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Cellular patterns produced by the directional solidification of a binary-alloy
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We develop a realistic model of directional solidification of a binary-alloy. We analyze

the model in a one-dimensional (thin-film sample) geometry and find that the solidification

interface undergoes a transition from a planar interface to a smooth cellular interface. We

investigate the nature and stability of these states as functions of the parameters of the

model. We find that smooth cellular states only exist close to the marginal stability point.

I. INTRODUCTION

Certain dynamical systems undergo pattern-
forming transitions. Examples of such phenomena
can be found in nonequilibrium situations such as
directional solidification' of alloys, Rayleigh-
Benard convection, and other hydrodynamic, bio-
logical, and chemical processes. In these systems,
the observed patterns seem to lie in a small subset of
the total set of possible state". In this paper we
work with a realistic model of directional solidifica-
tion in binary-alloy thin-film samples which exhibit
pattern formation. We also investigate the nature
and stability of such patterns as functions of the
parameters of the model.

The system we wish to consider is shown in Fig.
1. It consists of a thin film of a binary alloy which
is being moved at a constant velocity v in the nega-
tive z direction through a temperature gradient G.

created by the hot and cold contacts at A and B,
respectively. The temperature gradient is such that
the film is in the solid phase at B and in the liquid
phase at A. The solidification interface is shown
separating the two phases, and it is this interface
that can undergo pattern-forming transitions.

In experiments done on such systems, it is ob-
served, that on increasing the value of a parameter
v, which is proportional to the velocity U and in-
versely proportional to the temperature gradient G,
the solidification interface undergoes a transition
from a planar configuration to a periodic cellular
configuration at a critical value of V equal to V, .
The size of these cells varies from 10 to 100 pm. It
is observed that for 7 close to V„ these cellular pat-
terns are dominated by a fundamental wave vector

k, . If v is increased still further, the system exhibits
more complicated cellular patterns. For still higher
values of V, solidification proceeds by the formation
of dendritic structures. We are interested in
developing techniques to analyze our model in the
vicinity of v, where we expect cellular patterns.

The problem is nonlinear in character; the first
systematic study of the nonlinear problem was per-
formed by Wollkind and Segel, who used a small
parameter-expansion technique to investigate the
small-amplitude stationary states near the region of
neutral stability. They concluded from their analy-
ses that stable periodic states can only be expected
for very dilute alloys. Their analysis, however, is re-
stricted to the close vicinity of the neutral stability
point at v=v„and we would like to probe further
into the nonlinear domain for which the planar in-
terface is unstable. Strassler and Schneider have
obtained a set of integral equations for the interfa-
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FIG. 1. Binary-alloy sample solidifying in the positive
direction where n is the unit vector normal to the surface.
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cial motion but have not carried out a nonlinear
analysis of these equations. Nash has also applied
integral-equation methods to the study of solidifica-
tion in binary eutectic solid solutions.

This paper is the third in a series on interfacial
stability. In the preceding two papers (hereafter re-
ferred to as I and II), a "symmetric model" was
studied for two different physical situations. In I,
the average position of the interface was kept fixed.
In II, the average position of the interface moved
with a constant velocity as in the directional solidifi-
cation technique. The symmetric model is so called
because the coefficients of solute diffusivity in both
phases are equal. Thus this model, while incor-
porating many of the features of the problem, is not
a realistic model of a liquid-solid solidification inter-
face. However, the Green's-function technique used
in I and II will be used in this paper to derive the
equation of motion for the interface. We shall intro-
duce a "moving one-sided model" similar to the
moving symmetric model (described in II). In this
model we will assume that the coefficient of solute
diffusivity is zero in the solid phase. Other features
of the model include different thermal conductivi-
ties in the two phases and a variable miscibility gap.
The model is described in detail in Sec. II. It is a
realistic model of directional solidification and
hence allows for the possibility of comparison of our
results with experiments.

An outline of this paper is as follows: In Sec. II
we describe the one-sided model. Section III is de-

voted to the derivation of the integro-differential
equation which describes the dynamic behavior of
the interface. We introduce an expansion scheme in
Sec. IV which enables us to look for stationary solu-.

tions in the limit of small interfacial deformations.
We investigate the stability of the planar interface.
This stability analysis reveals the presence of a slow
mode for V close to V, which has a wave vector close
to k, . In Sec. V we discuss an approach to the
analysis of stationary stable states for V close to V, .
We express the interfacial position as a Fourier
series and we derive the equations of motion for the
amplitudes of this series. We then assume the pres-
ence of a slow mode which allows us to solve these
equations, assuming that there is a dominant ampli-
tude or pair of amplitudes. This method, while not
being mathematically elegant, allows us to probe the
nonlinear domain of ~&v, . In Sec. VI we present
the details of the stability analysis of the stationary
states of the model. We investigate the stability of
our solutions against perturbations which destroy
the 1ong-range periodicity of these solutions. Sec-
tion VII is devoted to the results of applying the
techniques outlined in Secs. V and VI to the moving
one-sided model. We find that stable periodic solu-

tions for the interface displacement exist in a
domain of 7 above 7;, and we investigate the size of
this domain as a function of the other parameters of
the model. We find that, within this domain, the
amplitude of the periodic solution never grows
larger than about 20/o of the wavelength of the
periodic state. Beyond this domain, that is, for v
greater than some vf & 7„ the smooth periodic solu-
tions cease to exist and, presumably, the interface
displacement becomes cusplike or dendritic. Our
analysis cannot be extended to the latter cases.

II. ONE-SIDED MODEL

C, ~C C
K

FIG. 2. Typical phase diagram for a binary alloy. The
upper solid line is the solidus and the lower solid line is

the liquidus. The two-phase region lies between these two
lines. Co is the solute concentration in the solid.

The one-sided model is similar to the model em-

ployed by Mullins and Sekerka. The system is
characterized by a composition field C(x, t) and a
temperature field T(x, t) in the liquid phase. The
corresponding fields in the solid phase will be denot-
ed by C'(x, t) and T'(x, t). The physical situation
we wish to consider is shown schematically in Fig.
1. As in the symmetric model, the solid phase is
growing in the positive z direction with a constant
velocity U. We shall assume that a large-scale steady
state has been reached, so that the composition field
approaches a fixed value Co in both directions (+z)
away from the interface. We will neglect the effects
of convection and interface attachment kinetics. We
will also assume that the effect of the latent heat of
fusion is negligible.

