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A study is given of the dependence of the amplitude of an electromagnetically generated
acoustic wave in a metal as a function of a dc magnetic field. The incident electromagnetic
wave propagates normally to a plane metal surface. The dc magnetic field is applied in this
same direction. This work describes the effect on acoustic generation, under these condi-

tions, of the manner in which the conduction electrons are scattered at the surface. The
mathematical procedure consists in the solution, under anomalous skin-effect conditions, of
an integral equation using the Fredholm determinantal method. The amplitude of the
acoustic wave generated is obtained with the assumption that the electrons are scattered dif-

fusely at the surface. The results obtained are in qualitative and reasonable quantitative
agreement with experiments in potassium.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I), the
authors presented a theory of direct generation of ul-
trasound by electromagnetic radiation in metals in
the presence of a uniform magnetic field Bp. The
analytical methods described in I provide algorithms
for the calculation of the amplitudes of the acoustic
and electromagnetic waves inside the metal as func-
tions of Bo. These are, however, difficult to handle
in a computer and some of the numerical results ob-
tained in I are not sufficiently accurate. The pur-
pose of this paper is twofold. We develop an alter-
native algorithm to solve this problem with a pre-
cision difficult to attain with the methods of I. We
also give additional results which can be compared
with the experimental data. The notation of this pa-
per is identical to that of I. In contrast to the scope
of I, we limit ourselves here to the free-electron
model of a metal.

We suppose an initially linearly polarized plane
electromagnetic wave with an electric field of ampli-
tude Eo to be incident normally on the surface of a
semi-infinite metal occupying the region z)0 of
space. We refer the components of all field vari-

ables to a Cartesian coordinate system (x,y, z). The
unit vector z is, of course, normal to the surface and
x is chosen parallel to the direction of polarization
of the incident wave. The dc magnetic field Bo is
taken parallel to z. We designate by co the angular
frequency of the wave; the electric and magnetic
fields of the wave are taken as the real parts of
E(z) exp( i cot) and —B (z) exp( icot) The—presen. ce
of Bo causes a rotatory power in the electron gas of
the metal so that all transverse field variables inside
the metal as well as the reflected electromagnetic
wave possess both x and y components. For simpli-
city the metal is assumed electrically and elastically
isotropic. We denote its density by p, the speed of
shear acoustic waves by s and the displacement field
of the transverse sound wave generated by the real
part of g (z) exp( i cot ). —

If Bo is sufficiently strong, neglecting the attenua-
tion of the acoustic wave, the equation of motion for
g (z) exp( i tot ) is-

—pco g(z)=ps g "(z)+c ' j (z))&Bo. (I)

We describe later under what conditions Eq. (1)
must be modified to provide a description of phe-
nomena occurring in the region of weak Bo. Here
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j (z) exp( i—cdt) is the electric current density excit-
ed in the metal by the electromagnetic wave. Equa-
tion (1) expressed in terms of the circular com-
ponents,

g+(z) =g» (z) +i gy (z), (2)

is

g+(z)+(cd/s)'g+(z) =+(iBp /Ps'cj)+(z) . (3)

The solution of this equation subject to the condi-
tion that there be no reflected acoustic wave is of the
form [see I, Eq. (3.9)]

g+(z) =(+( oo ) exp(icdz/s) (4)

for large values of z. The coefficient g+( oo ) is given

by

g+( oo ) = (is—lcd)g+(+0)

+(Bp /2pcdsc )j+(cd/s ),
where g+(+0)=g'+(z=+0} and j+(cd/s) is the
cosine-Fourier transform of j+(z), namely,

j+(q) =2 f j+(z) cosqz dz, (6)

evaluated at the wave vector cd/s. The quantity

g '(+0} is a measure of the strain at the surface and
can be disregarded for sufficiently large magnetic
flelcls Bp. Furthermore, if the scattering of the elec-
trons at the surface z=O is specular, g'(+0) van-
ishes. The relation between the electric current den-
sity j (z) and the electric field E(z) when the elec-
tron mean free path l is long compared to the skin
depth 5 of the metal has been discussed by many au-
thors. Under such conditions

