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Static shielding of an impurity near a surface in the presence of a magnetic field
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The static shielding of a nonmagnetic impurity embedded in a quantum plasma with a
surface is examined. Linear-response theory is assumed for the interaction between the im-

purity and conduction electrons in a uniform positive jellium background and the response
function is calculated in the non-self-consistent Hartree single-particle approximation. A
uniform magnetic field is applied in a direction perpendicular to the surface. The unper-

turbed electron eigenstates which are used are those appropriate to a jellium model with pla-

nar boundaries simulated by infinite potential barriers. Two separate cases are considered
which correspond to a contact interacton and a screened Coulomb potential between the im-

purity and conduction electrons. The Friedel-Kohn oscillations which are exhibited in the
induced electron-number density are due to the logarithmic singularity in the response func-

tion.

I. INTRODUCTION

Since Friedel s work dealing with the static shield-

ing of a fixed impurity embedded in a plasma was
published in 1958,' there have been several impor-
tant contributions to this problem. For example, in
bulk shielding, Langer and Vosko used linear-
response theory and calculated the required response
function in the random-phase approximation (RPA).
The result of Langer and Vosko for the induced
electron-number density and shielded potential at
temperature T =0 exhibits a Friedel-Kohn oscillato-
ry behavior which varies as cos(2kFr)/(kFr)', where

kF is the Fermi wave number and r is the distance
from the impurity. It is the logarithmic singularity
at k =2k+ of the single-particle response function in
the RPA bulk dielectric function which gives rise to
Friedel-Kohn oscillations. However, the non-self-
consistent Hartree single-particle approximation
neglects the contribution to the induced electron-
number density which is due to collective plasma
modes. The mean-field Hartree result can be ob-

tained by expanding the RPA dielectric function to
linear order in the polarizability. Therefore, Friedel
oscillations are common to both the RPA and non-
self-consistent Hartree single-particle descriptions.
Of course, an analytical relationship between the
two shielding phenomena in bulk could be developed
using the contour integral analysis of RPA shielding
as described by Fetter and Walecka. However, the
Debye-Thomas-Fermi (DTF) shielding law is ob-
tained in the RPA and not in the non-self-consistent
Hartree single-particle approximation since the

latter does not have the necessary pole structure to
describe DTF type shielding. Another reason why
the Hartree single-particle theory is not satisfactory
is that the induced electron-number density and
shielded potential are not given in terms of the den-

sity response properties for excitations within a plas-
ma. This means that in the case of dynamical
shielding, where the frequency variable is not set
equal to zero as it is for static shielding, the model
response function in Hartree single-particle theory
does not have poles which correspond to the active
plasma resonances.

For an electron in a static, homogeneous magnetic
field, the total kinetic energy is the sum of transla-
tional energy in the direction parallel to the magnet-
ic field and the energy for cyclotron motion in the
plane perpendicular to the field (Landau quantiza-
tion). With the use of the non-self-consistent Har-
tree single-particle theory, Rensink and Horing '

have shown that, as a result of Landau quantization
due to the presence of an external magnetic field, the
induced electron-number density at large distances
from the impurity is modified qualitatively com-
pared with the result in the absence of a magnetic
field. The calculations in Refs. 5—7 were restricted
to bulk shielding. Beck, Celli, Lo Vecchio and Mag-
naterra have calculated the static induced electron-
number density and shielded potential in a semi-
infinite plasma due to an impurity embedded near
the surface, in the absence of a magnetic field.
Linear-response theory was assumed for the interac-
tion between the impurity and conduction electrons
in a uniform positive jellium background, and the
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response function was calculated in the RPA. We
note that Gadzuk has also calculated some effects
due to static shielding of an impurity by a quantum
plasma with a surface in the absence of a magnetic
field. However, Gadzuk's results take no account of
the shielding due to a surface charge distribution.
This means that the electron-gas dispersion is not
adequately included in the calculation.

In this work we use the non-self-consistent Har-
tree single-particle approximation to study the effect
of a surface and Landau quantization in determin-

ing the static shielding law of an impurity embedded
in a plasma. This study should be qualitatively
reasonable at large distances from the impurity in
view of the approximate treatment of the model
response function. In Sec. II we formulate the prob-
lem and in Sec. III we conclude with a discussion.

bounded in the r
l l

plane (parallel to the surfaces). A
magnetic field of strength Ho is applied in the z
direction.

