yield a good approximation provided the probability
is small that e/2 is close to (n+ —, )n..

In the limit that for all i, p; —+ (x), it can be shown
that for any finite disorder 4 in the phases 6;, the
replacement

30)

and

6=2kohy .

Hence Eq. (37) becomes

~0 +~
a d5ln(2+2cos5) .

(37)

(38)

From Eqs. (37) and (18) the random-phase result
a2 ——0 will arise in the special case when 5=m. or
y =~/2ko. The result (38) has been given previous-
ly in a short Communication. '

We shall compare the value of a2 predicted by
(38) with the results of a numerical simulation The.
latter may be carried out quite generally by generat-
ing the elements of the matrices TJ from the known
properties of the single scatterers and their positions
xj. For delta functions this prescription is given by
Eq. (33) and for the distribution mentioned above,
the position xz+& is obtained by adding a random
number yj+~ to the position xj. z„can now be ob-
tained by iterating both Eqs. (10) and (11). One ad-
vantage of a simulation based on Eqs. (10) and (11)
is that exponentially large numbers associated with
z„are easily avoided. Equation (11) involves z„only
through the quantity r„and as z„—+op, r„~1.
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FIG. 6. Comparison of the analytic result (38) for a2,
shown by the solid line, with the results of a numerical
simulation on a sequence of 10' equal-strength scatterers.
The parameters used are p=105, kp ——0.5123 A ', and
pp=5. 9424 A. The value of 5p given by Eq. (36) is —m.

corresponding to the band center.

Hence as z„becomes large one can replace r„by uni-

ty and proceed with the iteration of Eq. (11). Fur-
thermore, Eq. (10) only involves the logarithm of z„
and consequently the algorithm is numerically very
stable. In practice the replacement of r„by unity in
Eq. (11) was carried out whenever z„exceeded 10'4.
For large p, since the localization length is small,
this occurs after only a few iterations. However, for
small p, where the localization length is large,
greater distances are required. Nevertheless, for any
finite disorder and in the thermodynamic limit
n +a—c, we found that in all cases z„—+ ao justifying
our asymptotic solution (17) for a2.

For an electron energy of 1 eV (ko ——0.5123 A '),
Fig. 6 shows the results of a simulation on a chain
of 105 scatterers, each of dimensionless resistance
p=105. The figure shows the variation of the con-
tributions a~ and a2 with the size of the system n
The contribution ui is given by the dotted line and
for equal-strength scatterers is simply a constant
[see Eq. (15)]. The variation of a2 with n is shown
for three different values of disorder in the separa-
tions y;, with corresponding disorder in 5 given by
Eqs. (36) and (37). The solid lines show the values
of a2 predicted by Eq. (38). For large n it can be
seen that the numerical results settle down to the ex-
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0 Qp
l, 2 — a

0

~ % awa
L ~ ~

o L ~

0.8 —
~ 4
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&y= 0.5 A
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CV
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AA
ALL~

A

I I

I 2 5 4 5
log, n

FIG. 7. Same as for Fig. 6 except that yp
——2.876 A so

that 5p ——0, corresponding to the center of a band gap.

-7r

FIG. 8. For six different values of the disorder 6 the
curves show the variation of a2(5p, h) with the mean 5p
[Eq. (39)]. The points give the corresponding asymptotic
values of a2 obtained from numerical simulations on se-
quences of 10 scatterers. The results for a2 are periodic

5

in 2m and even about the origin. The limiting case of
h, =0 is shown by dashed lines.
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from the replacement (30), is inappropriate. For
small p we calculate aq without explicitly solving
for e. An extension of this analysis will be presented
in a subsequent publication. ' For clarity this initial
analysis will be restricted to a sequence of equal-
strength scatterers in which the separations are un-

correlated random variables.
We begin by series expanding the right-hand side

, of Eq. (17) in powers of the small parameter
s =[p/(I+p)]'~ . From (17)

az ——(ln[1+s exp(ie)][1+s exp( —ie)] )

=2 Re[ ( in[1+s exp(ie )] ) J

=Re[2s (exp(ie) )
—s (exp(2ie))+ . ] . (41)

To obtain an expression for the averages on the
right-hand side of this equation we set r„=1 and
write Eq. (11) in the form

[1—exp(2ie„) ]
exp(ie„+ ~) =exp(i5„+ ~ )exp(ie„)+s exp(i5„+ ~) 1+s exp iE„

(42)

From Eq. (42), it can be shown by induction that for
any finite disorder,

sap
(exp(2iE) ) = [2(exp(ie) ) +s+O(s )] .

1 —az

(exp(mie) ) =O(s ) . (43) (48)

Hence contributions to az neglected by retaining
only the terms shown explicitly in Eq. (41) are
O(s ).

Note that 5„+~ is linear in the separation y„+~ of
the nth and (n+1)th scatterers. In particular for
delta functions, Eqs. (33) and (12) yield

Equation (45) shows that (43) is valid for m =l.
Substituting Eq. (47) into Eq. (48) yields Eq. (43)
with m =2 and as stated earlier the general proof
follows by induction.