5=(4uFc /3rrcdcd~)'

where cd& is the plasma frequency, gives a measure
of the penetration of the electromagnetic field into
the material. When Bp is sufficiently intense for the
cyclotron resonance frequency co, =eBO/mc to be
large compared to candu/ swhere uF is the Fermi
velocity of the conduction electrons, local transport
theory is valid. It is then possible to write

J+ ( cd /s )= (Tp( I —t cd'+ t cd& r ) E+ (cd /s ),

g+( oo ) = +EpBp /2npCdS

Thus for large magnetic fields g„(oo) is equal to

(9)

where ~=1/UF is the average time between two suc-
cessive collisions of an electron and op (cdzr/4m) is. ——
the dc conductivity of the metal. Use of the
Maxwell equations in the frequency region in which
cd is much less than r ' and 4rro p(sic), taking due
account of the electromagnetic boundary conditions
at z =0, gives

zero and g~(oo) becomes linear in Bp, a result in
agreement with the experimental work of Wallace et
al. and of Chimenti et al. We remark that the data
is obtained measuring the amplitude of the acoustic
wave far from z =0 but is displayed corrected to its
value at the plane of incidence using the measured
coefficient of attenuation. Thus g ( oo ) corresponds
to the quantity actually measured.

At zero and low magnetic field intensities two ob-

served features, inconsistent with Eq. (9), appear:
(1) g„( oo )=g( oo ) does not vanish at Bp ——0, and (2)

g~(oo), starting from zero at Bp ——0, increases with
increasing Bp, going first through a maximum, then
a minimum, before becoming linear in Bp

The first phenomenon can be understood under
anomalous-skin-effect conditions (l»5). In such
circumstances, in addition to the elastic and Lorentz
forces displayed in Eq. (1) there is an alternating
torque as we now explain. The positive ions of the
metal, which we take to have charge ye, are ac-
celerated by the electric field of the electromagnetic
wave. The electrons also experience an acceleration
giving rise, due to collisions, to a steady-state
current density j (z) exp( icdt) I—n this .process the
electrons transfer continuously their excess momen-
tum to the positive ions producing an effective force
per ion F„called the collision drag force. These
two forces are equal and opposite because the metal
is electrically neutral. However, if 1 »5, their resul-
tants are displaced relative to each other, yeE, the
direct force, being effective within the penetration
depth 5 and F, over the longer distance l from the
surface. This is the origin of the shear stress effec-
tive even when Bo——0.

The explanation given above does not depend on
the manner in which the electrons are scattered at
the surface of the metal. The simplest assumption is
that the scattering is specular. The theory of ul-
trasonic generation with this boundary condition
was discussed by Quinn, by Alig, and used by
Chimenti et al. ; in this form, it is unable to account
for the nonmonotonic behavior of g„( oo ) as a func-
tion of Bo. However, if we suppose that the elec-
trons are scattered diffusely at z=O (i.e., upon col-
lision with the surface, an electron transfers to it, on
the average, the tangential component of its momen-
tum) then the effect can be understood.

In this case, in addition to the forces yeE and
F„ there is a surface force F, acting only on the
atoms on the surface z=0 and lying~arallel to this
plane. This force, together with yeE and F„pro-
duces the torque responsible for acoustic generation
even when Bo——0. As Bo increases, all these forces
acquire a y component. The nonmonotonic behavior
of g~( oo ) can be attributed to a change in the rela-
tive phases of the torques resulting from yeE& and
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Epy on the one hand and yeEy and Fy on the other.
In I we estimated that, under anomalous skin-effect
conditions, this occurs when co,r-~3 H. owever, it
should be emphasized that this marks only the be-
ginning of the change and does not coincide with the
value of Bo for which Q(ao) is a minimum. Even
though the resultant of F, and F, must be equal and
opposite to yeE, it is not legitimate, as was done by
Banik and Overhauser, to assume that the torque
arising from these forces is smaller in the case of
diffuse scattering than it is for specular scattering.
In fact, there is not only the change in relative phase
of the forces as the magnetic field increases but, as
we shall see later, the electric field at the surface is
larger for diffuse scattering than it is for specular
scattering. As will be shown in Sec. III, for Bp&0,
the component E~ is enhanced by a factor of ap-
proximately 2.