In non-self-consistent Hartree single-particle
theory, the nonlocal equation relating the static in-
duced electron-number density 5p( r ) with the effec-
tive potential V due to a single Coulomb center at ro
1s

5p( r ) =Ze f d r 'X ( r, r '; co =i 0+ ) V( r ' —r p)

where the static response function g ( r, r ', cp = i0+ )

is given by

fp(E(k, n ) ) fp(E (—k ', n ') )
X (r, r')=

E(k„n) E(k,', n—')+i 0+

X((;(r)((*;(r)((*;(r')P;(r ') . (2)

II. THE NON-SELF-CONSISTENT HARTREE
SINGLE-PARTICLE THEORY

We calculate the electron-number density which is
induced by an impurity with charge Ze embedded in
a bounded plasma. As a model for the surface, an
infinite-barrier model (IBM) is used. Linear-
response theory is assumed for the interaction be-
tween the impurity and conduction electrons in a
unifo'rm positive jellium background, and the
response function is calculated in the non-self-
consistent Hartree single-particle theory. The point
charge is inserted at rp ——(r l'", zp) within the other-
wise uniform plasma. The film is bounded by infin-
ite potential barriers at z =0 and z =L, but is un-

I

Here P;(r) is an electron eigenfunction of energy
E(k„n) where the label i stands for the quantum
numbers (k~, k„n), with the Landau levels labeled
by n =0, 1,2, . . . , and fp is the Fermi distribution
function. For the IBM, where the single-particle po-
tential within the plasma is assumed uniform in the
absence of the inserted charge, a complete set of un-

perturbed eigenstates is given in Ref. 10.
For the purpose of identifying the contributions

to 5p(r), which arise from classical specular reflec-
tion and quantum interference between incident and
reflected electrons scattered off the surface, we
rewrite Eq. (1) in terms of the Fourier transform of
X . The result is

5p(r ) =Ze g d q lip (q„q,';qll )cos(q, z)eL, (2')

L
&& f dz' f drll cos(q,'z')e ' "

ll "IIV(r ' —rp) (3a)

where q, and q,
'

have the values 0, +sr/L, +2~/L, . . . , and

fp(E(k„n)) fp(E(k, +q„n'—))
E(k„n)—E(k, +q„n')

XC,„(qll)—(5 +, —5 + . )
L (3b)

Here the matrix element C„„(qll ) is given by

C„„(qll)==,' e 's" "[i„" "(s)]nn (3c)

where s=fiqll/2tn*cp„with the scalar effective

mass of an electron equal to m*. co, is the cyclotron
frequency and L„" " is a Laguerre polynomial. In
Eq. (3b) the k, sum extends over all multiples of

/L as well as zero . and the first (diagonal) and
second (nondiagonal) terms in square brackets are
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associated with classical specular scattering and
quantum interference effects, respectively.

In this work, two cases are considered which cor-
respond to a contact interaction and a screened
Coulomb potential between the charged impurity
and conduction electrons.

Case (1): V( r —ro) =e 5( r —ro). Substituting
Eq. (3b) for p (q„q, ;qll) into Eq. (3a), we obtain the

I

induced electron-number density which is written as
5p(r)=5p, i(r)+6p~;(r), with 5p, ~

due to classical
specular scattering and 6p~; due to quantum in-
terference between the incident and reflected elec-
trons scattered off the surface. Taking the limit
L~ oo for the thickness of the film and making use
of the symmetry of C„„under interchange of n and
n', it is a simple matter to show that at T =0,

m*coZe c

(2ir) 2ir A'

' qll' ll

X f q, I qllcos(q, z)
00 A' q, /2m*

cos(q, zo) g i)+[@—(n+
&

)fico JC„(qll)
n, n'

r

Ze 3 m*co,
Spy, (r) =

(2m. ) 2ir t'ai

fi( , q, +kF—q,)lm*+(n —n)co,
Xln

1 2 ()
A( —,q, kF q, )lm*—+(n n)co, —

(4a)

e
Xj dq, fdqll co(qs~ )z2

00 A q, /m*

X g r)+[@ (n + , )fico—,]C„„(qll—)

n, n'

I

,I2m*

(&)
Here R~~=r/l rl/ and

2

u„'-„'(q, ) =—zo (n' n)co, + +— kF"'
2m m

(4b)

(5a)

2 )fc

(+) %z Rz (pi
U

—
(q )—:zo (n' n)co, —— —+ kF"n, n z 2m~ m*

1/2

(5b)

k(n) [p —(n + —, )fico, ] (5c)

where p is the chemical potential. si and ci are the sine and cosine integrals, respectively, " and the step func-
tion i)+ in Eq. (4) sets an upper limit on the sum over occupied states.

