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Self-consistent impurity calculations in the atomic-spheres approximation
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We have developed a method for calculating self-consistently the electronic structure
around an impurity atom, or an impurity cluster, in a crystalline host. Our method is a
Green-function matrix technique based on the linear muffin-tin orbital method in the
atomic-spheres approximation. The calculation of the host Green function is extremely effi-
cient and involves diagonalization of a small Hamiltonian matrix for the band structure and
subsequent Hilbert transforms. The method is tested for the calculation of one-electron

spectra and total energies on systems for which (essentially) exact solutions are known: the
Hulthen potential, a free H atom, a H atom in jellium, and a Li atom in jellium. The accu-
racy is. better and the computational speed significantly higher than that obtained with the
standard Korringa-Kohn-Rostoker Green-function technique.

I. INTRODUCTION

It has recently become possible to perform ab ini-
tio self-consistent electronic structure calculations
for deep impurities in semiconductors' and for im-
purities in metals. The perturbation from such im-
purities is stronger and more localized than that
from shallow impurities and this makes the usual
effective-mass approximation invalid. The perturba-
tion is, on the other hand, too extended to be treated
as atomiclike. This intermediate character thus re-
quires more involved calculations.

Semiempirical tight-binding methods have been
successful in explaining certain chemical trends for
deep impurities in semiconductors. We believe that
a similar formalism can be obtained from the ab ini-
tio linear muffin-tin orbital method in the atomic-
spheres approximation (LMTO-AS A). For
closely packed metals this method has been demon-
strated to combine efficiency and physical tran-
sparency with fairly high accuracy. ' Its potential
parameters and structure constants have been tabu-
lated for all elemental metals. In this paper we
adopt this method to ab initio calculations for local-
ized impurities.

Of the existing ab initio calculations for impuri-
ties, some have been based on a cluster approach in
which the perfect solid and the impurity atom are
replaced by a finite cluster, ' which may be repeated
periodically. " Most calculations, however, treat the
proper infinite system using a Green-function
method. An advantage of this is that the problem
separates into two parts. First, the Green function

6 of the perfect solid is calculated using one of the
band-structure methods developed for infinite crys-
tals. Then the Green function G for the solid with
the impurity is calculated by solving Dyson's equa-
tion G =G +G EVG with the perturbation AV
from the impurity. Dyson's equation is usually
turned into a matrix equation in which the range of
AV determines the size of the matrix. This method
is very convenient for the problem we have in mind.
Here AV is large only in a small region of space
while the wave functions and the local densities of
states are perturbed over a larger region.

The Green-function method was first used in this
context by Koster and Slater. ' It was further
developed by Callaway' and subsequently found
numerous applications. ' ' Recently, in particular,
three groups have used this method. Bernholc, Pan-
telides, and co-workers' as well as Baraff, Schluter,
and their co-workers have developed methods in
which the wave functions are expressed as linear
combinations of Gaussian orbitals. These schemes
have been successfully applied to deep impurities
with s and p electrons, and it was demonstrated that
for these systems the calculations can be performed
without any substantial approximation for the po-
tential. Zeller, Dederichs, and co-workers have
treated impurities in (transition) metals using the
muffin-tin (MT) approximation for the potential
and the Korringa-Kohn-Rostoker (KKR) scattering
formalism to solve Schrodinger's equation.

In the KKR formalism the wave functions are ex-
pressed in terms of the partial waves PRL, (E,r)
which satisfy Schrodinger's differential equation
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(V' +Ir )G (r —r';x )=5(r —r'}. (1.2)

In terms of these the Green function for the unper-
turbed crystal, defined through

[V +E—V(r)]G (r, r ';E) =5(r —r '), (1.3)

is given by a Dyson equation with the perturbation
E —V(r) —ir . In the KKR method, where V(r) is
a MT potential with the constant value VM&z be-
tween the spheres, the choice

K =E —VMTZ2= (1.4)

[ —'7 +U~(r) E—]/Rim(E, r)=0 .

with v~(r) being the spherically symmetric potential
inside the MT sphere at site R and constant outside.
In (1.1) and throughout this paper we use atomic
rydberg units and let L =l,m denote the quantum
numbers of angular momentum. The partial waves
at energy E are used to construct the Green function
G(E). This approach has the advantage of provid-
ing an exact solution for the MT potential, regard-
less of its strength. Also for non-MT potentials the
partial waves, in the form of so-called muffin-tin or-
bitals (MTO's), are well suited to represent the wave
functions. This has most clearly been demonstrated
in LMTO calculations for small molecules. '

Gaussian orbitals, on the other hand, are often
used with some computational advantage but they
are not as well suited for an expansion of the wave
function as the partial waves, and at least twice as
many basis functions are needed for the same accu-

racy. Moreover, in the Gaussian scheme the wave

functions of the system with an impurity are usually

expressed in terms of the wave functions of the pure
system. If the impurity atom is drastically different
from the host this means that very high-lying states
of the unperturbed system must be taken into ac-
count. Recently, methods for dealing with this in-

convenience have been proposed. '

In a formalism based on Eq. (1.1), there are no
particular difficulties in treating impurities that are
very different from the host atoms, since the partial
waves may be calculated in the presence of the im-

purity potential. Although the KKR formalism
takes advantage of this fact, there is nevertheless no
natural cutoff in the number of bands included in

the calculation of ReG (E). The reason for this is

that (1) the KKR structure constants and (2) the

partial waves depend on energy.
The structure constants are essentially the matrix

elements of the free-electron Green function G, de-

fined through

is made in order to ensure free propagation between
the spheres. This makes the KKR structure con-
stants depend on energy.

We shall avoid this energy dependence by using
the ASA. The ASA consists of the choice

(1.5)

and of the approximation that the integral over all
space

f G (r —r', 0)[E—V(r')]G (r', r";E)d r'

equals the sum of integrals over "space-filling"
atomic spheres whose overlap is neglected and
whose potentials are spherically symmetric. For
closely packed materials (e.g. , metals), it is suitable
to use spheres centered on the atoms while for open
structures (e.g. , semiconductors), additional spheres
cover the holes in the structure. ' As a consequence
of the choice (1.5) the ASA structure constants are
independent of energy.

The remaining energy dependence is that of the
partial waves (1.1). We shall approximate this ener-

gy dependence by the first two terms

P(E, r) =P(E„,r)+ (E E„)P(E„—,r)+o(E E), —

(1.6)

of the Taylor expansion about some arbitrary energy

As a result of the ASA (1.5) and the linearization
(1.6) it is now possible to relate G (E) to an ordinary
linear eigenvalue problem of low dimension. The
corresponding Hamiltonian is exceedingly simple
and its nine s, p, and d bands (per atom} have upper
and lower bounds. The calculation of G (E) there-
fore proceeds much faster than with the KKR
method. Moreover, the Hamiltonian is physically
meaningful and it yields energy bands correct to
second order in E —E .

Koenig, Leonard, and Daniel' recently developed
a LMTO-ASA method for impurities by taking the
~ ~0 limit of the KKR formalism. Although de-
rived in a different way, our results agree with
theirs, as they must. However, Koenig et al. did not
discover the above-mentioned Hamiltonian way of
expressing 6 but rather calculated the energy bands
and Bloch functions with the standard LMTO-ASA
procedure and then obtained ReG (E) in essentially
the same way as with the KKR method.

We shall present our LMTO-ASA formalism for
self-consistent impurity calculations in Sec. II. We
also show how the total energy is conveniently cal-
culated within the local approximation to the
density-functional formalism. ' In Sec. III we then
test our method on different model systems for
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which exact, or nearly exact, results are known. Our
solution of Schrodinger's equation is tested on the
so-called Hulthen potential and thereafter our self-
consistent method is tested on the hydrogen atom,
on a proton in jellium, and on lithium in jellium.
The ASA results are found to be satisfactory, in
general, and more accurate than the results obtained
with the MT approximation in which perturbations
in the interstitial region cannot be taken into ac-
count. The errors due to the energy linearization
and the overlap of the atomic spheres are found to
be small. The largest errors come from calculating
the total energy with spherical charge densities. In
Appendix A we derive and discuss expressions for
the Green function G(r, r ',E) valid for any value of

This illustrates the relation between the KKR
and ASA methods and gives the LMTO-ASA for-
malism for a general (energy-independent) value of
K .

II. FORMALISM

[ I+g'(E)[P(E)—P'(E)] Ig(E) =g'(E) .

(2.la)

In order to see that these reduce to a finite set of
linear inhomogeneous equations, we introduce the
combined index i =R, l, m and assume that there are
N perturbed sites. In the perturbed region the index
i runs over M =N(l,„+1) =9N values. The ma-

trix elements g;J, where 1 &i &M and 1&j(I, are
seen to be given by

g [4;+gk, (P; P)]g, =g—kj (2.1b)

In this section we reiterate how Schrodinger's
equation for one electron is formulated in the
ASA. ' We define the atomic-spheres potential,
the MTO, the potential functions Ptit(E), and the
canonical structure constants S&1 z ~ . We then
derive the secular equations [P(E)—S]
&([P(E)] '~ B=O, whose solutions are the wave-
function coefficients 8+I~ z and the one-electron en-
ergies EJ. These equations are particularly suited
for treating the impurity problem via the Green-
function technique because if we chose as the unper-
turbed system the perfect crystal with the Green-
function matrix ga(E)—:[P0(E)—S] ', then the per-
turbation P(E)—PD(E) only concerns the potential
functions and is limited to the few diagonal elements

corresponding to the impurity and the near-neighbor
sites. The Green-function matrix for the crystal
with the impurity g(E)=[P(E)—S] ' may thus be
found by solving the Dyson equations

for 1 (k (M. In (2.1b) we have dropped the argu-
ment E.

The Green-function matrix for the unperturbed
crystal is, however, rather difficult to evaluate
directly because of the nonlinear energy dependence
of the potential functions. These may be approxi-
mated as follows:

P(E)=P(E)= +Q, (2.2)

(2.3)

which is simply the matrix generalization of the so-
called scaling relation between canonical bands S
and unhybridized energy bands. In the matrix
form (2.3), hybridization is included. A derivation
of this simpler formulation of the LMTO method

where V, I, and Q are so-called potential parame-
ters. The approximations P(E) are correct to second
order in E E„w—here E„ is the {arbitrary) energy
about which the potential functions are expanded.
We show that the secular equations with P(E) sub-

stituted for P(E) may be transformed into ordinary
eigenualue equations, (H —EI)B=O, whose unper-
turbed Green-function matrix G (E)—:(El —HD)

may be obtained in the usual way from the eigen-
values and eigenvectors of H using projected densi-

ties of states and Hilbert transforms. Having ob-
tained G (E) in this way, we may transform it into

g (E), which is finally used in the Dyson equation
(2.1) for g(E). Alternatively, we might have stayed
in the H —El representation and thus solved the
Dyson equation for G(E), but since the perturbation
H —H is not diagonal and is somewhat less local-
ized around the impurity than P(E) P(E), this—is
less convenient. Besides, using the Dyson equation
for g(E) allows us to use the correct potential func-
tions (P rather than P) on the perturbed sites. In
this way approximate potential functions are only
being used outside the perturbed region.