In I, the calculations of E (z) and g (z) in the case
of diffuse scattering were carried out using the
Wiener-Hopf method. ' In the present work we use
the Fredholm deterIninantal method to solve an ap-
propriate integral equation for the Fourier
transform of the electric field. In addition we have
performed similar calculations based on an iteration
procedure to compare our results with other work in
the field.

The analytical part of this program is carried out
in Sec. II. In Sec. III we display the results of the
numerical calculations for parameters appropriate to
potassium and discuss their relevance to the experi-
mental results. The numerical studies have been
made for a frequency (co/2n ) =8 97 .MHz and for
various electron mean free paths of the order of
those estimated for their samples by Chimenti et al.

II. ANALYSIS OF THE FIELDS
WITHIN A METAL

A. Integral equation
for the Fourier components

of the electric field

The components of the electric field E (z) for z & 0
satisfy the equations'

E+(z)= (4n—icooolc )

X f d(E+(g)[G+(z g)—
+pG+(z+ g)], (10)

where p is the probability that an electron is scat-
tered specularly at z =0, while 1 —p is the probabili-
ty of diffuse scattering. The functions G+(z) and
their Fourier transforms are

and

7I /2
G+(z)=(3/4!) f sin 8tan8exp[ —(1 ia+)—~z

~

/I cos8]d8,
p

G+(q)= f G+(z) exp( iqz)dz—= —,
' f sin 8(1 ia++i—Pcos8) 'd8 .

Here

=ql

and

(12)

(13)

a+ = (co+N~ }1 (14)

We note that, since the functions G+(z) are even in z, G+( —q)=G+(q). The equations (10) are transformed
into equivalent integral equations for the Fourier transforms of E+(z) in a straightforward procedure. Since
the field E (z) is defined for z & 0 we use the cosine-Fourier transform

E+ (q) =2 f E+ (z) cosqz dz, (15)

yielding even functions of q. The inverse of (15) is

00

E+(z)=— E+(q) cosqz dq (16)

and gives the components of E (z} for z & 0. We obtain

2E'+ (+0) q2E+ (—q) = (—4i coEo /c ) qE+ (q)— —

4mitooo .
1 p ~ ~ G+(k)k

z G+(q)E+(q)+ f dq'E+(q') f dk
c m. o —~ (k —q)(k —q' )

where in the last integral the Cauchy principal value is intended. Here"

(17)
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E'+(+0)=E'+(z=+0) =(2itpEp /c) .

Substitution of the values of G+(k) using Eq. (12) leads to the more tractable equations,

F+(p) (1—p)S—+(p) f U+(p, p')F+(p')d O'=S+(p) . (19}

x f
1 —ia+

f—
1 —ia+

with

Here we have used the following notation:
3

S+(P)=[iP + — 6+(P)]
3~ 5

where we have denoted G+(p/1) by G+(p),
T 3

U+(p, p')=
2

— (p —p' )

(20)

(21)
E+(z)=(4colEp lac)

X f F+(p) cos(pz/l)dp .