Equations (47) and (48) can now be solved for the
averages on the right-hand side of Eq. (41) to yield
the result

5„+&——2 tan p —2koy„+~ .—1 1/2 (44)
az b&s +bz——s +O(s ), (49)

Therefore, 6„+~ is a random variable uncorrelated
with e„, because the latter depends only on the first
n scatterers while the former involves only the
(n + 1)th. We may write for any n and m,

where

2Q)
bt, ——Re

1 —a)
(50)

It is convenient to introduce the notation

a = (exp(mi5) ) . (46)

Then in view of (43), expanding the right-hand side
of Eq. (45) yields

sa&
(exp(ie) ) = [1—(exp(2ie) )

1 —a)

s(exp(i@)—) +0 (s ) ] .

(47)

Similarly after squaring and averaging Eq. (42), one
obtains

(exp(mie„+&)) = (exp(mie„))

= (exp(mie))

so averaging both sides of Eq. (42) yields the result

s(exp(i5) ) 1 exp(2ie)—
1 —(exp(i5) ) 1+s exp(ie)

(45)

and

az(1 —a~ )+2a~(a~+az)
bp ——Re

(1—a~) (az —1)
(51)

Equations (49)—(51) apply to any system of
equal-strength scatterers in which 5„+& is a random
variable uncorrelated with the previous 5„. This is
true for the model of a disordered "liquid" used to
illustrate the results of the preceding section. Before
comparing Eqs. (49)—(51) with the results of a cor-
responding numerical simulation in the small-p lim-
it, it is appropriate to remark on the range of validi-
ty of these equations. Equation (41) suggests that
for finite disorder and small enough p, az is an ana-
lytic function of s. A similar remark holds for the
averages (exp(mie)). Hence in principle by com-
puting higher-order coefficients the present analysis
could be extended into the large-p regime.

In the limit of zero disorder, all quantities a~ are
of modulus unity leading to divergencies. Consider
for example Eq. (45), which is an exact expression
for (exp(ie)). Since the modulus of this quantity
cannot exceed unity, it is clear that a vanishing of
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FIG. 12. Comparison of the analytic result (49) for a2,
shown by the solid line, with the results of a numerical
simulation on a sequence of 10 equal-strength scatterers.
The parameters used are p=0.065, ko ——0.5123 A ', and

yo
——3.265 A. The value of 50 is —m corresponding to a

band center.

VI. DISCUSSION

In this paper we have derived formulas for the in-
verse localization length of a 1D random potential.
The general arguments leading to these expressions
did not make use of the detailed nature of the
scatterers. As a result, the method can be used to
study any 1D potential that can be conveniently di-
vided into segments. With modifications it can also
be applied to tight-binding Hamiltonians' where

Figure 13 shows the results of a numerical simu-
lation in which 50——0. This corresponds to the
center of an energy gap of the ordered system (see
Figs. 2 and 3) and in the limit b ~0 falls precisely
on the divergence which occurs when a

~

——1.
Nevertheless, except at the smallest values of b, Eq.
(49) yields the correct result for the asymptotic value
of a2. Other than in the region close to the pole (i.e.,
5O and b, close to zero) the contribution to az from
the second term on the right-hand side of (49) was
found to be negligible. In the vicinity of the pole
(e.g., for the by= 1 A results of Fig. 13) the contri-
bution from this term is significant.

0-'—
k~

LLM
0

&y= 5A
I I I

I 2 5 4 5 6
log n

0
FIG. 13. Same as for Fig. 12 except that yo ——3.63 A so

that 50——0, corresponding to the center of a gap.

some analytic results are already known.
Throughout this work we have avoided averaging
over ensembles of equivalent chains. Instead, we
made use of the fact that in the thermodynamic lim-

it, the physically relevant quantity a is self
aUeraging.

To illustrate the general results, a sequence of
equal-strength, randomly spaced delta functions was
considered. The analytic expressions were compared
with the results of a numerical simulation on chains
of up to 10 scatterers. The numerical algorithm is
rather efficient and for 10 scatterers takes only
about 100 sec of computer time on a CDC Cyber
750. Except near isolated singularities associated
with the band centers in the strong-scattering limit
and the gap centers in the weak-scattering limit, the
results were in good agreement.

The new analytic expressions derived in this paper
are extremely useful for obtaining an overall under-
standing of the problem. As a result of this work,
we have shown that the random-phase assumption
of a2 ——0 is unreliable in yielding quantitative results
unless the phase is randomized at each scattering
event. Choosing larger segments, containing many
scatterers, does lead eventually to az ——0 where the
prime refers to the longer segments. However, this
is not because the random-phase assumption be-
comes valid but merely because the original problem
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of a long chain is being solved and a2 becomes a
surface or end effect. '

We have found an interesting connection with re-
cent work on chaos. This is not surprising as the
key phase of the problem e is determined from a set
of finite difference equations. In the zero-disorder
limit, we found that the phase e has a single stable
fixed point in the band-gap region and appears to
behave chaotically inside the energy bands. This
will be discussed in a subsequent paper.

Although all the work in this paper has been con-

fined to 10, some of it may have an impact on
current thinking in higher dimensions. In particu-
lar, the random-phase assumption has been used in
higher dimensions to obtain scaling relations. We
believe this needs further consideration particularly
in the borderline case of two dimensions.
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