Compared with the usual LMTO-ASA equations
(H" o —EOLMTo)A =0, the eigenvalue equations
(H —EI)B=O are much simpler because H has the
two-center form and the overlap matrix is the unit
matrix. The eigenvalues, but not the eigenvectors,
of the usual LMTO-ASA equations are, however,
slightly more accurate; they differ from the correct
one-electron energies, as defined by det[P(E)
—S]=0, by terms of order higher than (E E„), —
while the eigenvalues of H differ by terms of order
higher than (E E) . —

The Hamiltonian matrix HzI~ &1~ may be ex-
pressed in terms of the structure matrix S and the
above-mentioned potential parameters V, I, and Q,
which are diagonal in R, l, m as
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A. Secular equations and their Green function

%e wish to solve the Schrodinger equation for an
infinite system characterized by a one-electron po-
tential of the atomic-sphere (AS) form. The AS po-
tential is spherically symmetric inside spheres locat-
ed at sites R and with radii sz. The sites may be
atomic sites and, in open structures, additional inter-
stitial sites where the potential is usually repulsive.
The AS potential may therefore be expressed as

V(r)= QB(r~ js~)ug(r~),
R

where the local coordinates are

(2.4)

r& ——r —R, (2.5)

and B(rz/sz ) is a step function being unity inside a
sphere of radius sz and zero outside.

So far, the definition of the AS potential is identi-
cal to that of a MT potential; however, in the region
between the spheres, the AS potential is assumed to
be equal to the one-electron energy E, that is, the ki-
netic energy E —V(r ) is assumed to vanish. More-
over, the wave functions are normalized over the
volume inside the spheres only and this means that
the charge density between the spheres is neglected
in the ASA. For these reasons we shall allow the
spheres to have a slight overlap, such that the sum
of their volumes fill space. For the fcc, bcc, and di-
amond lattices our construction leads to overlaps of
up to about 15% for the radii (i.e., sR +s~
(1.15

I
R—R'

I
).

Schrodinger's differential equation (1.1) separates
inside a sphere so that its solutions may be taken as
the partial waves

yRL(E, rR) =yw(E, r„)rI.—(r~), (2.6)

where YL is a real spherical harmonic, L is short for
Im, and Pzi is the solution of the radial Schrodinger

I

was given in Ref. 7 in terms of the energy-
independent, or P,g-augmented, MTO's and their
transformation into orthogonal orbitals. A deriva-
tion which is more straightforward and which al-
lows the use of exact potential functions on the per-
turbed sites will be given below. At the end of this
section we shall discuss the calculation of the total
energy.

equation for the energy E and the potential vz(rz).
We shall assume that P„L is normalized to unity in
its sphere, i.e., that

R

J [/RAN(E, r)] r dr =1 . (2.7)

Outside its sphere the partial wave is assumed to
have zero kinetic energy, which means that it is a
solution of Schrodinger's equation with the constant
potential vz ——E or, in other words, that it is a solu-
tion of the Laplace equation. %'e furthermore re-
quire that the partial wave is continuously differen-
tiable, which leads to the form

D(E)+t+1 r
2l+1 s

—I —&-

+ / —D(E) r
21+1 s

(2.8)

for the tail (r &s) of the radial function. Here we
have dropped the subscripts R and l. In (2.8), D (E)
is the logarithmic derivative of the radial wave func-
tion, i.e.,

Bing(E, r)
Blnr T=S

(2.9)

This is valid inside the sphere at R and between the
spheres until rz exceeds the distance to the nearest
neighbor. The coefficients 8 are determined by the
condition that the expansions around the various
sites join continuously and differentiably onto one
another. In order to express this matching condition
analytically, it is convenient to define, in addition to
the partial waves, the so-called MTO's (which in the
present context ought to be named AS orbitals).

The MTO may be obtained from the partial wave
simply by subtracting the part which diverges at in-
finity as r . The radial part of the MTO is therefore

This is an ever-decreasing cotangentlike function of
energy.

A wave function at energy E for the entire system
may, if it exists, be expressed in the neighborhood of
each site E. as a one-center expansion

(2.10)

for r &s

P(E, r) D(E)+1+1
P(E,s) 2I + 1

X(E,r) =P(E,s) X '

I D(E) r-
2l+1 s

for r &s

(2.11)
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XRL(E rR}=—g a

where, again, we have dropped the subscripts R and l. As with the partial wave, the MTO is continuous and
differentiable in all space and it is a solution of the Laplace equation outside its sphere. The logarithmic
derivative takes the constant value l ——1 and the MTO is a regular function, also at infinity.

The tail of an MTO at site R may be expanded around site R ' as follows:
I'

YL (rR')
SR L', RLXRL(E a) (2.12)

2 21'+1

where a is an arbitrary scale of the structure, e.g.,
the lattice constant. The expansion coefficients S
are the so-called canonical structure constants which
are independent of the lattice constant, the potential,
the sphere radii, and the energy. In the representa-

tion of the real cubic harmonics they form a real
symmetric matrix which is given in Table II of Ref.
20. Expressed as two-center integrals they are sim-

ply

S„=—2(a/d), S,R =2W3(a/d)

SpR(o, m. ) =6(a/d)'(2, —1),

S,d ——2v 5(a/d)

S~(o,vr) =6v 5(a/d)"( —v 3, 1),
Sdd(o, vr, 5) =10(a/d)'( —6,4, —1) .

Here d =
I
R—R'

I
is the interatomic distance. The

lattice constant a has been included in the definition
of the structure constants [and of the potential func-
tions in (2.15) below] in order to make them in-

dependent of the scale of the structure. In (2.12) the
value X(E,a) of the radial function at r =a is sup-

posed to be given by that part of (2.11) which is
valid for a )s, regardless of the actual value of a.

A convenient notation may be obtained if we re-

gard the MTO,

I 0«)&+
I
J&[P«)—S]X(E}=IX(E)&" .

[P(E}]RL,R'L'= Rl( +RR'6LL'

DRL(E)+ l + 1—=2(2l +1)
DRl(E) —1

' 2l+1

~RR'~LL'X
SR

(2.15)

The function P(E) is called the potential function
and it is an always increasing tangentlike function of
energy. We shall now see that its derivative with
respect to energy (the overdot signifying B/BE) is re-
lated to X(E,a). The energy derivative of the loga-
rithmic derivative function is related to the value of
the radial wave function at the sphere through

D(E)= —Is[/(E, s)] I (2.16)

as shown, for instance, in Ref. 5. We realize that
—1/2

(2.14)

Here S is the structure matrix and X(E) and P(E)
are diagonal matrices with the components

[X( }]RL,R'L'=XRl(E }5RR'~LL'

and

XRL(E,r, }=
I
X(E)&RL—

the truncated partial wave,

QRL (E, rR )e(rR /sR ) =
I
p(E) &RL

and the functions,

(2.13a)

(2.13b)

[P(E)]—1/2

dE
I+1/2

l D(E) s-
2l+1 a

=(./2)'"X(E,.),
' 1/2

P(E,s)

(2.17)

I
YL (r"„)

221 12 21+1 (2.13c)

as the RL components of the vectors
I
X(E) & ",

I
P(E) &, and

I
J&. The notation

I

&" is meant to in-
dicate that the functions (2.13a}, in contrast to the
functions (2.13b} and (2.13c), extend over all space.
With this vector notation the site and angular
momentum expansions (2.11) and (2.12) of the MTO
may be expressed as

4«, r)= gXRL(E rR»RL
R,L

(2.18)

is a solution of Schrodinger's equation at energy E.
The condition is, of course, that the one-center ex-

where we have used (2.15) and (2.11) and have de-
fined the sign of P

We may now place a linear combination of
MTO's at each site of the structure and ask whether
we can determine the coefficients such that the
linear combination of MTO's
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pansions (2.10) are valid, and this means that inside
any sphere the sum of the MTO tails coming from
all other sites must cancel the r terms [see Eq.
(2.11)] from the MTO's located at that site. From
(2.14) we thus realize that the matching condition
may be expressed analytically as

g [ Rl(E+R'R ~L'L SR'L', RL ][PRl (E}] RL
R,I.

(2.19)

for all R' and L'. These linear homogeneous equa-
tions have a nontrivial solution. only if the deter-
minant of P(E) Svan—ishes and this condition
yields the one-electron energies Ez. The correspond-
ing wave functions are given by the partial-wave
one-center expansions (2.10) or, equivalently, by the

I

MTO multicenter expansions (2.18) using the non-
trivial solutions [PRL(Ei)) '

BRL J of (2.19). The
wave function is normalized to unity in all spheres if
8 is normalized according to

(2.20)
R,L

Equations (2.19) equal the scattered-wave or
KKR equations for a MT potential in the limit
where the kinetic energy E —VMTz in the interstitial
region vanishes and the MT spheres are substituted
by space-filling atomic spheres. The potential func-
tions are cotangents of the phase shifts in the ap-
propriate limits. The details are given in Appendix
A.

The Green-function matrix for the system of
equation (2.19) is defined by

Q [ [PR((E) &0 ]5R'R~L'L SR'L', RL IgRL, R "L"(E} 8R'R "8L'L"
R,L

In terms hereof the imaginary part of the Green function for the Schrodinger equation is

ImG(r ', r;E)=n ggj(E, r ')QJ(E, r)5(E EJ)=
~

P(—E))[P(E)]' Img(E)[P(E)]' (P(E)
~

J

= ~X(E))"[P(E)]' Img(E)[P(E)]' "(g(E) ~,

(2.21)

(2.22a)

(2.22b)

as may be realized from (2.10), (2.14), and (2.18)—(2.20). The entire Green function is derived in Appendix A.
The one-center expansion (2.22a) for the Green function converges slowly in L when r lies far from the center
of any sphere. The MTO multicenter expansion (2.22b), however, converges fast (provided that (( does not
differ more than a rydberg or so from the kinetic energy in the outer region of the spheres), and (2.22b) is par-
ticularly useful in connection with the Fourier representation of the MTO s given in Ref. 5.