1 3
&n the quantum strong field limit where all electrons are in the lowest Landau level ( , fico, &p & —,fico, ), o—nip

the n =0 term contributes to the sums in Eq. (4). Equation (3c) gives C„o„(qll)=e 's" In'! For this case. ,
the integration over q

l l

is easily done to yield
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-+ 2 2

I t 2~ inc 2ppz
Ogc

2rn~ec, m toe
=lr(n'!) iFi n'+1;1;— R!!

2R
(6)

where iFi is a degenerate hypergeometric function. Also, in the limit of very high magnetic field, the argu-
ments of the logarithmic function in Eq. (4a) and the sine and cosine integrals in Eq. (4b) become

u„' '(q, ):zpq—, '[q, +kF(1+ia„)][q,+kF(l ia—„)]=—U„' (q, ) (7)

where ia„=(1 nV—m, /p)' a.„ is real for n'&1 but purely imaginary for n'=0. kF is defined by
kF—= (2m p/fi )'

One may verify for the quantum strong-field limit that the contributions to 5p, i( r ) due to the higher-order
(n'& 1) terms are exponentially smaller than the n'=0 term by factors exp( —a„kF

~

z —zp
~

) and
exP[ —a„(z+zp)]. Therefore, neglecting these terms when kF ~z —zp

~
&&1, kF(z+zp) &&1, and

(m*cp, /2R)' R!!»1, we obtain
' 1/2

Zei nPH m+ cos(2kF ~z —zp
~

) ocs[2k (Fz+ pz}]
5p.i(r}=,, +

2k
exp( ——,pHR!! ) (8)

2~ A 2p 2k@ ~Z —Zo
~ F Z+Zp

J

since the degenerate hypergeometric function in Eq.
(6) is equal to an exponential of the third argument
when the first two arguments are equal.
pH =—kF(fico, /p)' and, in the quantum strong-field
limit, the electron density is given by
n = (m~—cop, /2)' r/ir fP Equ. ation (8) thus gives
the analog of the Friedel-Kohn oscillatory behavior
for static shielding of an impurity embedded in a
semi-infinite quantum plasma. The result in Eq. (8)
is due to classical specular scattering of electrons off
the surface with the

~

z —zp
~

term and (z ~zp) term
due to the impurity and its image in the surface,
respectively. The Gaussian decay in a direction per-
pendicular to the magnetic field is the same as that
for a bulk plasma.

%'e calculate the contribution due to quantum in-
terference in the non-self-consistent Hartree single-
particle approximation by calculating 5p(r) in Eq.
(4} numerically. For this calculation, we note that
the cosine integral ci(x) has a logarithmic singulari-
ty at x =0. Therefore, ci(x) must be evaluated in
the Cauchy principal value sense for negative values
of x. The sine integral si(x) is an entire function of
x. Figure 1 shows plots of the induced electron-
number density of Eq. (4) in the presence of an ex-
tremely large inagnetic field. The magnetic field H p

is chosen as 200 kG, the scalar effective mass of an
electron is m ~ =0.Olney, =0.911g 10 g, the
electon-number density n = 10' cm, and the
chemical potential p =0.125 eV. Thus
kF=(6nir )' =0 018 A '., fico, =0.231 eV, and
ficoF ——0.117 eV. The quantum strong field limit
( , fico, &p& ,—fico,) is thus satisfied—, i.e., all elec-
trons with the same spin are in the lowest Landau
level. The scalar effective mass of an electron and
the electron-number density are those appropriate

for a semiconductor such as InSb. In a metal such
as Cu with an electron density n =10 ' cm, the
value of the magnetic field which should be applied
so that all electrons with the same spin are in the
lowest Landau level is beyond presently available
steady magnetic fields. It is known that an accumu-
lation layer could be present at the surface of a
semiconductor in an external electric field. ' As-
pects due to an accumulation layer are not con-
sidered in this work.

In Fig. 1 we have plotted the induced electron-
number density 5p in the IBM and the classical
infinite-barrier model (CIBM), where quantum in-
terference between incident and reflected electrons
scattered off the surface is ignored. The induced
number density vanishes at the boundary z =0 for
the IBM. This result is ensured since the unper-
turbed electron wave functions in Eq. (1) vanish at
the boundary. ' However, in the CIBM there could
be an induced electron-number density at the boun-
dary since the single-particle response function is
approximated by its bulk value. This means that
X (q„q,