The model assumes the form of the phase dia-

gram shown in Fig. 2. The solidus and liquidus are
straight lines. The ratio of the slope of the liquidus
to that of the solidus is the partition coefficient ~,
which is assumed to be fixed for a given alloy.
Solute diffusion in the solid is assumed to be negligi-
ble compared to that in the liquid; therefore, we will
set the value of the solute diffusivity equal to zero in
the solid phase. The temperature of a steady-state
planar interface To is specified by the intercept of a
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2D
U

(2.1)

vertical line at Co with the solidus as shown in Fig.
2. The composition difference between the adjacent
solid and liquid phases is ACp=Cp(1/i~ —1). For
the nonplanar interface, the temperature at a point
on the interface is determined by the configuration
of the interface at that Doint.

The temperature fields in both phases are as-
sumed to be in a quasisteady state and satisfy
Laplace's equation. This assumption is justified by
the fact that thermal diffusivities are several orders
of magnitude larger than chemica1 diffusivities, so
that the temperature fields relax very quickly to
their steady-state values.

There are three characteristic lengths in this
model. The length describing the range of the solute
diffusion field is defined as

and

lr
V

l

rl
V

l

(2.5)

and

C —Cp

5C
T —TO Z

m ~bCp vl
'

(2.6a)

(2.6b)

We will also define new composition and thermal
fields by the following definitions:

where D is the coefficient of solute diffusivity in the
liquid. There is also a length scale associated with
the temperature field which is

where

T Tp

/m ibCp
(2.6c)

[
m [ECp

lr ——
G

7
(2.2) s

KL

/m [acp
7

G
(2.3)

where m is the slope of the liquidus and G is the
temperature gradient in the liquid for a planar inter-
face. We can also define an average thermal length

lr which is

We can now write down the basic equations for
the system in terms of the variables defined in (2.6).
We will scale all times with the quantity l /D and

we will consider the situation where we are in a
moving frame moving at a fixed velocity U in the z
direction. The equations of motion for the fields u

and 0 are

where

&sG'+EL G
G=

Ks+EL and

aV' u+2
az at

V 0=V 8'=0,

(2 7)

(2.8)

mV

fm ibCpL
(2.4)

where y is the surface tension at the interface, L is
the latent heat of melting, and Tm is the melting
temperature of the pure material. If we scale all
lengths of the problem with the diffusion length l,
we can characterize the system by the following di-
mensionless ratios:

is the weighted average of the temperature gradients
in the solid and liquid phases, and Es(KL ) is the
thermal conductivity of the solid (liquid) phase. The
third length scale in the problem is associated with
the Gibbs-Thomson surface-tension correction at a
curved interface; we define a capillary length as fol-
lows: z= (.-. , t) . (2 9)

The conditions for heat and solute fiux conservation
are expressed by the following equations:

(V8' —V8);„, n=0 (2.10a)

and

( —Vu n);„,= 2+ [&+(1—&)uin~l ~

(2.10b)

where the tildes denote scaled quantities, i.e., z =z/I
and t =tD/1 . In the following discussions we will

drop the tilde notation with the understanding that
all lengths and times have been scaled as described
above. The position of the interface is then given by
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where the subscript int indicates that the variable is
to be evaluated at the interface. The vector n is the
unit normal at the interface as indicated in Fig. 1.
The thermodynamic boundary conditions at the in-
terface are

8;„,= 1 —u;„,+ (PAL"(g) —g/v,

8,'„,=P[1—u;„,+(Xi (g)]—g/v,

(2.11)

(2.12)

where M(g) is the local interfacial curvature and is
given by the following expression:

23/2 '
V2(

(2.13)
[1+(Vg)']'/2

Finally, the boundary conditions at
~
z

~

= oo are as
follows:

III. DERIVATION OF THE EQUATION
OF MOTION

1
Gs(r, ri)=

4~fr —r,
/

which satisfies

(3.1)

Following the scheme introduced in papers I and
II of this series, we will employ a Green's-function
technique ' to obtain a pair of integral equations
which we will use to derive an equation for the in-
terfacial displacement g(x, t). We will consider the
thermal field first and we will obtain a relationship
which can later be used to eliminate u;„, from the
solution for the solute diffusion field u. We begin
by writing the Green's function for the Laplace
equation,

u(z~oo)=0,
d8 (z~oo)=0,
dz

and

(2.14a)

(2.14b)
ViGs(r, ri)= —5(r —ri) . (3.2)

Multiplying (3.2) by 8(ri) and integrating over a
volume vL whose surface is SL (as shown in Fig. 3),
we obtain

do' (z~ —oo ) =0 .
dz

(2.14c)

0=0'=0,
—2zu=e

u'=0.

(2.15a)

(2.15b)

(2.15c)
I

In terms of these new fields u and 8, the planar
interface solution ((=0) of Eqs. (2.7) and (2.8) with
the above boundary conditions is

8(r)= — [8(ri)ViGs(r, ri)
SL

—Ge(r, ri)Vi8(ri)] ndSi,
(3.3)

where we have used Green's second theorem. By al-
lowing the outer part of the surface St to go to in-
finity and the lower part approach the interface, the
only contributions to the integral (3.3) will come
from the interface. Allowing the point r approach
the interface, we obtain

(i,"—i}—Vigi hx d xi ~nt ~nt
int 4&[(g~x)2+(g g )2]3/2 int

(3.4)

w(x)=f(P)f w(xi)+— (3.5)

where hx = x —x &. Repeating the above procedure
in the solid phase, we obtain a similar expression for
8'(r;„,} with the signs on both terms in (3.4) re-
versed. Adding these two equations and using
(2.10a), (2.11), and (2.12), we get

/
/

/

l r

&,Zs

I

V,

where we have introduced the following notation:

(3.6a)

(3.6b)

w(x)=1 —u;„,+/A (g) —g/v,

[(g—gi) —V i(i.(x —xi)]f[w]= d x, w(x ),
4m[(x —xi) +(g—gi) ]'

V,

=X

FIG. 3. Solidification interface z =g(x, t) is shown

separating the volumes V, and VL whose surfaces are S,
and SL, respectively.
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and

p(p) =
1+

(3.6c}

In deriving Eq. (3.5), we have used the fact that

(3.6d}
v(1+P)

Equation (3.5) is an integral equation in the un-

knowns u;„, and g(x, t).
Our next step is to use (3.5) to generate an expan-

sion for u;„, in powers of g. It is convenient to use a
Fourier representation to accomplish this. Formal-
ly, we write

tv(k, co)= g f f f f W '(k, k&, k2, . . . , k )
(2~) (2n. )

Xg(k), cv)) g(k~, co~)5(k)+k2+ . . +k~ —k)

X5(co—c0& —co~ — . . —cpm)(2~) .3 (3.7a)

The coefficients W' ' are symmetric under interchange of the indices 2, 3, . . . , m, and explicit expressions for
W' ' and W' ' are listed in Appendix A. The co dependence in expression (3.7) reflects the implicit dependence
of g(x, t) on time, where

g(k, cv}= f dx f dte ' '"'g(x, t) . (3.7b)

The reason for the inclusion of the dependence of cv(k, cv) on cv will become clear when we consi'der the full
equation of motion for g(x, t).