In this paper we shall assume that the spheres are located on a lattice, i.e., that

R=T+U, (2.23)

where T are the lattice translations and U the sites in the primitive cell. The structure constants are therefore
expressed in the Bloch representation,

SUL UL(k)= +exp(ik T)SUL (U+T)L, (2.24)
T

and computed with the Ewald technique.
For the unperturbed crystal the MTO's and the potential functions only depend on U and not on T. The sec-

ular equations thus factorize in the Bloch representation, where they equal (2.19) with R substituted by U and S
substituted by S(k). The size of the matrix is now (I,„+1} =9 times the number of sites in the primitive
cell. With 8 normalized according to JUL ~BUL(k)

~

=1, the wave function is normalized to unity in the
primitive cell. The unperturbed Green-function matrix

gU'L' (U+T)L(E)=( I sz) ' J d k exp( —ik T)[[P (E)—i0+]—S(k)I UL UL (2.25)

where VBz is the Brillouin-zone volume, is tedious
to compute by direct means because it requires find-
ing the eigenvalues and eigenfunctions of Po(E)
—S(k) as a function of E and k. In the following
we therefore devise a different technique.

B. Hamiltonian matrix and its Green function

The logarithmic derivative function (2.9} for a
given partial wave is a cotangentlike function with
a branch for each value of the principal quantum
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4(D, r) =P(E,r ) +ro(D)P(E, r ) (2.26)

number. The potential function (2.15) is uniquely
related to the logarithmic derivative function and
has a similar behavior. We are now interested in ob-
taining the solutions of Schrodinger's equation for
the entire system in an energy range corresponding
to only a fraction of a branch and centered at some
energy, E . For this purpose we need to parametrize
the potential functions Pz~(E) in the form (2.2) and
to identify the potential parameters V+1, I ~1, and

Qzi. In addition, we shall need a form more accu-
rate than (2.2) and therefore use the following
"linear" approach.

We first parametrize the function E(P), which is
inverse to P(E), by setting up a radial trial function
4(D, r) with the prescribed logarithmic derivative D
or, equivalently, I' at the sphere and estimating its
energy from the variational principle. The trial
function we take as the appropriate linear combina-
tion

The trial function (2.26) has errors of second and
higher orders in E —E, and the variational estimate
(2.28) therefore has errors of fourth and higher or-
ders. From the form of (2.28) we thus realize that
the estimate

E(P)=E„+rv(D) (2.29)

is correct to second order. In the following we shall
invert (2.29) obtaining P(E) and show that it has the
form (2.2). A more accurate parametrization of the
potential function correct to third order is then

P(E)=P(E+(E—E,)'& [j(E„)]'&), (2.30)

as seen from (2.28).
The inversion of (2.29) requires solving (2.27) with

respect to D and inserting the result in (2.15). We
find

P(E)= E —C E —C I
E —V b+(E —C)Q ' V E—

(2.31)
of the normalized (2.7) radial wave function and its
first energy derivative function (1.6) at E„. The con-
stant co is given by

P(E„,s) D —D(P(E ) j~(D) = — . , (2.27)
P(E,s) D D(P(E, )j—

in terms of the amplitudes and radial logarithmic
derivatives of P and P at the sphere. From the radi-
al Schrodinger equation we now obtain

( —V +v E„)
l
P(E„)&—=0

and

( —~'+v —E.)
l
y«-)&=

l y«. ) &

and from the choice (2.7) for the normalization of P
we have

where

and

and

C:E„+rv( —l ——1)

V= E„+co(l) . —

Moreover,

5—:(C —V)Q

Q —=P[4(E-) j

D[P(E„)j+l+1 (~=2(2l + 1)
DI P(E„)j —l

(2.32)

and

&y(E, )
l
j(E,) &=o. I =(C —V)Q .

Of the four potential parameters in (2.27), only three
are independent because, from Green's second iden-

tity,

1= & [y(E.)]'& = &y(E.)
l

( —&'+ v —E, )
l
y(E, ) &

= [D ( P(E„)j D( P(E„)j ]sf(E„—,s)$(E„s) .

We may now evaluate the energy function from the
variational principle and find

1 Q

S

. 21+]

. 21+1

We have thus proved (2.2) and expressed its three
potential parameters in terms of the P,P parameters.
The relation of Q, b, and I' to the parameters y,
4( —l —l,s), and 4(l,s) used in Refs. 5—9 and 20 is
seen to be

E(P)=
& ~(D)

l
( —V'+. )

l
~(D) &!& [~(D)]'&

=E + (D)[1+[ (D)]'&[y(E )]'&j
(2.28)

=2(2l + 1)
4( —i —1,s) s

1/2

=4( —l —l, s)
a Q

2 5

(2.33)
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and
' 1/2 '1

r'/'=2(2l + l)4(l, s)
2 s

In the two last equations we have defined the signs
of b, ' and I' . In addition to (2.2) or (2.31) we
shall be using the fact that

I

[P(E)]-'"=(EI—V)r-»2 (2.34)

Having parametrized the potential functions we
are now in the position to transform the secular
equations (2.19) with P(E) substituted by P(E) into
eigenvalue equations. We simply multiply (2.19) on
the left by the matrix I'/2(Q —S) ' and thereby ob-
tain

O=I'/ (Q —S) '[P(E)—S][P(E)] ' B

=r'/'(g —s)-'[g —s+r( v —E)-'](EI v)r-'/2@=(EI —H)~ (2.35)

with

H —V+ rl/2(g S)—lrl/2 (2.3')

which is (2,3). An equivalent expression for the
Hamiltonian is

H —g+ g 1/2S( I g —ls )
—

lg 1/2 (2.36)

In the matrix equations above, P(E), V, Q, I, E&,
etc., are regarded as matrices diagonal in R and I,
exactly as in (2.14) and (2.15).

The secular equation (2.19) with P substituted by
I' is thus equivalent with the eigenvalue equation
(2.35) for the Hermitian Hamiltonian (2.3) or (2.36).
The eigenvalues of H equal the one-electron energies
to second order in E —E„. The Hamiltonian H ef-
fectively has the two-center form with hopping in-
tegrals factorized into potential parameters 6, which
specify the bandwidth and the strength of the hy-
bridization, and screened structure constants

[(E i 0+ )1——H]G(E) =I, (2.38)

and the relation to the Green function (2.21) for the
secular equation is easily found from (2.35) to be

I

S(1—Q 'S) '. We use the name screened struc-
ture constants because the matrix elements decrease
exponentially with interatomic distance while those
of S decrease as d

It may be shown that H is the Hamiltonian in
the representation of the following energy-inde-
pendent orbitals:

~
P(E, ) ) +

~

P(E„))(H E„O)=
~

—9)" . (2.37)

Here we have used the same notation as in (2.14).
The 8 orbitals (2.37) are orthogonal to first order in
H —E„I, so that their overlap matrix 0 equals the
unit matrix to first order in H —E,l.

The Green function for the Hamiltonian is de-
fined by the matrix equation

g(E) —= [P(E)—s] '=[P(E)] ' 'G(E)r' '(Q —s) '=[P(E)] ' 'G(E)(H —V)r '"
=[&(E)]-'"[—1+G(E)(E—v)]r-'"= — „+ „, G(E)

%e therefore have

ImG(E) = [P(E)]'/ Img(E)[P(E)]'/

(2.39)

(2.40)

which is in accordance with the more general relation (2.22).
The transformation (2.39) is simply a scaling because (E)(—V)I '/2 is diagonal in R and L. The relation to

the Green function for the Schrodinger equation is given in Appendix A where the exact definition of G(E),
which reduces to G(E) when P is substituted by P, may be found in (A27), (A32), and (A34).

C. Application to the impurity problem

For the unperturbed crystal we first diagonalize the Hamiltonian

H U (k)=VUl5 U5 +(I &)' I[Q —S(k)] ']U ~. (r', , )' (2.41)



O. GUNNARSSON, O. JEPSEN, AND O. K. ANDERSEN

and thus find the energy bands E (k) and normalized eigenvectors BUL J(k) at a large number of k points in
the Brillouin zone. The size, M, of H is (I,„+1), typically equal to 9 times the number of sites in the
primitive cell. With the tetrahedron method ' we then compute the projected densities of states,

+O 2 '(U', +T)L(E) ( I BZ)-' z f exp(E k T)BU'L', j(k)Bvcj'(k)&(E E—j(k))d k (2.42)
J

involving the sites at which the potential is going to
be perturbed. The unperturbed Green-function ma-
trix is now given by

ImG (E)=vrE (E) (2.43)

and

E'
ReG (E)=H f,dE',

E —E' (2.44)

(2.45)

Here I „&(A) are the matrices of the ath irreducible
representation of the point group. Although R runs
over one site per shell only, the functions f are
linearly dependent in general. Thus we only keep a
smaller number of linearly independent functions
and, from them, form a orthonormal basis set. Fi-
nally, the projected densities of states (2.42), and
with these the unperturbed Green function (2.43)
and (2.44), are transformed into the orthonormal

and, finally, the real and imaginary parts of g (E)
may be found using (2.39).

We emphasize that it is the Harniltonian forrnula-
tion (2.35), which is correct to order (E E„),that—
makes it a rather simple matter to calculate the un-
perturbed Green function. Moreover, the Hilbert
transformation (2.44) is straightforward because the
M energy bands of H have finite extent. This sim-

plification does, for instance, not occur in the KKR
Green-function method,

In order to solve the Dyson equation (2.1) we need
the matrix elements of the unperturbed Green func-
tion for R and R' running over all sites in the per-
turbed region. Because of the symmetries in the
space group of the unperturbed crystal, many of the
quantities Ea L aL in (2.42) are related by symmetry
and only a few need to be calculated. For the per-
turbed crystal the symmetry is, in general, lower and
we are left with a point group of rotations A. It is

important to use this symmetry to keep the matrices
at a manageable size. Following Slater we now
transform from the previously used site and real
spherical harmonic representation (2.6) to the sym-

metry representation given by the following func-
tions:

f,„~L(r)=pl, „(%)%$ (r )8(r Is ) .

symmetry representation.
To solve the Dgson equation (2.1) we further need

b,P(E)=P(E) P(E—). For the latter we use (2.2)
and for the former we can obtain any desired accu-
racy. We have used the third-order expansion (2.30).
In the following we shall for simplicity of notation
drop the tilde on P and g .

We are now in the position to solve the Dyson
equation and need only consider the small block
(2.lb) which, due to the point symmetry, is even
smaller than 9 times the number of perturbed sites.
In the following we shall use matrix notation and let
g~ denote the small block with matrix elements g,J
where i and j now refer to the orthonorrnal syrnme-
try representation.