'
) in Eq. (3b) is approximated by the dicigo

nal elements 5q +, only. The results of Fig. 1
z, +q

show that the long-range oscillatory behavior of the
induced electron-number density in the quantum
strong-field limit has a Friedel-Kohn-type "wiggle"
in a direction parallel to the magnetic field. With
the calculations of Fig. 1, we could examine the ef-
fect due an impurity at varying depths below the
surface of a degenerate plasma in the presence of an
external magnetic field which satisfies the quantum
strong-field limit. For an impurity at zp ——2kF
SkF ', and 15kF ' [Figs. 1(a)—1(c)] within the plas-
ma, the effect due to the off-diagonal quantum in-
terference terms is to produce significant quantita-
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FIG. 1. Comparison of the induced electron-number density 5pi r ) for the infinite barrier model (IBM) and the classical
infinite barrier model (CIBM) of a semi-infinite plasma. 5p is plotted as a function of distance into the plasma, along the
polar axis perpendicular to the surface. An impurity is on the polar axis at zo within the plasma. The solid line shows the
Friedel-Kohn oscillatory behavior for the IBM and the dashed line is for the CIBM. The magnetic field Ho ——200 kG and
the interaction between the impurity and conduction electrons is a contact potential. The calculations are based on the
non-self-consistent Hartree single-particle theory. 5po is defined by 5po—=Ze (kFpH ) /2p(2m) .

tive changes in the static shielding of the source.
When the impurity is moved to points farther away
from the surface as shown in Figs. 1(d) and 1(e), the
effect of quantum interference near the source is not
as large. This is consistent with our discussion
above that the effect of the off-diagonal matrix ele-
ments for the single-particle response function is to
ensure that 5p vanishes at the boundary for the full
IBM in contrast to the CIBM where the electronic
properties are described by the bulk response func-
tion. Thus the closer to the surface the impurity is
inserted within the plasma the larger would be the
difference in 6p near the source since the response
for the CIBM and the, IBM is treated differently at
the boundary. The non-self-consistent Hartree
single-particle approximation gives only a qualita-

I

tive representation of the shielding of a source. This
method of calculation, the Hartree single-particle
approximation, neglects plasmon dispersion. This
means that in the case of dynamical shielding the
model response function has no poles which corre-
spond to the active plasmon resonances (bulk and
surface). The RPA method of calculation treats
plasmon dispersion satisfactorily. It would there-
fore be useful to examine the shielding of a source
with the RPA description of the response properties
of a plasma with a surface, in the presence of an
external magnetic field.

Case (2): V(r —ro)=e (e '
/~ r —ro~ ).

For this shielded Coulomb potential with inverse
screening length ~, we have

L —iq r 4~e —iq r
~

W&) —&o ~ —« —'0
dz dr cos(q'z)e ~~ V(r —ro)= e Icos(q,'zo) ——,[e '+( —1) e ]IQ'+( ')'

(9)
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where q,
' =m'~/L and Q=—(qI~+s )' . Substituting Eqs. (3b) and (9) into Eq. (3a) and taking the limit

L~ ao, it is a simple matter to show that the induced electron-number density for a semi-infinite degenerate
plasma for arbitrary magnetic field strength is given by 5p(r) =5p,~(r)+5p~;(r), where the contribution due
to classical specular scattering is

Ze m COc - - e3 s q
II

R
II —gzo 4m

5p,t(r ) = —
3 z f dq, fd q ~~

cos(q, z)
2 [cos(q,zo) —,—e ']

2
(2m )3 2mzfi fi q, /2m* '

Q +q,

)& g r)+[p (n +——, )%co, ]C„„(q~~)

n, n'

A( , q, +—kF q, )/m'+(n n)cd, —
ln

R( —,q, kF q—,)/m*+(n —n)co,
(10a)

and the contribution due to quantum interference is
T

3

5p~;(r)= — ' f dq, f dq~~cos(q, z)e'"~~
(2m. )' 2m'R

X gg+[p (n —+ —, )fico, ]C„„(q~~)

n, n'

—Qzo O~ [~an'(qz~q~~ ) Ye ~nn'(q»q~~ }] (10b)

where

q +2k~" cos(zox) 4m

e.—zkF"' (n —n')fuu, —(A' q, /2m*)x Q +x
(10c)

The function R depends on the value of zo and R is the value of R for z0=0.
For magnetic fields so strong that all electrons are in the lowest Landau level, only the n =0 term contri-

butes to the sum over n in Eq. (10). For the sum over n', the contributions to 5p due to the higher-order
(n' & 1) terms are exponentially smaller than the n'=0 term at large distances from the source and its image in
the surface along the direction parallel to the magnetic field. That is, when kF