We next turn our attention to the equation for the solute field. The relevant Green's function is (for details
see II)

1

,g e"p(4~r)'" 4r

which satisfies the following equation:

(3.8)

+ G(p lpi) = —~(p —pi),2 a a
Bz] Bt i

(3.9)

where p denotes the space-time point ( x,z, t) and r = t t, . The quan—tity b, in expression (3.8) is of the form

a'=(x —x, )'+[(z —z, )+2r]',
and x is a two-dimensional vector perpendicular to the z axis.

Multiplying Eq. (3.9) by u (p &
) and integrating over time and space, we find

t 8u(p)= f dt) f dvi — +2 u(pi)G(p jpi)—oo Bt~ . Bz~

(3.10)

—f dt, f dS, [G(p ~p, }V,u(p, ) —u(p, }V,G(p ~p, )] n . (3.11)

The first term in the first integral above gives no contribution. As before, we let the outer part of the surface
SL go to infinity and the bottom part approach the interface. If we also make use of the boundary condition
(2.10), we have

u(p) = 2 f dt, f d'x)G(p
~

p')"')[I —u(pP')]
r

+ f dt's f d xiG(p ip'i"') 2+ [tc+(1—s)u(pP')]

+ f dt, f dS, [u(p'P'} —1]V)G(p ~pP'} n, (3.12}
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where we have used the following identity':

«I d~l VlG(p
~ pl )' = f «~ f d'x, z V,G(x;, t

i
x„—;,tI )

5~
(3.13)

The notation in the above equation is indicated in Fig. 3. We now let the point r approach the interface. The
term containing V &G in Eq. (3.12) is singular for r ~ r;„,; however, this is an integrable singularity and its con-
tribution can be easily evaluated as shown in Appendix B. The final result is

(hg —V(g) 6x)
1+u(p'"') —f dt, f d xiG(p'"'ipse') [u(pP') —1]

dg)+ 2 [ic+(I—ic)u(p;„, )]+2[1+21c+(1—2lc)u(pP')] =0 .

(3.14)

Equation (3.14), together with the expression (3.7), is the basic integro-differential equation upon which all of
our analysis is based.

IV. EXPANSION SCHEME AND LINEAR STABILITY ANALYSIS

Other than using direct numerical techniques, it is difficult to find even approximate stationary solutions of
Eq (3.1.4). An expansion scheme, however, will enable us to investigate states which are small in amplitude.
The strategy, therefore, will be to expand (3.14) in powers of g but to keep only a finite number of terms in the
hope of finding some approximate solutions. Following II, we write Eq. (3.14) in the form

g A'"'(x, t, Ig] ) =0,
n=1

(4.1)

where the A'"'s are nth-order integro-differential operators on I(I. Taking the Fourier transform of expres-
sion (4.1), we obtain expressions for the individual terms

A '"'( k, co, I g] )

d k1 d k d&1

2' 2
2m 2 277

( k co
~

k ]y fctok2&co2 ~, k. ,co. ) g(k ~, co ) . g(k„,co„)2'
&(2m') 5(k(+k2+ +k„—k) 5(co(+co2+ . +co„—co) .

(4.2)

In evaluating the B'"', we must use the coeffi-
cients 8""' already obtained from the expansion for
u;„„ i.e., the expansion (3.7). The normalization of
the B'"'s is chosen as specified by the form in
which Eq. (3.14) is written. Explicit expressions for

B"'(k,co
i
k, co),

B' '(k, co
I k), co(, kp, co2),

and

( k, co
~

k ),co), k2, co2, k3, co3)

(4.4)

where

B'"(k,co
~
k, co) = 2 —I/v —gk

——[2—E(1/v+gk )+ico] .
h

(4.5)

face. To investigate the stability of this solution we
need only consider the leading term in the sum (4.1).
In Fourier space,

B'"(k,co
i
k,co)g(k, co) =0,

are given in Appendix C.
A trivial solution of Eq. (4.1) is

g(x, t) =0 . (4.3)

This solution corresponds to the flat or planar inter-

Here
E= 1 —2a

and

h =(1+k +ico}'~

Solving for i co( k), we get

(4.6a)

(4.6b}
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ice(k) —=Q(k)

=xi+ —,xz+xz(1+k +x&+ —,xz)'i~,

(4.7}

iB'"(k,O~ k, O)

gB (1)

BCO p

(4.1 1)

where

and

xi —— 2+—E(1/7+/k )

(4.8)

This expression for Q(k) agrees with (4.7) to
0.1% for k~ &

~

k
~

&k2 and the values of v shown
in Fig. 4. Equation (4.11) will prove to be useful in
the following analysis.

&c

(4.9a)

and

1 hp~(ho~ —E)
1 —E (4.9b)

where

hp, ——(1+k, )'~ (4.9c)

Equations (4.9) imply that there exists a value of
such that for

x2 ——2 —I/7 —gk

A plot of Q(k) vs k for fixed g and E is shown in
Fig. 4 for several values of V. We see that there is a
critical value of v below which the planar interface
is differentially stable against all infinitesimal per-
turbations. As v is increased beyond V„a band of
unstable modes appears which widens rapidly as v is
increased. The critical point is determined by the
condition that the maximum of Q(k) pass through a
zero. For a given value of E and g, the critical
parameters V, and k, are related as follows:

2hoc(h pc 1)(ho~ —E—) —k, (1 E)—
1 —E

V. STATIONARY STATES

In this section we will look for stationary solu-
tions of Eq. (4.1). We will consider a two-
dimensional geometry so that g=((x, t} The. refore,
the following analysis will only apply to thin-film
samples. We will limit our attention to values of v
for which the amplitude of the nonzero stationary
states (if they exist) is small. This will ensure that
our truncation scheme (4.1) is valid.