From (2.1b) we see that there is a bound state at
an energy E =E~ if

det[I+ ger(Eb )bP(Eb )]=0 (2.46)

and consequently the result

ImgM«b) =~+X,(Eb)IPj(Eb)l
J

x 5(EJ Eb )XJ+(Eb ) . —(2.49)

The energy derivative of the nearly vanishing eigen-
value is found numerically. For an energy in the

and ImgM(Eb) =0. We thus search for the zeros of
(2.46) below the bottom of the band and in the band
gaps. In order to obtain the bound-state wave func-
tion, or rather ImgM(Eb), we diagonalize the matrix

(2.47)

for a few energies in the neighborhood of E~, obtain-
ing the eigenvalues pj(E) and eigenvectors XJ(E).
We shall only be interested in that value (those
values, in case of degeneracy) of j for which
P&(Eb ) =0. It may be noted in passing that if M had
included the entire system, then [gM(E)] ' would

simply have been P(E) S. We may n—ow in~e~t

[g~(E)] ', obtaining

gM(E) = Q XJ (E)[pj (E)—i0+] 'XJ+(E),
J

(2.48)



27 SELF-CONSISTENT IMPURITY CALCULATIONS IN THE ATOMIC-. . . 7153

continuum we treat (2.1b) as a set of linear inhomo-
geneous equations and solve for gM(E).

The induced total density of states, integrated
over the entire system, is

N(E) N(—E)=m. 'Im[TrG(E) Tr—G (E)],

n„.R(r')
UR(r)=p„.(n„, R(r))+2

R

2ZR 2qR+
R'

I
R—R'I

(2.56)

(2.50)

N(E) N(E)—=m. 'q(E),

where the generalized phase shift is defined as

g(E)—=argdet[G (E)[G(E)]

(2.51)

(2.52)

where arg=Imln. This expression also holds when

the G's are substituted by the g's because we may use
(2.40) plus the fact that [P(E)] ' and P (E) are
real. According to (2.1a), we know that

g g '=3.+g hP and, if we now expand
det[I+g boP] after the last columns, we realize
that it equals det[I+gM bP]. As a result,

g(E) =argdet[1+gM(E) AP(E)] . (2.53)

Owing to symmetry, 3. +gM bP is usually block di-

agonal and the determinant factorizes. The general-
ized phase shift (2.53) is thereby expressed as the
sum of the phase shifts q~(E) for the different ir-
reducible symmetry representations.

The charge density in the perturbed region may be
obtained from ImgM(E) by first transforming it
from the symmetry representation and back into the
site and angular momentum representation. Then
we use (2.22) with r = r ' and obtain for the spheri-
cally symmetrized valence charge density,

n„,,(.) =(4~)-' y f [y„(E,r)]'NR((E)«,

(2.54)

where

NRl(E) =m. 'PRI(E) g ImgRtm Rim(E) . (2.55)

For the radial wave functions we use the Taylor
series (1.6) to second order in E E„. The charge—
density (2.54) is thus given in terms of P, P, and P
and the zeroth- through fourth-energy moments of
NR((E).

The one-electron potential in the sphere at site R
1s

and since

Tr6 (E)= — ln detG (E),d
dE

as is easily proved in the eigenrepresentation of G,
one finds'

in the ASA. The first term is the exchange-
correlation potential in the local approximation'
and n„, =n„+n, is the density of the valence and
core electrons. The former is obtained from (2.54)
and the latter is taken from a free-atom calculation,
that is, we use the frozen-core approximation. The
second term is the electrostatic potential from the
valence- and core-electron density. The integral is in
the sphere and, in the ASA where only the spherical
average of the density is used, the integral reduces to
the sum of two radial integrals. The third term is
the electrostatic potential from the nucleus and the
fourth term is the electrostatic Madelung potential
from the net charges q in all other spheres. Here

qR= —ZR+ f n„Rd'r = —. zR+ f n„Rd r, .

(2.57)

and Z is the atomic number and z the valency.
The Madelung potential at site R in the unper-

turbed crystal v~.z is computed with the Ewald
procedure and may, in fact, be obtained from
l =l'=0 matrix elements of the structure constants.
For the crystal with the impurity

2hq~
UMR ~M;R+g ~ -+

R' IR—R
(2.58)

where R' runs over the perturbed sites plus their
nearest neighbors. The reason for this is that we do
not, in general, obtain complete charge neutrality in
the perturbed region because there is also a small
change in the charge density outside this region.
This charge we assume to be located in the spheres
closest to the perturbed region. This is important
for the convergence of the self-consistent calcula-
tions, since a small change in the potential can lead
to a substantial flow of charge out of the perturbed
region. The complete neglect of this charge would
lead to a large change in the potential and poor con-
vergence.

Equation (2.56) only holds for the fully self-
consistent potential. In practice, the charge ob-
tained from the nth iteration defines through (2.56)
a potential which is subsequently mixed with the po-
tential of the nth iteration to form the potential for
the (n + 1)st iteration.
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D. Total energy

In the Born-Oppenheimer, the local-density, and the AS approximations, the total energy may be expressed

i

+T„+& f n« ~(r) f ' d r' — +e„,(n„R(r). ) d'r
R

(2.59)

= g 2 uM tiqz. + f EN(E)dE+ g f nu;R(r)[ uR(l )+ 2 vU R(r)+v«. ti(r)]d r
R R

+ g f [n„,.~(r)e„,(n« Ji(r)).—n, .~(r)e„,(n, .~(r))]d r
R

+ g T, ti+ f .n~;R(r) 2 v, .~(r)—2'
+e„,(n, ti(r)) d .r

T
(2.60)

In (2.59), the first term is the electrostatic interac-
tion between the spheres, the second term is the sum
of the single-particle kinetic energies of the valence
(u) and core (c) electrons ( T„,), and the third term is
the sum of the intrasphere interactions between the
electrons and between the electrons and the nucleus
(n). The integral is in the sphere at R.

In (2.60) we have expressed the electrostatic in-
teraction between the spheres in terms of the
Madelung (M) potential uM. ~ defined in (2.58). The
kinetic energy of the valence electrons has been writ-
ten as the sum of the single-particle energies of the
valence electrons, expressed in terms of their density
of states N(E) given by (2.42) and (2.51), minus the
potential energy of the valence electrons as specified
by the one-electron potential vz in (2.4). The elec-
trostatic (Hartree) potential from the valence elec-
trons in the sphere is u„.q and the electrostatic po-
tential from the core electrons and the nucleus in the
sphere is u,„.~. The last term in (2.60) contains core
quantities only, and, in the frozen-core approxima-
tion, this term is the same as for free atoms. In the

I

following we shall drop this core term and, when
calculating heats of formation, assume that the same
has been done in the calculations for the free atoms.
The remaining last but one term in (2.60) is the rath-
er small difference between the total exchange-
correlation energy and the exchange-correlation en-
ergy between the core electrons.

In (2.60) we let the single-particle potential vs be
the one used in the last iteration, while all other po-
tentials are obtained from the valence charge density
resulting from that iteration. Then the total energy
is of second order in the deviation of the density
from the converged one. [With this definition vz
need not be fully self-consistent and (2.56) need
therefore not be satisfied. ] This ensures rapid con-
vergence of the total energy, which then converges
faster than the one-electron energies.

We want to calculate the change b N'=—5' —8' of
the total energy when an impurity is introduced.
The difference between the perturbed and the unper-
turbed expression (2.60), minus the core term 8'„
yields

&&—&&,= f E~N(E)dE+gv~;~~q~+gg
R

I

R—R'I

+ g f n„.~(r)[ —bug(r)+Au, „.~(r)]d r
R

+ g f [ vz(r)+u„Ii(r)+ —,bv„.g(r)+.v« g(r)]An„.tt(r)d.
R

+ g b, f [n«. ti(r)e„,(n«. z(r)) — ~n(r) (en, .z(r))]d r,
R

(2.61)

where u~, n„, and u, refer to the unperturbed crystal while u and u,„refer to the crystal with the impurity.
In (2.61) the R sums are seen to run only over those spheres where the density is perturbed. In the calcula-
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tions, we shall further restrict the sums to those sites where the potential is perturbed. This is, in fact, correct
to first order in the induced density because, for a site where Uz

——v~ and v,„.z ——U,„.z, we have dna' b, n——„R.
and the corresponding terms in (2.61) are

f [v~.~ —Uz(r)+v„.~+U,„z(.r)]An„.~(r)d r+b, f n„, z(.r)e„,(n„,.z(r))d r (2.62)

EbN (E)dE =EF M ——f ri(E)dE,

(2.64)

where M is the valency change. This expression is
relatively insensitive to violations of Friedel's sum
rule since we have used explicitly the fact that the
number of induced states should equal the net
change of the valencies.

The major approximation in our total-energy ex-
pression (2.60) and (2.61) is the ASA, as used for
calculating the interaction energies. We note, how-
ever, that it should be possible to calculate these
without spherically symmetrizing the charge densi-
ties. The ASA could be kept for calculating the ki-
netic energy and, hence, during the self-consistent
one-electron calculation. This would lead to results
for the total energy which are correct to first order
in the deviations from the ASA and therefore better
than the results presented here.

III. APPLICATIONS

In this section we study the accuracy of our
method and isolate the sources of the errors. For
this purpose it is useful to choose model problems
which are simple enough to allow an exact solution
but also can be solved by our method in such a way
that its approximations are tested.

A. Hulthen potential

We first test our solution of Schrodinger s equa-
tion for a given potential. Specifically, we consider
an impurity in jellium and assume that the
(screened) impurity potential is of the Hulthen form

V(r) = —Ul(e" —1), (3.1)

where U and A, are constants to be determined

to first order in Anq. To this order the last term,
however, equals

f p,„,(n„, .~(r))hn„. z(r)d'r, (2.63)

and using now (2.56), which holds to first order, we
realize that (2.62) vanishes.

The sum of the one-electron energies may be ex-
pressed in terms of the generalized phase shifts
(2.52) by performing a partial integration and using
(2.51). We obtain

I

below. For small r the Hulthen potential behaves as
a Coulomb potential

lim V(r) =- A, U
(3.2)

and for large values it decays exponentially,

lim V(r)= —Ue
f~ao

(3.3)

This potential is a fairly good approximation to the
Thomas-Fermi potential and it is possible to deter-
mine analytically both the s phase shift and, if the
potential is strong enough to bind a state, the energy
of the bound s state.

We consider an impurity with a valency one unit
larger than the valency of the host, and choose
UA, =2 to obtain the proper behavior for small dis-
tances. We use A, =~r, /1.5632 which gives essen-
tially Thomas-Fermi screening, and take r, =2.67
which corresponds to the density of the s electrons
in Cu metal. This leads to A, =1.05.