We obtain

(24)

I

culated numerically. The procedure is described in
Sec. III. It is possible, however, to solve Eq. (19) by
iteration, the zero-order solution being F+ (p).
Since the surface impedances Z' ' and Z's' for dif-
fuse and specular scattering differ by a factor of —,

for 80 ——0 we expect this procedure to be rapidly
convergent. Replacing p by zero and F+(p') by
S+(p') in the integral in Eq. (19) we find a first ap-
proximation to F'+ '(p), the reduced Fourier
transforms of the components of the electric field.
It is more convenient to display E'+ '(z) using

f(z)= —,(1+z ) ln(1+z ) . (22)

The functions F+(P) are a measure, in dimensionless
form, of the components of the Fourier transform of
E(z) and are defined by

E+ '(z):E'+ (z)+—(4cplEp /vrc)

X f dpcos(pz/l)S+(p)

X f dp'U+(p, p')S+(p') .
F+ (P) =(c/4co/'Eo)E+ (P/1 ) . (23) (25)

In the definition of f(z) for z complex we select the
Riemann sheet for which ln(1+z ) has the value
zero at z=0.

When p =1 (specular scattering), Eq. (19) simply
gives

F'+'(P) =F+(P)=S+(P) .

In the other extreme of purely diffuse scattering,

p =0, the components of the electric field were cal-

This expression can be reduced in the limit of large
1/5 to a more convenient one by noticing that the
largest contributions to integrals containing S(p}
[S+(P) for Bp&0] come from a region in P centered
at about 1/5 with a width of the same order. Since,
for P»1 and Bo=0, G (P) =3m/4P, the co.ntribu-
tions just mentioned are of order 6/1 while those for
P« l/5 and P» 1/5 are of higher order in 5/l.
Thus, denoting 1/5 by Pp we find

3
oPo f" pPcos(Pz/1) f" p, P'ln(P'/P)

n'c o p' —i po ' (p' p')(p' —ipo)— (26)

Setting p'=pe' in the last integral and subsequently p= ppe' in the other and using the further transformation
t+t'=U, t'=u we find

E' '(z) =E' '(z) — f du
sinhu + sinh2u

e "E' '(z) E'(ze ")—
~

—Q
(27)

This result is similar to, but differs from, that given by Chambers. ' In fact, Chambers's result would predict
E' '(0)=E' '(0) in agreement with his plot of these fields in Fig 4.5, p. 205 of Ref. 12. Setting z=O in Eq.
(27) gives

E'D'(0) =E' '(0) 1+ f du . . =1.093E' '(0},
sinhu + sinh2u

(28)
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in agreement with Eq. (4.68) of Chambers' paper' but in disagreement with his own Eq. (4.69). Thus we con-
clude that Eq. (4.69) and Fig. 4.5 of Ref. 12 are incorrect.

B. Amplitude of the acoustic wave generated

To obtain the equation of motion for g (z) we add to the right-hand side of Eq. (1) the direct force per unit
volume (pye/M) E(z) and the collision drag force per unit volume'

(p/M) F, = —(pye/Map) j (29)

Here M is the mass of the positive ions in the metal. The differential equations for g+(z) can be solved in a
manner identical to that used to obtain the solutions of Eq. (1). The surface force is taken into account by ob-
taining g'+(+0) from the stress tensor of the electron gas. From the result of I we have

3ne m'/2 oo

g'+(+0)= (1—p) f d9sin 8 f dzE~(z) exp
4ps p p

1 —in+
Z

l cosg
(30)

Substituting for E+(z) its Fourier transform [Eq. (16)] we find, after some transformations,

g+(+0) = —(1—p)(1 ia+)(—2yecpl Ep /cMs )K+(0),

where

(31)

K (P)= f dP'F (P')(P' P) ' f— f—
1 —i a+

The final expression for g+( oo ) is

g+( oo) =(2iyel Ep /cMs) [[1—G+(p, )]F+(p, )+(1—p)[(1 ia+—)K+(0)—K+(p, )]I, (33)

where

P, = lc/p.s (34)

X+ ( oo ) = (2vrpcps /EpH p )g+( oo ) .

Thus for large values of the magnetic field Bp,

X+(~)=+(&p /IIp)

(35)

(36)

a result which can be verified by taking the asymp-
totic limit of Eq. (33) when co,r »1.