The details of the stability analysis presented in
Sec. IV lead us to assume that if V& v„stationary
solutions will have fundamental periodicities 2~/ko,
where kp is a wave number in the range k~ & kp Q k2
where Q(k) is small and positive. We will further
assume that the dynamical behavior of the system
will be determined by the behavior of these slow
modes [Q(kp) «1].

We will look for stationary solutions of the form

Px, t=o)=g~„e'" '". (5.1)

We would also like to develop a means to investigate
the stability of such solutions against perturbations

g—+g'=, k, ~O and 1/7, —+0.1

(1—E) '

(4.10)

A plot of v, (g} for E =0 is shown in Fig. 6 where

V, (g) is denoted by the dotted line. The planar in-

terface is stable at values of v and g which lie below
the dotted line. In the region above the curve v, (g),
the planar interface is unstable and there exists a
band of wave numbers with positive amplification
rate [Q(k) &0]. The width of this band is directly
related to the distance of the system from the mar-
ginal stability curve v, (g). If we denote by [k &, k2]
the band of unstable wave numbers, where k

&
and

k2 are the zeros of the amplification rate, then for
v only slightly larger than V„we note that Q(k ) for
k& &

~

k
~

&k2 is small. Therefore we can expand
(4.5) in iso to obtain the following expression for
Q( k ) to lowest order:

0.5—

O
XOO

-IQ-

FIG. 4. Plot of Q(k) for E =0.6, P= l, and /=0. 2 at
three different values of V, where v&

——1.11725,
v, =1.11752, and V2

——1.11825.
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which are small but which destroy the perfect long-
range periodicity. To describe these small dynami-
cal excursions away from the stationary state (5.1),
we will allow the amplitudes A„ to be functions of x
and t with the understanding that such dependence
is weak. Thus we will consider an ansatz for g(x, t)
of the form

g(x, t )=QA„(x, t )e (5.2)

We will assume that all the amplitudes An depend
weakly on t for the following reason: We saw that
for k( &ko &k2, Q(ko) is small; hence we expect
A ((x,t) to evolve slowly as a function of time. How-
ever, Q(n ko) for n.=2,3, . . . , is negative and large
for v& v„ therefore, we expect these modes to relax
quickly to strengths determined by the instantaneous
value of A(. Thus, apart from initial transients, the
amplitudes Az, A3, . . . , will be weak functions of
time. The assumption of weak dependence of the
amplitudes on x implies that deviations from perfect
spatial periodicity occur slowly, over distances much
larger than the fundamental wavelength 2n /ko.
Our method will break down for stronger spatial

variations.
The truncated equation of motion in Fourier

space is

g A'"'(k, co, gI ) =0,
n=1

(5.3)

where

X gA (x, t)e (5 4)

A (x, t) =A' (x,r), (5.5)

where the asterisk denotes complex conjugation.
With the following change of variable:

hk~ =k —mkp, (5.6)

we can rewrite (5.3) in a form which is convenient
for both the steady-state and stability analyses.

Consider in particular the term 0'( ',

where the 9P'"' are as in Eq. (4.2). Taking the
Fourier transform of the ansatz (5.2) for g(x, t), we
obtain

g(k, co)= f dx fdte

&' '(k {PI)=g&f f f f B' '(k, co Ipko+Dkp, a)p qkp+6kq coq)(2')'

x g(ak„~p g (ak„~q )5(pko+ Akp+qk p+ Akq k)—
X~(rop+~q —~),

where

g(hkp, cop)= fdx fdte p p Ap(x t) .

Taking the inverse Fourier transform of (5.7), we find

(x,r, {gj)=ggf f f f B (k,co((pko+bk, co,qko+bk, ~ )e'

(5.7)

(5.&)

where
k =pkp+ Akp+qkp+ hk

and
CO=67&+Q)q .

iqkox~ ~ iak x+ie t iak x+im t (5.9)

(S.loa)

(5.10b)

We can now expand the function B' ' in powers of Ak and co to obtain the following expression:

(x,&, {())=QQAp(x, t)e Aq(x, t)e Bo '(nko ~pko, qko)

+ p(x, t)
~Aq(»&) i(p+q)k~ gB")

+ p —+

q
BX Bkq p ~p

(p+q)k, x ()B(2)
Ap(x t) e

BCOq
+

p +O((hk ) )+O(co ),
q —+ p

co=p, hk =p
(5.11)
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where

n=p+q .

We have also introduced the following notation:

Bo '(k
~
k(, k2, . . . , k„}=8—("'(k,co =0

~
k(, (o( ——0, . . . , k„,(o„=o) .

Expressions similar to (5.11) can be obtained for A"'(x, t, tgj) and M~( '(x, t, [(I). We finally obtain a sys-

tem of coupled differential equations for the amplitudes A (x,t).
In order to look for stationary states of the form (5.1), we set (o and bk equal to zero in expression (5.3).

We then obtain for n =0, 1,2, 3, . . . , the following system of equations:

For n=0,
Bp (0

~
0)Ap+28p (0

~
kp, —kp)A(A(+28' (0

~
2kp, —2kp)A2A2 + ' ' ' =0,

for n =1,

(5.12a)

Bo"(kp
~
ko)A, +28o '(ko

~
kp, o}AoA, +28o '(ko

~
2ko, —ko)A2A", +28p '(ko

~
3kp, —2kp)A2A3

+38o '(kp
~
kp, ko, —kp}A(A(+ . . =0, (5.12b)

for n =2,

8"'(2ko
~
2kp}A2+8' '(2ko

~
ko, ko)A (+28' '(2ko

~

2ko, o)AoAp+ 28( '(2ko
~
3ko, —ko)A (A3

+38"'(2ko
I ko, ko, o}AoA (+68"'(2ko

I
2ko, ko, —ko}A(A (A2+

for n =3,
8"'(3ko

I
3ko}A3+28' '(3ko

I
ko»ko}A(Ac+28' '(3"o

l
3ko ()}AoA3

+8' '(3ko
~
ko, ko, ko)A, + . . =0, (5.12d)

and so on for n =4, 5, . . . , .
We wish to find a solution of these equations consistent with the fact that for v & V„ the amplitude A ( of the

fundamental is dominant but small. Thus if A, is small, Eqs. (5.12) imply that Ap ~A (, A2 ~A (, A3 ~A (, etc.,
and in general A„~A (. If we keep terms of order A, in these equations, we obtain the following results:

Bo '(0
i kp, —kp)

Ao ———2, A(A (+.0(A (),8,"'(O
~

O)
(5.13)

Bo '(2ko
~

ko, ko)
A(+O(A() .