In order to test our method we assume that the
unperturbed jellium has a lattice structure. At each
lattice site we locate a sphere with the Wigner-Seitz
radius s so that space is filled with slightly overlap-
ping spheres. The impurity is located at one of the
lattice sites and the perturbing potential extends into
the other atomic spheres. This potential is spheri-
cally symmetric in the central sphere but nonspheri-
cal in all other spheres. In the ASA we replace the
true potential in each of these noncentral spheres by
its spherical average relative to the center of that
sphere. Our LMTO-ASA method now has essen-
tially four sources of error: In the calculation of the
unperturbed Green function we (i) use an approxi-
mation P (E) to the correct unperturbed potential
function Po(E) and (ii) we assume that the atomic
spheres fill all of space, neglecting the fact that they
overlap. In the solution of the Dyson equation, we
(iii) use the same geometry violation, and (iv) neglect
the nonspherical potential components. When solv-

ing the Dyson equation we can use the exact per-
turbed potential functions and no essential addition-
al errors are introduced. The assumption of a spher-
ical potential in the calculation of the unperturbed
Green function is exact for a homogeneous jellium
and it should also be good for closely packed metals.
Even for semiconductors it gives satisfactory accu-
racy provided that empty as well as atomic spheres
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TABLE I. The bound-state energy for the Hulthen po-
tential with parameters appropriate for a divalent impuri-

ty in copper (&=1,s=2.67, A, =1.05). The exact unper-
turbed lattice Green function given in Appendix 8 has
been used. "1 shell" means that the perturbing Hulthen
potential is taken into account on the central site only. "2
shells" means that the potential inside the neighboring
spheres is included also. The number of partial waves
considered is indicated by the notations s, sp, spd, and

spdf. The nonspherical correction estimated with first-
order perturbation theory has been added to the result for
two shells with s, p, and d, and f waves.

ASA, exact g Eb (mRy)

1 shell

2 shells s
sp
spd
spdf
+ nonspherical

Exact

—258
—261
—262
—263
—263
—276
—272

are used. ' In the perfect crystal many of the non-
spherical components of the potential are zero due
to symmetry. For the impurity system, however,
there are fewer symmetry restrictions on the poten-
tial and (iv) deserves careful consideration.

We now study these errors using the Hulthen po-
tential together with the lattice structure (fcc) and
the AS radius (s=2.67) of copper. With the param-
eters defined above, the Hulthen potential has a
bound s state but no bound states with higher I
quantum numbers. In Table I we show some results
for the bound state. In this calculation we have used
the exact unperturbed lattice Green function of Ap-
pendix B and the errors are therefore due to approx-
imations (iii) and (iv). The table gives the results ob-
tained for the cases when the impurity potential is
assumed to be limited to the atomic sphere sur-
rounding the impurity (1 shell) and to this sphere
plus the 12 spheres on the neighboring sites (2
shells). Inclusion of second-nearest neighbors has a
negligible effect. To describe the s-like bound state
we need only s partial waves in the central sphere,
while higher partial waves contribute in the neigh-
boring spheres. The inclusion of s, p, and d waves
leads to good convergence, and adding f waves only
changes the result by 0.1 mRy. The errors (iii) and
(iv) of the ASA thus amount to 9 mRy.

To see the effect of the neglected nonspherical po-
tential components (iv) we use first-order perturba-
tion theory. In this case, when the bound state is far
below the bottom of the continuum, perturbation
theory gives a good estimate as can be seen from the
following test: To estimate the position of the

TABLE II. The bound-state energy for the Hulthen
potential using the approximate unperturbed Green func-
tion g calculated for the E„shown. In the column
hP=P —P we use the exact change of P, while under
4P=P —P we correct inside the perturbed region for
the approximation to P used in the calculation of g . In
the second shell s, p, and d partial waves were included.

0
ASA, approximate g Eb (mRy)

E„(mRy) shells AP =P —P 4P =P —P
—250
—250

0
0

250
250
500
500

Exact

—260
—264
—263
—267
—290
—293
—353
—355

—272

—260
—264
—259
—264
—261
—264
—266
—264

bound state when only the central-cell potential is
included, we calculate the expectation value

f d r V(r)tlj(r)

of the impurity potential V(r) outside the central
cell using the exact wave function P(r). We then
subtract this integral from the exact bound-state en-

ergy and obtain the perturbational estimate —0.2S7
Ry. This agrees well with the value —0.258 in
Table I, and it is an upper estimate as it should be.
Thus perturbation theory should be valid also for
the weaker nonspherical potential. We calculate

f d'r[V(r) VAs—(r)]1((r)

where V~s(r) is the AS potential (2.4) used in the
calculation. This leads to a correction of 13 mRy
and, hence, a result 4 mRy below the exact one.

The geometry violation (iii) therefore tends to
lower the bound state by about 4 mRy and the
neglect of the nonspherical components tends to
raise it by 13 mRy, This adds up to the total ASA
error of 9 mRy shown in Table I.

In Table II we show results obtained using the
calculated (approximate) unperturbed Green func-
tion defined in Secs. IIB and IIC. Several different
values of E„were used in the calculation of G . As
perturbation in the Dyson equation we consider both
the difference P(E) P(E) and, —more appropriate-
ly, P(E) P(E). Insi—de the perturbed region, we
correct in the latter case for the use of an approxi-
mate potential function P when calculating the un-

perturbed Green function. This was discussed in
Sec. II. By comparing the results in Table II for
E,= —0.25 Ry=Eb with the ones in Table I, we see
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that the errors due to the geometry violation (ii) are
small and of the order of l mRy. The error (i) due
to the use of an approximation P when calculating
the unperturbed Green function is also small provid-
ed that we use hP =P —P . Even for E —E„=0.75
(E„=0.5) the error is just 6 mRy when only the cen-
tral site is considered. Including also the perturba-
tion on the nearest-neighbor sites means that we
correct P over a larger region. We see that in this
way the error is reduced to below 1 mRy.

It is also instructive to compare the ASA with the
MT approximation in which the spheres touch each
other without overlap. The MT approximation does
not violate the geometry but the perturbing potential
is, on the other hand, limited to inside the MT
spheres since the impurity cannot shift the MT zero.
We have made the comparison between the ASA
and MT approximation both for a Cu fcc lattice as
above, and for a fictitious Cu bcc lattice with the
same atomic volume. The results are shown in
Table III.

Since the MT approximation is exact for the un-
perturbed homogeneous jelliurn we only use the ex-
act unperturbed lattice Green function together with
the MT approximation while, for the ASA calcula-
tion, we also consider the approximate unperturbed
Green function described in Secs. II B and II C. The
ASA approximation is seen to be about a factor of 2
better than the MT approximation. The reason is
that in both cases the perturbation can only be taken
into account inside the spheres. Thus in the ASA
approximation where the spheres fill space, the per-
turbing potential is fairly well treated although we
pay a certain price in terms of a geometry violation.
In the MT approximation, on the other hand, the
perturbation is neglected in the interstitial region
which amounts to nearly one-third of the volume.
For a bcc lattice, for instance, we find from pertur-
bation theory that the neglected potential in the in-

TABLE III. Bound-state energy for the Hulthen po-
tential in a fcc and bcc lattice with the same atomic
volume. In the MT calculation we have used the exact
unperturbed lattice Green function while, in the ASA, we
have tested also the approximate g calculated in Sec. II.
For the latter, E„=—0.25 Ry so that g =g . The per-
turbation was limited to the first two shells, and s, p, d,
and fwaves were included.

Eb (mRy)

terstitial region accounts for about 19 mRy, i.e.,
80% of the error, while the neglected nonspherical
part of the potential inside the MT spheres only con-
tributes about 5 mRy.

We now turn to our calculation of the continuous
part of the spectrum. We study the generalized
phase shifts rl(E) [Eq. (2.53)] which give the number
of induced states below the energy E In .particular,
we consider the representations which include the s,
p, and d partial waves at the central atom and label
the phase shifts accordingly. These are compared
with the exact phase shifts for the Hulthen poten-
tial. In Fig. 1 we show the results. For the d phase
shift our (approximate) calculations give two values
corresponding to the Eg and T2g representations,
and in the figure we show the average

g~ ———,gF + —,g& . The ASA calculation is quite

accurate for small energies and the errors increase
with energy. The results were obtained using
E„=0.25 Ry in the calculation of 6 . By compar-
ing with the results obtained using E„=O and 0.5
Ry, which are correct around E=O and 0.5 Ry,
respectively, we conclude that the error (i) due to the
use of P (E) with E„=0.25 Ry is small over the en-

tire energy range. Comparison between calculations
using the exact (Appendix B) and the approximate
unperturbed Green function also shows that the
geometry violation (ii) is not particularly important.
The deviations are mainly due to the neglect of the
nonspherical components of the perturbing potential
(iv) and to a smaller extent the geometry violation
(iii). We have also performed calculations for a bcc
lattice with the same AS radius. The deviations
tend to be slightly larger for the s and p phase shifts
and somewhat smaller for the d phase shift.

In Fig. 1 we also show results obtained with the
MT approximation. As for the bound state the
ASA is generally more accurate than the MT ap-
proximation, where the errors are typically twice as
large.

The present application of our method to an irn-

purity in jellium is probably a rather stringent test.
For the case of an impurity in a transition metal, for
instance, we expect the d waves to be more localized
to the central parts of the atomic cells and, in this
case, the geometry violation in the ASA should be
less serious. The nonspherical components of the
perturbing potential also decrease in importance.

ASA, approximate g
ASA, exact g
MT, exact g
Exact

fcc

—264
—263
—252

—272

bcc

—262
—263
—248

B. Self-consistent calculations

In the preceding section we applied our method to
the impurity problem for a giuen potential, the
Hulthen potential. Now we solve self-consistently
the problems of the free hydrogen atom, a proton in
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FIG. 1. Generalized phase shift g [Eq. 12.531] for the Hulthen potential as a function of the energy E. The figure shows

the exact result (solid line), the LMTO-ASA result (dashed line), and the MT result (dashed-dotted line).

jellium, and lithium in jellium, using the local-
density approximation. For these problems nearly
exact solutions are available. This provides further
tests of our method, in particular, of our calculation
of the self-consistent potential and the total energy.

We first study the accuracy of our total-energy
expression and consider a "truncated" hydrogen
atom for which the one-electron potential vanishes
outside a sphere of radius s*. We occupy the bound
state with one electron and leave the continuum
states empty. From this charge density a new poten-
tial is calculated and the problem is solved self-
consistently. Exchange and correlation effects are
included through the local-spin-density (LSD) ap-
proximation. We note that if s* were made infi-
nitely large this approach should lead to the exact
LSD result. To illustrate how the result converges
with the size of the region which is considered per-

s* (a.u. )

2.0
2.5
2.982
3.5
4.0
4.5
5.0

8' (Ry)

—0.8954
—0.9434
—0.9615
—0.9692
—0.9721
—0.9733
—0.9737
—0.9740

Eb (Ry)

—0.4643
—0.5148
—0.5371
—0.5481
—0.5528
—0.5548
—0.5555
—0.5560

exact «y)

0.7619
0.8753
0.9380
0.9704
0.9862
0.9938
0.9972
1.0000

TABLE IV. Local-density calculation for a truncated
hydrogen atom, whose potential is localized to a sphere of
radius s*. The results for s*= ao have been obtained from
an atomic program. The total energy is given by 8' and
the energy eigenvalue by Eb. To illustrate the rapid con-
vergence of the total energy we also show the kinetic ener-

gy inside the sphere, T,„„,=4~ r V (r) dr calcu-

lated for the exact hydrogen wave function.
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8' (mRy) Eb (mRy)

TABLE V. Local-density calculations for a free hydro-

gen atom using two shells of spheres and the fcc lattice
structure of Al. The total energy is 8' and the energy
eigenvalue Eb. The exact result is obtained from an atom-

ic calculation and the approximate g was calculated for
E = —560 mRy.