III. NUMERICAL CALCULATIONS

The analysis of the preceding section provides us
with equations allowing the calculation of the elec-
tric and acoustic displacement fields. In the detailed
calculations performed here we have used parame-
ters appropriate to potassium to facilitate a compar-
ison with the work of Chimenti et al. We have
selected the experimental frequency of 8.97 MHz
and a mean free path such that (col/s ) =4.5 or mul-

For convenience we express g+(oo) in units of
EpHp /2mpcos where Hp is the intensity of a mag-
netic field selected at will. This allows us to give
graphs of g+( oo ) as functions of Bp in a more con-
venient fashion. The dimensionless expression for
g+(oo) is

tiples thereof. The other quantities used are

UF
——8.633)& 10 cm s ', p=0.91 g cm, and

s = 1.780 X 10 cm s '. For these parameters,
5=2.357&(10 cm. We expect the electric field
E(z) to decrease rapidly for z &5 and hence, F(I3) is

appreciable different from zero only for I3(1/5,
Thus, when i/cps =4.5, the range of 13 should extend
sufficiently beyond Pp ——(I/5)=60 to insure conver-
gence.

The integration in Eq. (19) was performed by an
extended Simpson rule' in which the range of P'
was subdivided into three uneven intervals and cut
off at different values of P' depending on l. For ex-
ample, for 1=1.42X10 cm the integral was ex-
tended to P'=2000. The equations (19) were thus
reduced to the problem of inverting complex ma-
trices of dimensions up to 120. This procedure was
verified by replacing the integral in Eq. (19) by
Gaussian multiplicative quadratures over six uneven
intervals ranging from P' =0 to P' =500 (for
i = 1.42&& 10 z cm). A twenty point Gauss-
Legendre quadrature was chosen in each interval
with appropriate weight factors. The results ob-
tained by both methods were in numerical agree-
ment. The inverse Fourier transforms, necessary to
obtain E (z) were carried out by the same methods.

Figure 1 gives the x component of the electric



7112 FEYDER, KARTHEUSER, RAM MOHAN, AND RODRIGUEZ 27

0.3

0.2 cm

0.2

~ 0.1

OPI

X

0)

g O. l

0.0

O. l
I I I
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z/8

0.0 FIG. 2. Components of the electric field ReE(z) as
functions of z/5 for Bo——0.5 kG. Other conditions as in
Fig. 1.

-0.1-
4 5
z/5

I I I

6 7 8 9

FIG. 1. ReE„(z) for Bo ——0 as a function of z/6 where
z is the depth in the metal and 5 the skin depth defined in
Eq. (7). The indices D and S indicate results for diffuse
and specular scattering, respectively. The index I is for
diffuse scattering using the first approximation in an
iteration procedure. The numerical values were obtained
for potassium at a frequency of 8.97 MHz and assuming a
mean free path 1=1.42&(10 cm. The field is amplified
by a factor (c/4col Eo) described in the text.

field at zero magnetic field for (col/s )=4.5 corre-
sponding to a mean free path of l =1.42&10 cm.
The display gives E„as a function of z for specular
(S) and diffuse (D) scattering. In addition, a third
curve, labeled (I), gives the numerical results for
E' '(z) using the first approximation in the solution
of Eq. (19) by iteration. We note that, when z/6 (4,
E' '(z) &EI '(z), contrary to the results obtained by
Chambers' and used by Banik and Overhauser.
The electric field is expressed in the form given by
Eqs. (23) and (24). What is actually shown in the
figure is cE(z)/jul Eo having the dimensions of a
reciprocal length. Figures 2 and 3 show the results
of calculations of E(z) as a function of z for mag-
netic fields of 0.5 and 1.0 ko. We note the differ-
ence of a factor of almost 2 in the y components of
E between the specular and diffuse forms of electron
scattering. We note also that E„(z) is not very
dependent on B0 for small values of this field. Fig-
ure 4 shows the results of a similar calculation for
Ez(z) at Bo——0.75 kG displayed in an enlarged scale.
It includes the graph obtained using the first ap-