Bo '(2ko
~

2ko)

A nontrivial solution for A
&

exists of the form

Bo"(kp
i
ko)

Ai ——AiAi ——

a~

where

Bo (0
i ko~ —ko)

a( ——4 („8''(ko iko, o)
Bp"(0

i
0)

8' '(2ko
i kp, kp) (2)+2 8"'(ko

1

2ko —ko) —38o (ko
l
ko ko —ko} .

8'"(2ko
~
2kp)

(5.14)

(5.1 5)

(5.16)

Here we have used Eqs. (5.13) and (5.14) to elim-
inate Ap and A2 from Eq. (5.12b). We see that A ( is
coupled to Ap (the average position of the interface),

and more importantly to Az, the amplitude of the
first harmonic. We see from (5.15) that A(-v'hv
where hv= v —v, .
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For kp in the domain [k, ,kz] 8() (kp
I
kp) is pos-

itive, so that a solution exists for values of the coef-
firient a) which are positive. We can use Eq. (5.15)
to determine the regions of parameter space where
states of the form (5.13) and (5.15) exist. From now
on we will term this solution the "one-mode solu-
tion, " because only one mode is dominant. To find
the region of parameter space in which the solution
(5.15) exists and is valid, we will monitor the sign of
a& at the critical point: %=V, and ko=k . There
exists a value of g=g, such that a) ——0 at the criti-
cal point.

The remaining independent parameters are E and
P. In Fig. 5 we show the value of k, at which ai
changes sign as a function of E for values of P equal
to 1 and 2. In the regions below the curves, a& is
positive, and a one-mode solution exists with vanish-
ingly small amplitude at the onset of instability.
Note that for P= 1, the curve diverges at E=-0. 1, so
that solutions with arbitrarily large wave vectors can
be obtained by an appropriate choice of the remain-
ing system parameters. We will discuss this point
further in Sec. VII, where we consider this fact with
respect to real systems. The curve for P=2 always
stays finite, which puts a general upper bound on
the wave number of a one-mode solution. The re-
sults for P=2 agree with those obtained by Woll-
kind and Segel.

As v is increased, the band [ki, kz] grows, and
eventually must become wide enough for both a fun-
damental ko and a first-harmonic 2ko to be simul-
taneously unstable. However, long before we reach

3.0-

IQ ™

I

0.5 I.0

FIG. 5. We show the value of k, at which the coeffi-
cient a

&
is zero as a function of the partition coefficient K

for )(3 equal to I and 2.

Bo (3ko
I
2ko ko)

A3 ——2 (i) A)Az+O(A ),
Bo"'(3ko

I
3ko)

(5.17)

8() '(4kp
I
2k(), 2k() )

A4 ———, Az+O(A ), (5.18)
8()"(4kp

I
4kp0)

this situation, we must expect that higher-order cou-
plings will become important and must be included.
For example, we expect a coupling of the form 3 &32
to be important. To choose the next most important
terms in Eqs. (5.12), we will assume that both Ai
and Az are of the same order of magnitude, i.e.,
A i -Az -U'Av. Therefore A3 and A4 are to lowest
order given by

and

~o=
i [Bo (olko —ko)~)+Bo (0I 2ko —2ko)~z]+O(~ ) .

8()"(0
I
0)

(5.19)

If we now use Eqs. (5.17)—(5.19) to substitute for A3, A4, and A p in Eqs. (5.12b) and (5.12c), we get the fol-
lowing coupled equations:

8()"(ko
I
ko)A)+28o (ko

I
2ko —ko)~~i~z+&)(ko)~)~z~z+&z(ko)~ i& i =0

Bp (2ko
I 2ko )Az +Bo '(2kp

I ko~ko)~ i +)'I)(ko )~ )~ )~z+Pz(ko)~ z~ 2

where

(5.20)

(5.21)

8() '(0
I 2k(), —2k()) (z)a((ko) = —4 (, )

8() '(k()
I k(), 0) /68I)" (k() I 2k(), —2k(), k() )

8() '(0
I
0)

8() '(3k()
I
2k(), k()) (z)4 (i) Bo (ko

I
3ko~ —2ko) ~

8() (3kp
I
3kp)

(3) 8() (0
I k(), —k() )

(2)

&z(ko)=38o (ko
I
ko ko —ko) —4 i Bo (ko

I
ko 0)8,'"(0

I
0)

(5.22)

(5.23)
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and

(2)
(3) Bp (0

I ko& ko) (2)Pi(ko)=6Bo (2ko I2ko ko —ko) —4
~

Bo (2ko I2ko 0)
B,"'(o

I
o)

Bo (3ko
I
2ko~ko)

4
~i~ Bo (2ko

I
3ko~ —ko) ~Bo"(3kp

I
3kp)

Bo (4ko
I
2ko, 2ko)

Pg(ko) =3Bo '(2ko
I
2ko, 2ko, —2ko) —2 (, )

Bo (2ko
I
4ko, —2ko)

Bo"(4kp
I
4ko )

Bo '(0 2ko, —2ko) (2)

Bp"(0
I
0)

(5.24)

(5.25)

We must note here that we can only expect Eqs.
(5.20) and (5.21) to give approximate solutions in re-
gions of parameter space where the assumptions
made in their derivation are valid, that is, the ampli-
tudes are small. We must also check the coefficients
of the above terms to see that they are "well
behaved" in the domain of k, within which we are
looking for solutions. By well behaved we mean
that they do not have zeros or diverge for some
values of k, g, v, E, and P. The results presented in
Sec. VII are in regions of the parameter space (k, g,
v, E, and P=l), where our assumptions are valid
and we monitor both the coefficients and the sizes
of the various couplings for A

&
and A2. We will call

Eqs. (5.20) and (5.21) the "two-mode equations. "
From Eq. (5.20) we can solve for A &A &

to get

+Bp '(ko
I
ko)A )(x,t) —atA ) (x, t)A f(x, t) =0,

(6.1)

where

. aB"'(k,
CX3 =l

Bco co=0, 5k=0, k=ko,
(6.2a)

terms in u and will consider deviations hk away
from the stationary state at fundamental wave num-
ber ko such that hk is small and of order A, ( ko ).
Collecting terms up to order A ~, we obtain the fol-
lowing equation:

a a a'
a3—A~(x, t)+a4 A&(x, t)+a&

&
A~(x, t)

Bt Bx

AiA& ——A] = [Bo '(ko
I
ko)

CL2

. BB"'(k,tp
I k, )

aI a)=0, k =ko, bk =0
(6.2b)

+2Bo (ko I 2ko~ —ko )A z

+a)A2A2] . (5.26)

On substituting this expression for A& into Eq.
(5.21), we obtain a cubic equation for A2 which we

can solve for real solutions. There exists at least
one, and at most three, real solutions for A2, de-

pending on the behavior of the coefficients of the re-

sulting cubic equation for A2. On substituting these
solutions back into (5.26) we may or may not obtain
a real value for A &.