TABLE VI. Results for a truncated proton in jellium
with r, =4. The change of the potential is localized to a
sphere of radius s*. The change in the total energy (68'),
the position of the bound state (Eb ), and the net electronic
charge inside the sphere (hn) are given. The results for
s*=~ are taken from the calculation of Zaremba et al.
(Ref. 25).

ASA, approximate g
ASA, exact g
MT, exact g
Exact

—970
—969
—957
—974

—558
—555
—543
—556

turbed, we show in Table IV results for the total en-

ergy 8' and the energy eigenvalue Eb as functions of
s*. The results for s*=~ are the exact LSD results
for the functional used. To illustrate that the total
energy converges faster than the individual contribu-
tions, we show the kinetic energy calculated from
the formula

s*
(a.u. )

1.25
1.5
2.0
2.5
2.982
3.5
4.5
5.0
5.5

5$'
(mRy)

—910
—1024
—1091
—1093
—1088
—1087
—1097
—1099
—1099
—1096

Eb
(mRy)

—405
—421
—428
—419
—409
—401
—405
—413
—418
—409

hn
(electrons)

—0.400
—0.216

0.019
0.146
0.199
0.191
0.043

—0.036
—0.077

0

T,„„,(s*)= f d'r
i
Vf(r)

i

using the exact 0 wave function. For the hydrogen
atom, where f(r) oo exp( r), t—his expression is also
numerically equal to the number of electrons inside
the sphere. For s*=4, for instance, 8' is only 0.2%
from the exact LSD s*= oo value while T,„„,(s~) is
still off by 1.4%.

As a test of the LMTO-ASA method, we now
consider a free (s~= oo) hydrogen atom. As in the
preceding section we fill space with overlapping
atomic spheres. We assume parameters correspond-
ing to Al and use the sphere radius s=2.982 and an
fcc lattice. As before we use the spherical average
of the potential inside each sphere. Table V shows
results for a two-shell calculation, which includes
the central sphere and the shell of the 12 nearest
neighbors. The radius of a sphere with the same
volume as the atomic spheres in the central and
nearest shells is 7.0 and, for this value of s*, both 8'

and Eb are converged to the exact LSD results to
within 1 mRy (Table IV). The errors in Table V are
therefore not due to the neglect of the third shell. In

the calculation of the unperturbed approximation
Green function (Sec. II) we have used E„=—0.56
Ry. The ASA calculation agrees with the exact one
to within 2 and 4 mRy for the energy eigenvalue and
the total energy, respectively. If we use the proper
perturbation hP=P —P we find that these results
are insensitive to E„. For instance, a change of E
by 0.81 to E„=0.25 Ry changes both the total ener-

gy and the energy eigenvalue by about 1 mRy. In
the MT approximation the errors are substantially
larger.

We next consider a proton in an otherwise homo-
geneous electron gas. The calculation is performed
as before and the only difference is that we now oc-
cupy the bound state doubly and fill the continuum
states up to the Fermi energy. We note that, while
the perturbation for the free atom decays exponen-
tially, a proton in jellium gives rise to long-range
Friedel oscillations. This is illustrated in Table VI
where we consider a truncated proton in jellium for
which the change of the one-electron potential is lo-
calized to a sphere with radius s*. The net charge
inside the sphere,

TABLE VII. Results for a proton in jellium with the fcc lattice structure (s =2.982) and in-

cluding two shells. We have used s, p, and d waves and set E,=O, i.e., at the bottom of the
continuum. The exact results are those of Zaremba et al. (Ref. 25).

H in jellium
58' (mRy)

rs =3 r, =4
Eb (mRy)

r, =3 r, =4

ASA, approximate go
ASA, exact go
Exact

—1071
—1063
—1062

—1096
—1095
—1096

—513
—511
—514

—419
—405
—409
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0.4

0.3

0.2

CI

~ 0.1 fs —3 r, =4

TABLE VIII. Total energy of a lithium atom in jelli-
um minus the energy of the unperturbed jellium. Our re-

sults were obtained using the fcc lattice structure
(s=2.982). %e located E„at the bottom of the continu-
um and included two shells with s, p, and d waves, The
exact results are those of Zaremba et al. (Ref. 25).

Li in jellium
68' (mRy)

0.0

0.0 1.0
r (QO)

2.0 3.0

ASA, approximate gp
Exact

—193
—232

—330
—385

FIG. 2. Induced valence charge density for a lithium

ion in an r, =4 jellium. The solid curve shows the exact
density (Ref. 25) and the dashed curve shows our density

calculated with the LMTO-ASA method. For the jellium

we used the fcc structure of Al (s=2.982). The perturba-

tion was included in the spheres at the central and

nearest-neighbor sites (see also Table VIII).

&n= I d r b,n(r) —I,
is positive for s -2—4.5, meaning that the induced
screening charge contains more than the single elec-
tron which would be needed to screen the proton.
Owing to the Friedel oscillations, the quantity An

oscillates with s~ and it can be fairly different from
zero. Thus for s*=S, where the Friedel oscillation
has a large amplitude, the result is not as well con-
verged as for a free hydrogen atom (Table IV). On
the other hand, for small values of s* the conver-
gence is faster than for the free hydrogen atom
since, in this limit, the net screening charge outside
the atomic sphere is smaller.

We now fill space with atomic spheres and use the
lattice structure and AS radius of Al as before. As
has been emphasized earlier, in the calculations
based on the approximate unperturbed Green func-
tion we improve the descriptio in the perturbed re-

gion by using AP=P —P . The perturbed Green
function is therefore calculated with a somewhat
higher accuracy than the unperturbed one. To avoid
having this improved description show up as a con-

tribution to the binding energy of the impurity, we
perform two calculations: one with the impurity
and one without. In the latter calculation, the per-
turbation is simply 5P =P —P, which is the error
of the potential function in the calculation for the
unperturbed crystal. The difference in total energy
between the two calculations defines our binding en-

ergy. The results are shown in Table VII. Although
the range of the perturbation is larger than for a free
hydrogen atom, the results in Table VII are almost
as good as in Table V.

The charge induced by a proton is fairly localized
due to the small size of the hydrogen atom, and a
substantial part of the perturbation is localized to
the central sphere ~here it is described exactly. We
have, however, also considered a lithium atom in jel-
lium, which gives rise to a very extended perturba-
tion because of the large radius of the Li 2s orbital.
This is illustrated in Fig. 2 which shows the induced
charge density for I", =4. The maximum of
4rrr hn (r) is located outside the central sphere
(s=2.982), which contains less than half of the in-

duced valence charge. The figure also shows that
our calculated ASA charge density inside the central
sphere is in fairly good agreement with the exact
charge density, although somewhat too large. The
total energy is shown in Table VIII and it is seen

that the ASA result is about 50 mRy above the
correct energy,

Finally we show in Table IX the phase shifts at
the Fermi energy, which are directly related to the

TABLE IX. Phase shifts at the Fermi energy for a Li impurity in jellium (see caption of
Table VIII).

Li in jellium

ls
6

71
2

Is

r, =4
6

rl

ASA, approximate g
Exact

2.04
1.99

1.09
0.95

2.27
2.22

1.1 1

0.84
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total induced charge density. The phase shifts are
generally a bit too large, which can again be under-
stood in terms of the large charge density, corre-
sponding to more than half an electron, which is lo-
cated outside but close to the central sphere. If
properly taken into account, this charge density
would raise the potential in the central cell substan-
tially. The spherical approximation for the charge
density in the second shell, however, reduces this ef-
fect. Thus in the ASA the potential in the central
cell is too negative, the calculated induced charge
density is too large, and the total energy is too high.

IV. CONCLUSION

We have developed an LMTO-ASA method for
self-consistent impurity calculations using the
Green-function technique. Compared with current
Gaussian-orbital —pseudopotential methods the ad-

vantages of the LMTO-ASA and the KKR methods

are that they employ proper radial wave functions
and a small basis set with typically nine orbitals per
perturbed site. The disadvantages of the two
methods are that they imply AS or MT approxima-
tions and that relaxations of atomic positions are
more difficult to include in these methods due to the
long range of the structure constants.

Compared with the KKR approach, the lineariza-
tion of the band-structure problem in the LMTO
method leads to a more efficient and physically
transparent way of calculating the Green function
for the unperturbed crystal, and the substitution of
the MT approximation by the ASA not only simpli-
fies the formalism but also increases the accuracy by
allowing for perturbations in the region between the
MT spheres. When calculating the total energy us-

ing the density-functional formaliSsm, we are careful
to take optimal advantage of the variational proper-
ty of the functional. The resulting accuracy is typi-
cally 0.01 Ry and the accuracy of individual one-
electron energies is about the same. This, together
with the small matrix size and the analytical simpli-
city of our one-electron Hamiltonian, makes the
LMTO-ASA method particularly suited for study-
ing trends and for treating more than one (up to
about 30) perturbed sites.
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APPENDIX A: ASA AND KKR GREEN
FUNCTIONS

In (2.22) we expressed the imaginary part of the
ASA Green function G(r, r 'g) in terms of the
imaginary part of the matrix gzi ii i (E) and the
regular solutions p„i(E,rR ) of the radial
Schrodinger equations. We now include the real
parts and therefore need, in addition to the regular
solutions, those solutions Ngi(E re ) of t"e radial
equations which are irregular at rR ——0. As a result
of this development our understanding of the rela-
tion (2.39) between the matrices g and G will be im-
proved.

The expression for the Green function that we
seek could be obtained' from the well-known '

KKR Green function by substituting the MT
spheres by space-filling atomic spheres and by let-
ting v tend to zero neglecting the KKR relation
(1.4). However, in the KKR formalism the normali-
zations used for the wave functions are appropriate
in a scattering situation but inconvenient in a con-
densed system where the region inside rather than
outside the atoms is of most relevance. We will
therefore derive the ASA expression for the Green
function directly, using the partial waves and MT
orbitals defined in the previous sections. In contrast
to what was done there we shall not set K equal to
zero but keep it unspecified. This has the advan-
tages that our formalism includes the KKR formal-
ism and that it illustrates the LMTO-ASA formal-
ism with a general (energy-independent) v . With a
negative v, for instance, the structure constants de-
crease exponentially with interatomic distance. ' In
addition to the traditional partial-wave one-center
expansion of the Green function, our derivation
yields a MT orbital multicenter expansion with su-
perior convergence.