0.2
cm

C

o Ol

0.0

-O. I
I I I I I I I

I 2 3 4 5 6 7 8 9 IO

z/8

FIG. 3. Same as Fig. 2 for Bo——1.0 kG.

proximation in the iteration method.
Figures 5—10 display different components of

g(ao) and g(ao)
l

as functions of Bo for a few
choices of the electron mean free path. The units
used are reduced in the sense described by Eqs. (35)
and (36) taking Ho 10 kG for——convenience. Some
of the graphs are labeled "arbitrary units" but these
are the same as the reduced units multiplied by a
factor of 100 for ease of display. Finally, Fig. 11
shows graphs of

I g ( ao )
l

at B0=0 as a function of
' for both specular (p =1) and diffuse scattering.

This result is to be compared with Fig. 5 in the work
of Banik and Overhauser. We note that there is no
qualitative difference between the behavior of

l g ( ao )
l

for BO=0 as a function of r ' for the two
extreme choices of boundary condition.

Even though the results of the calculations give
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0,5-

20

- 0.5-

Bp =0.75 kG
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E
( I)
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E (s)
Y

ra 10

8
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zl5
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I

8 9

FIG. 4. ReE~(z) as a function of z/6 at B=0.75 kG
under the conditions described in Fig. 1. Note that the
vertical scale has been amplified by 100. 0 05 1.5

B (kG)
2.5

qualitative agreement with the experimental work of
Chimenti et al. it is difficult to make a complete
comparison. We remember that in carrying out the
correction of their measured acoustic amplitudes to
obtain g (Qo ) Chimenti et al. noticed that the mea-
sured value of the coefficient of acoustic attenuation

20-
I g (m)Ix10

------ Ig (S

FIG. 6. Components of ~~(pp) as functions of Bp for
specular (p =1) and diffuse scattering (p =0). The units
are the reduced units amplified by 100. Other parameters
are as in Fig. 1.

was twice as large as that predicted by free-electron
theory. This correction is most important when

Bo——0 since the coefficient of attenuation decreases
rapidly with increasing magnetic field. Thus, if
their values were corrected using the theoretical de-

cay constant,
~ g ( oo )

~

at Bp =0 would be smaller

15—
—.——

I g (
I

0.20-

& =2.84x

0.15-

g =1.42 x 10 crn
I

l.5
I

0.5
I

2.00 I.O

Bo( kG )

F1G. 5. Total amplitude
~ g ( ao )

~

of the acoustic
wave as a function of Bp for specular (S) and diffuse (D)
scattering. Also the result of the first approximation us-

ing the iteration procedure (I) is shown. The units are

selected so that for B0=10 kG,
~ g (Oo )

~

=1 (see text).
The electron mean free path is indicated. Other pararne-

ters are as in Fig. 1.

a
O

0.10—

8

0.05

0.0 '
... "' $Y(~)

l I

0.5
1

1.0
B (kG)

&x(~)
W 4

I I I

2.0

FIG. 7. Components and magnitude of g ( oo ) as func-
tions of Bp for diffuse scattering taking l=2. 84&&10
cm. All other parameters are as in the previous figures.
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0.20—

0.15

0.10

g 006

D

0.05

0.0

x
V

I I I I I I 7
0.5 I.OO I.50 2.00

Bo(kGj

FIG. 8. Same as Fig. 7 for 1=5.68)&10 cm.