VI. ONE-MODE AND TWO-MODE
STABILITY ANALYSES

We now turn our attention to the stability of the
stationary states described in the preceding section.
We will consider the expansion of the truncated
equation (5.3) in powers of hk and co as illustrated
by Eq. (5.11). We will keep only the lowest-order

co=0, k=ko hk=O

(6.2c)

Using Eq. (6.1) we can investigate the stability of a
state at wave number ko against perturbations which
disturb the long-range periodicity of the state. How-
ever, before we proceed to this analysis, we should
mention some of the properties of Eq. (6.1).

First, if there is another stationary state close to
kp, at kp for instance, then as long as

I
kp —ko

I
is

small of the order of &hv, we can expect to find the
state at kp as a solution of Eq. (6.1). Clearly there is
a special situation for v& v, such that v —v, =hv is
small and

I
k& —kz

I
is of order v'hv. In this case

the coefficient a4 is small and can be neglected; the
resulting equation describes the dynamic behavior of
the unstable band of wave numbers [k&,k2] about
k, . Such an equation is analogous to the amplitude
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equation derived by Newell and Whitehead" to
describe the dynamics near the onset of convection
in a fluid. A more rigorous derivation of the ampli-
tude equation for the solidification model is present-
ed elsewhere, and the equation is used to simulate
the dynamical behavior of the system for 7=v, .'

However, if we are interested only in questions of

stability, Eq. (6.1) will provide the information
necessary for such a determination.

In the two-mode approximation, we will follow a
procedure similar to that outlined above. We as-
sume that bk-A] -A2-&bv. We will again keep
only lowest-order terms in co. The resulting equa-
tions are

a3
g

A
1 +a4

g
A 1 +a5 3 +a6A ]

g
A2+a7A2

g
A ] +B (ko

I
ko)A] +2B (ko

~
2ko —ko)A ]A2

a a ]}A] (&) (2)

at BX BX BX BX

+a](kp)A]A2A2+a2(kp)A]A ] (6.3a)

and

a2
~3

g
A2+~4g A2+P5 2 A2+PsA]

&
A]+B"'(2ko 12ko)A3+B' '(2ko

~
ko~ko)A ]at BX BX BX

+p](kp )A ]A ]A2 +132(kp)A 2A 2 ~ (6.3'b)

where expressions for the coefficients a3, a4, a5, a6, a7, p3, pq, p5, and P6 are given in Appendix D. Using
hese equations, we can determine the stability of the two-mode stationary solutions against perturbations

which destroy the long-range periodicity of the solutions.
We will denote a stationary solution of the one-mode equation (5.15) by A»(ko). This will be a uniform

solution of Eq. (6.1). We will perturb this solution in the following manner:

A, (x,t) =A ],(k]])yP(x, t) . (6.4)

If we now substitute this expression in Eq. (6.1) and linearize in the perturbation, we obtain the following equa-
tion for P:

a3d, p+a4d p+a5B p+B (kp
~
kp)/+20](kp)A] (kp)/+a](kp)A] (kp)p (x t)=0. (6.5)

Solutions of this equation exist which are of the
form

iS„x —i S„xP=v](t)e " +v2(t)e (6.6)

d2
I[B]]"(k ik)] J (0.

dk k=ko
(6.7)

Thus the stability of the stationary solution de-
pends only on the function Bo"(k ~k). For the
two-mode solution, we will denote the stationary
solution of Eqs. (5.20) and (5.21) by A],(kp)+2 (kp).
We will consider perturbations of the form

A, (x,t) =A],(kp)+u](x, t),
A2(x, t)=Aug(kp)+up(x, t) .

(6.8a)

(6.8b)

As above, we substitute (6.8) in Eqs. (5.20) and (5.21)

where U~ and U2 are both proportional to e '. Sub-
stituting (6.6) in (6.5), we obtain from the condition
for a solution to exist, a quadratic equation for A,.
Solving for A, , we obtain the condition for a stable
solution of the form (5.15), which is

and linearize in u
~

and u2. We obtain two coupled
linear equations in u~ and u2, the details of which
we will not present here. We then look for solutions
of the form

u] P](t)e " +$3(t)e-—
i5„x —is„x

u, =f3(t)e " +$4(t)e

(6.9a)

(6.9b)

VIII. REPRESENTATIVE ALLOY SYSTEM
AND OUR RESULTS

In this section we will look for stable stationary
solutions of the one- and two-mode equations as
functions of the parameters E, P, g, k, and v. To
determine the domain of parameter space which is

where the functions P](t) are all proportional to e '.
On substituting the solutions (6.9) into the linearized
equations for u& and u2, we obtain from the condi-
tion for a solution to exist, a quartic equation in A, .
If we then solve for A, , the condition for the solution

[A] (kp), A2 (kp)] to be stable is that all the solu-
tions for A, have negative real parts.
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relevant to real thin-film binary-alloy systems, we
will first consider a representative fictitious system
whose parameters are, to within an order of magni-
tude, equal to those of a real system.

A. Parameters

In our fictitious system we will set T~ =5&&10
K. I, which we define to be the ratio of the surface
tension to the latent heat of fusion, is equal to
2X 10 cm. The value of the slope of the liquidus
m is equal to 2 K/wt. %. The solute diffusivity D
in the liquid has the value 10 cm sec '. We will
consider systems whose phase diagrams are such
that E lies in the domain ( —1,+1). In order to
reduce the size of the parameter space, we will
choose a value of p= l. In real systems, p ranges in
value from 0.5 to 2. However, by a suitable choice
of boundary conditions, we can restrict p to be close
to 1. This can be simply accomplished by choosing
the containing walls of the thin film to have a
thermal conductivity much higher than the thermal
conductivity of either the liquid or the solid phase of
the alloy. The thermal gradient G imposed on the
system can be used as a control parameter, but we
should ensure that we choose values such that we do
not develop convection currents in the liquid phase.
However, one can suppress convection in the liquid
in some systems by applying a weak magnetic field.
In our fictitious system, we will fix G (G=G for
P= 1) at a value of 10 K/cm. The velocity v can
also be used as a control parameter, but we must en-
sure that it is small so that our assumption that the
interface is in thermal equilibrium is satisfied.
Therefore we will consider velocities such that
0(U (10 cm sec '. The concentration of solute
Co can also be used as controlling parameter. We
will consider values of this parameter in the domain
[10,1.0] wt. %.