The Green function is defined by (1.3) and V( r) is
an AS potential, as defined in (2.4); it extends to in-

finity but does not necessarily have crystalline sym-
metry. The source point r ' lies inside a sphere
whose center we name R . That is rR =

~

r
—R'

~

(s~ . Considered a function of the field
point r, a solution G ( r, r R +R ';E) of (1.3) may be
expressed as a linear combination of the regular
Schrodinger solutions Pa t ( E, r z ) when r:—r it +R '

lies inside the R sphere and inside the source point,
as a linear combination of the irregular Schrodinger
solutions /fr (E, rR ) when r lies in the R sphere
but outside the source point, and as a linear corn-
bination of the regular Schrodinger solutions

/zan(E, rz) when r lies in a sphere centered at
R&R'. Taking the symmetry of G with respect to
an interchange of r and r ' into account, we thus ar-
rive at the well-known form
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G(r~+R, r z +R';E)=5RR QPRL(E, r z )Wgi(E) 'Pgs (E, r z )
L

+ y y ygl. (E rg )GRL, g'L, '(E)yg'L'(E r g')
L L'

(Al)

I

where r ~ is the smaller, and r ~ the larger, of rz and rz. Expression (Al) is a one-center expansion for the
Green function, analogous to the expansion (2.10) for the wave function, and the coefficients W and G must
now be determined in such a way that (Al) satisfies (1.3) and that the expansions around the various sites
match together.

The second term of (Al) is a general solution of the homogeneous (i.e., the Schrodinger) equation, and in or-
der that the first term be a particular solution of the inhomogeneous equation (1.3), W must be equal to the
Wronskian, i.e.,

g~irr E
W(E) = W[$(E),P'"'(E)]:rg(—E,r) ' P'"(E—, r)ar

'"
ar

=sf(E,s)P'"(E,s)[D'"(E) D(E)]—. (A2)

This follows from Gauss's theorem. The Wronskian is independent of r because P and P'"" satisfy the same ra-
dial Schrodinger equation. In (A2) we have for simplicity of notation dropped the subscripts R and l.

Using (A2) we see that the first term of (Al) is independent of the multiplicative normalizations of P and
The first term does, however, depend on the additive normalization of P'": Given an irregular solution,

P', we may obtain another one by adding some constant times P to it whereby the corresponding new first
term of the Green function differs from the old one by a solution of the homogeneous equation. This solution
may be absorbed into the diagonal part of the second term of (Al) and the entire Green function remains unal-
tered. Specifically, for the two irregular solutions P (E,r) and P (E,r), characterized by the respective logarith-
mic derivatives D'(E) and D (E) [&D(E)], we have

1 P'(r) 1 P (r) 1 1 P(r)
D' DP'(s) —D Dgb(s) —D' DD D— P(&)— (A3)

as may be checked by setting r =s and by performing the radial derivative at s. In (A3) we have dropped the
argument E as well as the subscripts R and l. For use in (Al), therefore,

p(r )(W[p,p']) 'p'(r )=p(r )(W[p, p"]) 'p (r ')+p(r) ' ' p(r') . (A4)

In order to determine the coeffioients G+L q I, , we shall set up a MTO expansion for the Green function
analogous to what we did in Sec. II A and require that it equals the one-center expansion (Al). This is, in fact,
equivalent to using a Dyson equation with

GM(r r .&2)
exP( —l~

I
r —r '

I
) I (0

4m r —r'~

and the perturbation E —V (r) a. . In terms of this fr—ee-electron Green function the MTO may be defined as

XzL(a, E, r R)= — d r'G—(r r';a )[E—V(r') —lr ]P~L(E, r ' —R), —
R

(A5)

(A6)

where the integral in the sphere at R may be solved by using (1.1) together with Green's second identity and the
well-known one-center expansion

G(r —r ';x )= gjL(r ~)Irhl (r ~) .
L

(A7)

This expansion is a special case of (Al) where the regular functions

jL (r):jI(ar)YI (r)—
and the irregular functions



27 SELF-CONSISTENT IMPURITY CALCULATIONS IN THE ATOMIC-. . . 7163
imbed

( r ) =i—whee(iver) I'I (r ) =v[—
ni(iver)+

iJi(Kr)] Yl (r }

are related to the spherical Bessel functions ji, Neumann functions ni, and Hankel functions hi, as indicated.
The Wronskian, as defined in (A2), satisfies

W[ji,imbed) = W[ji, igni I
=-1 .

The result for the MTO is

(A8)

&el.«' @rR)=
p+L (&, rz )+jL ( rz ) W [iahi, fiick ] for rs (ski

i~hi (rz ) W[ji,pzi I for rz &ski
(A9)

where the Wronskians should be evaluated at the sphere (rz ——sz ). Equation (A9) reduces to (2.11) in the limit
of vanishing ~ because

(ar)i . (2l —1)!!ji(ar)~, ibad(ar)~
(2l+ 1)!!' (iver)

+' (Alo)

in that limit. We may now, as we did in (2.12), expand the tail of the MTO centered at R in the sphere cen-

tered at R' (&R) using the addition theorem

I I' 1" +

iahL(rg)= gjL (rg )+4nCIL I i '.+' 'ixhl (R R')—
L'

—= gjL(rR )Aal. ~L, for R&R'.
I.'

(Al 1)

Here

CL,L I-= dr Yl. YL YL-

are the Gaunt coefficients such that m"=m' —m
and the I" summation includes only the terms with

I

(A6) are real, but the Bessel and Hankel functions of
odd order are imaginary and behave similar to (A10)
in the limit of vanishing a. We shall therefore re-

normalize the Bessel and Hankel functions such that

they become real fore (0 and, for N =0, reduce to
the functions used in Sec. II. The regular function

Ji(r):—,[(21—I )!!](~a) —'ji(Kr) (A14)
The matrix A is the KKR structure matrix. We
may finally express the MTO as one-center expan-
sions using vector notation as in (2.14); the result is is real for all real a and reduces to [2(2l

+ 1)] '(r/a)' for a =0. Here a is an arbitrary
linear dimension of the structure as in Sec. II. The
irregular function

(A12)

Here the Wronskians are regarded as diagonal ma-
trices and, for ~ =E —V~qz, the relation to the
phase shifts g is

Ki(r) —= —[(21—1)!!(va) ] 'iaahi(Irr) (A15)

is real and decreases asymptotically like I'

&(exp( —
~

a
~

r} when z is negative. For 1~ =0 it
reduces to (a /r)'+'. The Wronskian satisfies

(A13)

The values of a most relevant for LMTO calcula-
tions are negative or zero. For these values the
free-electron Green function (A5) and the MTO's

W[Z, ,K, I
= —a/2 . (A.16)

In terms of J and K the expression (A9} for the
MTO may be written as
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fRL (E rR )+JI.( rR ) W[Kf pR( j ( —2/a) ««R + sR

XRL(a,E,r„)=
KL ( r R ) w [J~,QR~ j ( —2/a) for rR & sR

(A17)

and the expression (A12) as

~P)+ ~

J)(P —S)W[J,Pj( —2/a)= ~X)",
with

(a/2)~R L,RL

—,[(21'—I )!!](aa) —,[(21—I )!!](aa)

1+1 ~ 1+1'—1" 2[(21"—1)!!]= g( —1) + (isa) + 4vrCLLL-, "
KL (R—R')

[(21'—1)!!][(21—1)!!]

(A18)

(A19)

and

W[KI, PRI(E) j

W[J(,PRI(R) j
(A20)

Moreover, by differentiation of (A20) and use of (2.16) we find that

PRI(E)=(a/»[W[JI 4I«) j] '
(A21)

whereby P ' (2/a)'~ = W[J,Pj(—2/a), which defines the sign of P' . It is easily checked that expressions
(A17)—(A21) reduce to those given in Sec. II when a =0.

We are finally in the position to determine the coefficients GRL R L (E) of the one-center expansion (Al) for
the Green function. We first assume that W[Q,Xj&0 and choose for the irregular solutions of the radial
Schrodinger equation P"' those functions which match continuously and differentiably onto the corresponding
MTO's X at the sphere. These functions we call P and the corresponding expansion coefficients G . Equa-
tion (Al) thus reads

G(rR+R, r 'R +R';E) =5RR g p„L(E,r R )PR~(E)[PR~(E)] 'pRL(E, r R )

L

+ g g 4RL(E R )GRL, R'L'(E)4R'L'(E R')
L L'

(A22)

where we have used that, according to (A9) or (A17), (A20), and (A21),

W[P,P j = W[Q,Xj =W[g,iah j W[j,gj = W[P,Kj W[J,Pj( 2/a)=PP- (A23)

Let us now keep that coordinate r ' which lies closest to a site (:—R ') fixed and determine the coefficients G by
demanding that the Green function G ( r, r ';E), obtained by summing (A22) over all R, is a smooth function of
the other coordinate r. In (A22) we thus have r ~=r and r ~=r'.

We may require that (A22) summed over all R is identical to the following multicenter expansion of overlap-

ping MTO's:

G(r, r R +R',E)= gXR'L'(E rR')P—R'I'(E)[PR'I'(E)] 4R'L'(E r R')
L'

+ g g XRL (E r R )GRL, R'L'(E)4R 'L'(E R')
R,L L'

which, by construction, is a smooth function of r. Here X is the usual MTO given by one of the equivalent ex-

pressions (A6), (A9), or (A17) and X' is a continuous and differentiable function in all space; it equals the ir-

regular function P inside the sphere and the MTO outside the sphere. In other words, it is a MTO augmented
continuously and differentiably inside the sphere by the appropriate irregular solution of Schrodinger's equa-

tion. We now project (A24) onto pR L (E, r R ) and express the r dependence by one-center expansions using the
expansion (Al 1) or (A18) of the MTO tail. With vector notation (A24) becomes
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iX' )PP '+ iX) "G —i/ )HAPP
'

i
J}S(2I )' P' P

+
~
$}G +

~

J)i(P S)—P (2la)'~ G»,

while (A22), summed over R, yields

~

y»)PP —1+
~

y)G»

The condition that the two expressions are identical is

SP' P '=(P S)P—' G»

which yields the wanted relation

G (E)=[P(E)]' '[g(E)—P(E) '][P(E)]'" (A25)

between the coefficients of the Green-function expansions (A22) and (A24) and the matrix g =(P S) '.—By
taking the imaginary part and comparing with (2.22) we realize that for the poles of P(E}and P(E) the prin-
cipal parts should be taken. In KKR notation (A25) becomes

G»(E}=—(WIj, p j ) '[(a coty +is+A') ' —(I~cotri +i~) '](WIj, p j ) (A26)

as obtained by using (A12) instead of (A18).
The term —P(E)[P(E)] ' in the diagonal of (A25) and (A26) contains the factor WIE, P(E) } ', as may be

seen from (A13) and (A20). The corresponding pole is, of course, not present in the Green function (A22) and
it may be removed by rearrangement of the terms in (A22): If the term P(r)PP ' f—rom the diagonal of the
second term in (A22) is combined with the term P (r)PP ' we obtain P (r)(W[Q,J}) ', where P (r) is the ir-
regular solution which matches continuously and differentiably onto J(r) at the sphere [see Eqs. (A17) and
(A23)]. As a result, the Green function is given by (Al) and (A2) with P' (r) =P (r) and with the coefficients

G (E)=[P(E)]'~g(E)[P(E)]'~ (A27)

= —(W[j,pj) '(vcotg +iir+A) '(WIjpj)

For the poles caused by the presence of the factors
(W[P(E),Jj) ' in the first term of (Al) as well as
in (A27) and (A28), the principal parts should be
taken.