~

z —zo
~

&& 1 and
kp(z +zp) ))1, it could be shown with the use of Eq. (10a) that for a degenerate plasma in the quantum
strong-field limit

Ze 2n m*

(2~)2 R 2p

' 1/2

fdqlle
"It' ll exp

2
'

2
Pa

cos(2k„ iz —zo i ) cos[2k~(z+zo)] g,, cos(2kFz)
X + —e

2kF ~z —zo
~

2kF(z +zp } 2kFz

4m

Q~+(2kF }~

4~

Q +(2kF)

The dependence of 5p,&(r) on the variable r
~~

is ob-
tained by evaluating the integrals

f dq~~e
(2m)

2=
(2m) Q +(2kF)2

r

&( exp —zoQ—
PH (13)

2

Xexp
—

qll

III
(12) The calculation of P'~ for large values of R~~ has

been discussed in detail by Horing for the unshield-
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ed (K=O) Coulomb potential. With a straightfor-
ward generalization of the method of Ref. 6 to the
case when the value of a. is finite, we obtain

K +(2kF)
W, =(2~)'/2 exp

III

exp[ —R [K +(2kF) ]'/
J

R 1/2[ 2+(2k )2]1/4

when R~~pH &&1 and R~~[K +(2kF) ]&&l. It is
straightforward to show that W2 in Eq. (13) could
be rewritten in terms of the Bessel function Jp as

%2=2 dx exp[ —x' —zp(K2+x2p2)'/2]
0

x +[K +(2k ) ]/p

In general, the approximate evaluation of integrals
with oscillating kernels could be done using the
comparatively simple method of integration by
parts. Thus we obtain for R ~~pH ))1

2 e
—KZp

2
Jr2(0)

R~~ K +(2kF)

where the function Wz is defined by

Jr, (t) =I dt'J, (t'),
W„(t)= J dt'W„, (t'), n&2 .

(16)

(17a)

(17b)

cos(2kFz)
X

2kFz
(18)

For Kzp »1, the contibution due to A1 dominates
when the conditions kF

~

z —Zp
~

. & & 1,
kF (Z +Zp ) » 1, and R

~
~pH && 1 are satisfied, and

Comparing the results in Eqs. (14) and (16), we find
that for KZp 1, A2 makes a more significant con-
tribution to 5p, 1 compared with P', in the limit

R~~pH ))1 for a screened Coulomb potential. That
is, we have for Kzp 1, at large distances from the
source and its image in the surface in a direction
parallel to the magnetic field and with R ~~p») 1,

1/2 —KZ

34n I* e

2114 K +(2kF)

j/2

6p,1(r)=Ze 3 2)i m

2p
exp

K'+ (2kF )

2
Pa

2'
[K2+(2k )2]1/2R

J

1/2

cos(2kF ~z —zp
~

) cos[2kF(z+zp)]
p[ —[ +(2k ) ]' RiiI „+2kF z —zp 2kF(z +zp

(19)

This means that for Kzp 1, the damping is ex-
ponential in a direction perpendicular to the magnet-
ic field compared with a power-law damping when

Kzp ))1. The condition Kzp ))1 thus deprives 6p, ]

of long-range oscillations in a direction perpendicu-
lar to the magnetic field. However, for both Eqs.
(18) and (19), the Friedel-Kohn oscillatory behavior
persists in the direction parallel to the magnetic
field. %e note that the term arising from e ' in
Eq. (11) is due to the Fourier transform of the
screened Coulomb potential in Eq. (9) for the bound-
ed plasma. That is, &2 is due to a surface effect on
the finite range of the interaction. Numerical re-
sults have been obtained for this case involving a
finite-range potential with the impurity at varying
distances from the surface. The results are in quali-
tative agreement with the results of Fig. 1 for the
contact potential in the non-self-consistent Hartree
single-particle approximation.

III. CONCLUDING REMARKS

With the use of a high-resolution, electrostatic
electron spectrometer, and a Mossbauer spectrome-
ter, depth-selective Mossbauer spectra from the sur-
face of appropriate materials could be obtained. ' In
this experiment, emitted conversion electrons are
detected at selected electron energies. Depth-
selective conversion-electron Mossbauer spectros-
copy (DCEMS) would thus appear to be a plausible
technique to examine the depth dependence of the
static shielding of impurites in a Mossbauer ab-
sorber. A difficulty, however, with such a surface
experiment is in extracting from the data the infor-
mation which one could attribute to static shielding.
An external magnetic field which is so strong that
the data in a DCEMS experiment is significantly
different from the data in the absence of an external
magnetic field would therefore be a useful tool in ex-
amining depth-dependent shielding.
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