Using definitions (2.1) through (2.5), we have that

S2 ——0.25,
measured in wt. % sec cm

Clearly, the values of the constants Si and S&

may vary by an order of magnitude either way, de-
pending on the system considered. However, with
the above specifications for our representative sys-
tem, it is clear that we should look for stationary
states in the following domain of parameter space:

and

—1(E(1,
0((&1,
V)V, ,

(7.3a)

(7.3b)

(7.3c}

P=l . (7.3d)

We will map out regions of stable stationary states
on plots of v vs g and v vs k. It will be useful,
therefore, to see how the system point moves on
such plots as a function of the control parameters u

and Co. In Fig. 6 we show a plot of v vs g showing

that E=O.O, the constants Si and S2 take on the
following values:

Si = 10

measured in sec cm ' (wt. %) ', and

and

v=Si CpU (7.1}

U=S2
Cp

where

(7.2)

02

and

~
m

~
(1+E)

2GD(1 E)—
T~ I (1 E}—

S2 ——
2D

~

m
~

(1+E)

By selecting a system with a phase diagram such

FIG. 6. Dotted line is a plot of v, (() for E =0.0 and
P=1. In a system with S~ ——10 seccm '(wt. %) ' and

S2 ——0.25 wt. % seccm ', the lines A and B correspond to
the locus of points along which the system moves at

Co ——10 and 2&(10 wt. %, respectively. The points la-
beled 1, 2, and 3 correspond to velocities of 4&(10 ',
10, and 2)& 10 cm sec ', respectively. The curve C is
the path along which the system moves on varying Co at
fixed V=2&(10 ' cmsec ' and fixed G.
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the curve (the dotted line) V, (g) as computed for
E=0 from (3.9a) and (3.9b). Also shown on this di-
agram are the lines 3 and 8 which correspond to the
paths along which the system moves if one changes
U at fixed Co arid G. The lines 3 and 8 correspond
to values of Co equal to 10 and 2&10 wt. %,
respectively. The points labeled 1, 2, and 3 corre-
spond to velocities of 4&10, 10, and 2)&10
cm sec ', respectively. The curve C in Fig. 6 corre-
sponds to the system path if one changes Co at fixed
U and G. The particular curve shown corresponds to
a value of U equal to 10 cmsec '. Finally, one
can hold U and Co fixed and vary G. In this case the
system path would correspond to vertical lines in the
v-g plane.

From Fig. 6 we note that for a very dilute alloy,
i.e., Co-10 wt. %%uo, w ecanno t ente r th eunstable
domain [above the dotted curve v, (g)] by increasing
U. However, at higher solute concentrations, for in-
stance, we can do so by moving along the line 8.
We note that for a special value of Co ——Co (where
CO=1.665-10 wt. % for our fictitious system),
the line along which the system moves by increasing
U will be tangent to the curve V, (g). For a system
with a value of Co close to but greater than Co, we
observe that by increasing the velocity, we will pass
into the unstable domain at some critical value v],
but by further increasing the velocity, we will return
to the stable domain (i.e., to the domain where the
planar interface is stable) at some velocity U2. At
values of Co of the order of 10 ' wt. % or higher,
we will enter the unstable domain at values of v
close to 0.5 (v=v for P= I, and v ~0.5 corresponds
to the supercooling criterion for stability of the pla-
nar interface), and we will remain in the domain of
parameter space where g is very small, i.e., / &&0.1

in our system. If we add small amounts of solute to
the melt, we can vary Co and hence move the system
along the curve C in Fig. 6, and the point where the
planar interface becomes unstable can be chosen by
a choice of a suitable value of v. Thus we see that
by using v and Co we can effectively choose the
value of k, at which the planar interface becomes
unstable.

B. Stable stationary states

%'e now present solutions of the one- and two-
mode equations in the parameter space specified by
(7.3). As a typical example of what is observed
throughout regions of parameter space where states
are observed, we consider the following example.
For E = —0.5 and (=0.01, V, =0.823 349 and
k, =4.88397. At v=0. 823599, we show, in Fig. 7,
a plot of the amplitude A &(k) of the fundamental as
a function of k. At this value of V the amplitudes

I

4.7

r
/

/
/

/
/

/
I
I
I

k

FIG. 7. Plot of the amplitude 3 1(k) as a function of k
for v=0. 823599, E = —0.5, (=0.01, and /3=1.

O.OI

X

5.0

-0.02-

FIG. 8. Plot of the interface profile

for k =k„E= —0.5, / =0.01, 7=0.823 599, and f3= 1.

A, (k) and A2(k) as calculated from the one-mode
and two-mode equations agree to a high degree of
accuracy. The dotted line in Fig. 7 indicates that
the state is unstable and the solid line indicates a
stable state at that value of the wave number k. We
only show the unstable solutions if they lie on the
same solution branch as the stable solutions. A plot
of the interface gz(x) for k =k, is shown in Fig. 8.
We note a slight back-front asymmetry but the fun-
damental is seen to dominate the solution with the
higher harmonics making negligible contributions to
the shape of the interface. As V is increased, the
one- and two-mode solutions begin to show major
discrepancies, particularly near values of k where
the amplitude A~(k) has its maximum value. As v
is increased, the higher-order couplings included in
the two-mode approximation become important.
Therefore we will use the two-mode equations to
describe this domain of V. On increasing 7, a gap
develops in the domain [k&,kz] and no stable solu-
tions exist in this gap. As V is further increased, the
gap widens and the stable branch of solutions lies on
the lower-k branch of solutions as shown in Fig. 9
for 7=0.834. This stable band of solutions dimin-
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FIG. 9. Plot of the amplitude A ~(k) as a function of k
for v=0. 834, E= —0.5, (=0.01, and P= I. For this
value of v, k&

——4. 15794 and k2 ——5.67122.
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ishes as V is increased and it vanishes at a value of
v =V/(E, g). The interface at k =4.8764 and
v=0. 834 is shown in Fig. 10. We note that the am-
plitude of the cellular interface has increased and
that the front-back asymmetry has increased with
the first harmonic playing a more important role.