The general expressions for the coefficients G(E)
and W(E) ' in (Al) are

G(E)=H ',.„+G(E)
W IJ,P(E) }W I P'"(E),P(E) }

(A29)

and

[W(E)] '= —9'[W[P'"(E},P(E) j] ', (A30)

as obtained by starting out from (A27) and using
(A4) and (A2). So far we have considered the spe-
cial choices P'"=P» and P'"=P . The Green func-
tion G(r, r ',E) has poles at the eigenvalues of
Schrodinger's equation for the entire system only,
and any additional poles such as those caused by the
factors [W[P' (E),P(E) }] ' and [W[ J,P(E) j ]
present in the various parts of the one-center expan-
sion (Al) must cancel. It is now customary to speci-

(A28)

and

.
( ) ~ 1 dlnP(E)

2 dE

[W (E)] '= —1 .

(A31}

(A32)

I

fy that the first term of (Al), and hence (A30), has
no poles. [Strictly speaking, only those choices of
P'"' for which W[P'",P(E)}&0for all E are possi-
ble. This is so because if for soxne energy we had
chosen D""=D(E), then the solution of the radial
Schrodinger equation for that energy and that boun-
dary condition would contain no irregular part. ] We
must thus choose some radial function whose loga-
rithmic derivative never equals D (E) and then
match P""onto that function.

In the ASA we specify [see (2.7)] that P is nor-
malized to unity in its sphere and, as a consequence,

P is orthogonal to its energy-derivative function P.
Moreover, the Wronskian of these two functions
take the value 1 at the sphere as shown in Sec. II B.
In the ASA a natural choice for the irregular solu-

tion is therefore the function P' which matches onto
If with this choice we now use (A29) and (A30)

together with (A21) we realize that
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G (E)=G(E), (A33)

as defined in (2.38). This is an important result.
For certain applications it is practical to have ex-

ponentially decreasing structure constants and there-
fore to use a (slightly) negative Ir . In order to calcu-

late G (E)=(E i0+ —H) ' w—e need an expression
analogous to (2.3) for the Hamiltonian but valid for
a general ~. From the development given in Sec.
IIB we may see that (2.3) does, in fact, hold for a
general Ir provided that S is given by (A19), that
P(E) is given by (A20), and that in the definitions
(2.32) of the potential parameters the radial func-
tions with logarithmic derivatives l and —l —1

should be substituted by, respectively JI(r) and
EI(r).

In the KKR formalism P and P'" are normalized
according to their behavior at and outside the
sphere. The linearly independent functions used for
the construction of the boundary condition for P""
are not P and P as in the ASA formalism but jr(ar)
and nl(lrr) whose Wronskian equals Ir ' [Eq. (AS)].
The multiplicative normalization of P is such that

tI)(r) =cosri j(r) —sing n (r) (A34)

Since neither the first term of (Al) nor the functions

P have any poles, the coefficients G&L z L, (E) must
have exactly the same poles as G(r, r ';E). This has
the consequence that the pole caused by the presence
of the factor [ W [J,P(E) ] ]

' in the first term of
(A31) must cancel an identical pole of G (E).
Furthermore, if we neglect the geometry violation of
the ASA, the Green function G(r, r ';E) and here-

with G (E) cannot depend on a. We may therefore
take Ir=0. If we finally substitute in (A31) the ap-
propriate second-order form (2.34) for [P(E)]
and compare with (2.39) we realize that

zations the coefficients (A29) and (A30) in the one-
center expansion (Al) of the Green function become

and

G "(E)=&acotr) +G (E)

[ WKKR(E)] —1

(A37)

(A38)

In the present Appendix the ASA has amounted
to using the expansion (Al 1) of the MTO beyond its
range of validity as if the atomic spheres did not
overlap. If, specifically, the MTO centered at site R
is expanded about site R', then the expansion con-
verges inside the (large) sphere which is centered at
R' and passes through R and has the radius R—R'.
The result of the expansion applies to the tail of
MTO, however, and is consequently correct only in-
side that part of the large sphere which lies outside
the atomic sphere centered at R. If now R and R'
are nearest neighbors, the expansion is seldomly
correct throughout the atomic sphere centered at R'.
When the potential has the MT form it is not neces-
sary (although convenient) to use the ASA because
the choice ~ =E —VMTz makes the perturbation
used in (A6) vanish outside the nonoverlapping MT
spheres and, in that case, the MTO expansions hold
throughout all MT spheres. This is the basis for the
KKR method.

We finally study the I convergence of the one-
center (Al) and multicenter (A24) expansions of the
Green function. For increasing values of l the cen-
trifugal term l (1+ 1)r dominates the radial
Schrodinger equation, and the radial wave functions
pi approach the spherical Bessel functions ji or JI,
and eventually they approach r . Therefore, in order
to study the convergence, we need only consider the
cgse of free electrons. In this case the potential
functions (A20) diverge such that

when r )s. With this normalization,

W[t)),j]=I~ 'sing

and (A35)

g =(P S) '=P '+P—'S-P--
and, according to (A25) and (A20) and (A21),

(A39)

WIP, n] =x 'cosri .

The choice for the boundary condition of (t""

p'"(r)=sinr) j(r)+cosri n(r) (A36)

therefore leads to W[P,P'"") =a ', which always
differs from zero. With these ~-dependent normali-

Gz=P'~'P SP P'i'= '"-'S"-'—
a P(s) P(s)

'

(A40)

which is, essentially, the structure matrix.
For free electrons the one-center expansion (Al)

or (A22) becomes

G(r~+R, r R +R';E)=5+~ g JI (E, r ~ )( 2la)EL(E, r R)—
L

+ (2/a) g g Jl (E, rR )S~L g 1. (E)JL, (E, r~ ),
L L'

(A41)
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where we have used (A40) and the argument ir =E of the Bessel and Hankel functions. Moreover, Sit it =0.
The one-center expansion. thus reduces, as it should, to the result that could have been obtained directly by
combination of (Al 1) with (A7). We shall now see that the one-center expansion converges unconditionally in-
side the MT spheres and not further.

For E=O the first term becomes

~RR' g JL( r R )( 2«)&t. ( rÃ ) =( 4tr—) '&RR' QP!("R r R )rR i rR
L I

(A42)

where we have used (A14) and (A15) and the addition theorem 4m g Yt (r )Yt (r ) = (2l + 1)Pi(r r ). Here Pi
is a Legendre polynomial. Since

~
Pi

~

& 1 the series (A42) converges for re & rii .
If, in the second term of (A42) we perform the L summation before the L' summation, we obtain

(2«)g QJt(rtt)Sttt it t. Jt (rtt )= QKt (rit )( —2«)Jt (rii ) =(4m) 'QPt(r ti"rtt )(rt't )'l(rtt )'+'
L' L L'

(A43)

with the help of the expansion theorem (A 1 1) or
(A18). Since there is no value of the angle between

rz and rz for which I'I tends to zero as I' tends to
infinity, the series (A43) converges for rt't & rid and
it diuerges for rtt & rtt . If instead we perform the L'
summation before the L summation, the result con-
verges for r~ &rz and it diverges for r~ g rz. This
means that the real part of the one-center expansion
(A 1) of the Green function converges unconditional-

ly only for r and r ' inside the nonoverlapping MT
spheres. This expansion is therefore not useful for
the treatment of non-MT or non-ASA perturbations.

We now consider the multi-center MTO expan-
sion (A24). The MTO vanishes for free electrons
due to the presence of the factor W[j,pj in (A9)
and, as a result, the second term of the multicenter
expansion (A24) vanishes. The first term remains
because, according to (A9),

P' (r)=iah(r)W[j, gj,
and PP ' is given by (A23). The multicenter expan-
sion thus reduces to (A7), as it should, and it con
uerges for all r and r', except for r = r'.

APPENDIX B: FREE-ELECTRON GREEN FUNCTION IN THE ASA

For the case of free electrons it is possible to give an exact expression for the Green-function matrix
g(E)—:[P(E)—S] which neither contains the geometry violation of the ASA nor the errors caused by the
parametrization of the potential functions, nor a matrix inversion. If we make the KKR choice a. =E the re-
sult is, of course, given by (A39). We shall, however, choose ic =0 and therefore obtain the corresponding
g (E) by comparing the ASA free-electron Green function obtained from (Al) with the exact result (A41). For
free electrons P(E, r) =J(E,r)(J(E) ) ', and (Al) yields

G(rit +R, r ii +R';E)=5iiit g Jttt (E, r tt )[W[J(E),P ' '(E) j ] 'Pit't '(E, r ti )

L

+ g g Jttt. (E rit )(Jill ) GRt, R'L'(E) (~R't' ) R'L'(E R'
L L'

(Bl)

The irregular solution is a linear combination of the spherical Bessel and Hankel functions J(E) and K(E)
with ir =E, and we have specifically chosen D'"=D ' '=1. Here J(0) is the spherical Bessel function with
it =0. The relation to g is given by (A27) and (A21), i.e.,

(J(E)') ' '6 ' '(E)(J(E)') ' '=(a/2)[W[J(0), J(E)j] 'g(E)[W[J(0),J(E)j] (B2)

In order to compare (Bl) with (A41) we rearrange the terms of the latter using (A4) with P'=K(E),
P—:P

' i(E), and P=J(E). The result of the comparison is then that (B2) must equal

W[E(E),$ ' '(E) j 2

W[J(E),E(E)j W[J(E),yJ"'(E) j
+—S E
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where the structure matrix with tc =E was given in (A19). Since P
' '(E) matches onto J(0) and

8'I J,K )
= —a/2, the final result is

g(E)= ~IJ(E),J(0)I &(E)— '
WI J(E),J(0) I .

2 7 W'I J(E),J(0) I
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