0.03

10

8

I

0.5
Bo(kG)

I

1.0
1

1.5

FIG. 9.
I

g(co)
I

as a function of Bo for diffuse
scattering and 1 = lp ——1.42 )& 10 cm (1), I =21p
=2.84)& 10 cm (2) and 1=4lp ——5.68)& 10 cm (4). The
vertical scale is in reduced units multiplied by 100. Other
parameters are as in Fig. 1.

than displayed in their graphs and the position of
the minimum in

~ g (ao)
~

as a function of Bp
would be shifted to lower values of this quantity.
The values shown in Fig. 9 corresponding to a mean
free path l=5.68)&10 cm would appear to be,
therefore, in reasonable agreement with the experi-
mental work. We note that the position of the max-
imum of

~ g (ao )
~

as a function of Bp is shifted to
larger magnetic fields as the mean free path I is in-

creased. However, this shift does not continue in-

0.5 1.0
B (kG)

FIG. 10. Same as Fig. 9 but displaying only g~( ~ ) as a
function of Bp.

definitely but saturates rapidly beyond this value of
1.

In addition to explaining the nonmonotonic varia-
tion of g~(ae) as a function of Bp diffuse surface
scattering leads to an enhancement of the x com-
ponent of the zero-field acoustic amplitude com-
pared to that predicted by Quinn. In the present
exact solution of the equations governing the
behavior of the electromagnetic and acoustic-wave
amplitudes within the metal this enhancement re-
sults from the increased penetration of the elec-
tromagnetic fields in the sample under the assump-
tion of diffuse scattering as compared to specular re-
flection. In the work of Banik and Overhauser it
was assumed, as we mentioned above, that the elec-
tric field inside the metal is approximately the same
for these two boundary conditions. This assumption
was based on the work of Chambers' which, as we
proved in Sec. IIA, is inaccurate. Our calculations
give conversion efficiencies for potassium samples
with a mean free path of 1.4)&10 cm in a field of
frequency 9 MHz of 4.4&(10 ' and 6.3&(10 ' for
specular and diffuse scattering, respectively. These
values correct those quoted in Ref. 10 (see footnote
11 of Ref. 1). Babkin and Kravchenko, " even
though they recognize the increased penetration of
the ac field into the metal under diffuse scattering
conditions, do not take this change into account
quantitatively.

The enhancement of the x component of the
acoustic-wave amplitude depends, of course, on the
choice of mean free path. This is demonstrated in
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Fig. 9. This figure shows
~ g ( ao )

~

as a function of
Bo for several choices of the mean free path. At
Bo——0, of course,

~ g (oo )
~

=
~
g„( ec )

~

.
The comparison between theory and the experi-

ment of Chimenti et al. is complicated by the fact
that

~ g (Go)
~

was obtained by a measurement at
the far end of the sample but corrected to its value
at the surface of incidence using the measured coef-
ficient of ultrasonic attenuation. But their measured
attenuation is twice the value obtained using
Pippard's theory. ' In this work (and in that of pre-
vious authors) it was assumed that the effect under

investigation is due to the interaction of the motion
of the electrons with that of positive ions. If we ac-
cept the possibility that in the experiments of Ref. 5

an additional nonelectronic source of acoustic at-
tenuation was present, g ( ao ) should be obtained by
making this correction with the theoretical coeffi-
cient of ultrasonic attenuation. When that is done,
owing to the rapid decrease of this coefficient with
increasing Bo, the corrected values of g(co) near

Bo=0 will be lower than indicated by Chimenti et
al. and closer to those predicted in this work.

In the work of Wallace et al. g„( ao ) at Bo ——0 is

approximately 7 times larger than that expected us-

ing Quinn's theory. In Ref. 5 this factor is only
about 3. Reference 4 does not contain a statement

regarding the correction discussed above. An addi-
tional complication is the fact that for propagation
along the [110] direction (the direction of incidence
in the experiments of Wallace et al. ) the sample has
a large elastic anisotropy. This requires additional
investigation. However, Wallace et al. suggest that
the discrepancy may be due to the effect of the sur-
face force caused by electron diffuse scattering but
do not pursue the subject quantitatively.

In conclusion, the important features of the low-
magnetic-field behavior exhibited by the acoustic
amplitude in the works of Chimenti et al. and Wal-
lace et al. can be explained within the framework of
the free-electron model assuming that the electrons
are scattered diffusively at the surface of the metal.
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