The features described above are typical of what
we observe in all domains of E, (, and v where stable
states are possible. Close to v, we have a small band
of stationary states over the entire range [k&,k2] for
which the planar interface is unstable. A smaller
subset of these states are stable, the stable branch be-
ing centered on the state at k, which is also close to
the maximum amplitude state. As v is increased
further, a gap develops in the domain of k for which
stable solutions are possible. The stable branch of
states shifts to lower values of k and the band of
stable states narrows with increasing ~ until it van-
ishes at some value of v=v/(E, g). The disappear-
ance of this stable band is accompanied by an in-
creased contribution to the interface profile by the
first harmonic, and as a result the interface exhibits
a front-back asymmetry with the leading portions of
the interface becoming smoother and the trailing
portions becoming sharper as shown in Fig. 10.

Having described the general behavior of the in-
terface as v is increased, we now turn our attention
to a systematic search of the parameter space. In
Fig. 11 we show a plot of v vs k for E =0.6 and
/=0. 2. The dashed line is the neutral stability

l4

FIG. 11. Plot of V vs k showing the regions of stable
stationary states (inside the solid curve) and the neutral
stability curve (the dotted line) for E =0.6, (=0.2, and

P= l.

curve and the region of stable stationary states lies
inside the closed curve. We see that for
v & V~ ——1.119,no more stable solutions are possible.

In Fig. 12 we show a plot of 7 vs g showing the
plots of v/(E, g) and v, (E,g) for E =0.0 and 0.6.
The regions of stable stationary states (the shaded
areas) are bounded above by V/ and below by v, .
We observe that for a given value of E,
5V—:(v/ —V, ) increases as a function of g for in-
creasing g. A way of interpreting this fact is to say
that as we increase the strength of the surface ten-
sion we increase the domain of v for which we can
observe stationary stable states. In our example,
where p= 1, we note that for E & 0. 1 there exists a

=0.6

-O.Z-

X

80

FIG. 10. Plot of the interface profile

/t= —4

for k =4.8764, 9=0.834, E = —0.5, $=0.01, and P= l.

1

0.5

FIG. 12. Plot of v vs g showing the regions of stable
cellular states for E=O.O and 0.6. These regions are
bounded above by v/(g) and below by v, (g,E).
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(a)

I.O-
235—

0.5-

00 0.5 E
FIG. 13. Plot of g vs E where the region above the

curve represents the domain of values of E and g for
P= 1, for which cellular states are possible.

2.55—

value of g=g& 0 for which K(g) =0. A plot of g vs
E is shown in Fig. 13. For E & 0. 1 and for P= 1, it
is therefore possible to observe stable states at v,
with wave vectors k, which are arbitrarily large.
However, we note that 5v(g) is vanishingly small in
this domain of g and hence we do not expect to be
able to observe these states in experimental systems.

Having mapped out the domain of stable states
for our system, we can now discuss a possible exper-
iment. Let us again consider our fictitious alloy sys-
tem whose parameters are given in Sec. VIIA. We
choose a system with a value of E =0. We will use
the velocity v as our control parameter for the exper-
iment and we will fix 6 = 10 K/cm and
Co ——1.6749 X 10 wt. %%uo . Th epat h th esyste mwill

20-

I 1

QZ Q25

FIG. 14. Plot of v vs g showing the region of stable
cellular states (the shaded region) and the path of the sys-
tem (the line connecting the points P and Q) when the
velocity v is charged.

l4

FIG. 15. Plot of V vs k for E =0, P=1, and (a) at a
velocity v such that /=0. 2; (b) at a velocity v such that

(=0.22.

traverse in the v-g plane is shown in Fig. 14 where
the shaded region denotes '.he region of stable sta-
tionary states. As U is increased to a value
U, =1.34&(10 cmsec ' at the point P, the planar
interface becomes unstable and a periodic pattern re-
sults with a characteristic fundamental wave vector
close to k =1.39 as shown in Fig. 15(a). In unscaled
units this corresponds to a cellular wavelength

k&
——67.5 pm. Thus since we are close to ~, we will

observe an interface with a periodic structure which
is strongly dominated by the fundamental wave vec-
tor. If we now increase the velocity by 10%%uo we will
move the system to the point labeled Q in Fig. 14.
The corresponding stability diagram for this new
value of the velocity is shown in Fig. 15(b). The
periodic state with wavelength A, =67.5 pm is now
at the point labeled Q in this figure and we see that
it is outside the domain of allowed stable states. It
will thus decay and be replaced by a new pattern in
the domain of allowed stable states. The fundamen-
tal wave vector of the resulting pattern which is
selected in the subsequent evolution is the topic of
further research, but we conjecture that it will be
close to the fastest growing mode at these new sys-
tem parameters. This provides a mechanism for the
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system to adjust its wavelength on increasing the
velocity.

In the domain of parameter space where we find
periodic states, we find that the amplitude of the
state does not exceed a value which is about 20% of
the wavelength of the periodic state. However, since
the methods we have used to analyze the model de-
pend on the fact that the amplitude of the periodic
state is assumed to be small, we cannot expect the
theory to be valid in a domain of parameter space
where the amplitude may become large.

Because of the above-mentioned shortcomings of
our methods we are now trying to develop numerical
techniques to analyze the one-sided model. This
study will provide us a means to compare our
present results with those from a numerical simula-
tion. An independent numerical study' of the full
dynamical problem using finite element methods is
also in progress.
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APPENDIX A
We have

~'"(k
I k), k2) =p/4v(k —k) —k2),

W' '(k
~
k(, k2, k3) =g /24vg(kj +k/ —k, )

k~ k —k.

where

k;= /k;/,
k,' =k —k;,
kg ——/k',

J
and

1—
(1+P)

APPENDIX 8
From Eq. (2.8) it is easy to see that

r

ix V)g(
2T

z zi
V(G(P ~p)) ndS) = 1+

27

XG(p ip()d2x

The singularity arises from the z —z~ term in the
limit as p~p). Consider the following integral:

z z]I=f dt, fd'x) G(p ~p))f(p))

in the limit as z —z) —=e~O. Expanding f (p()
about p, we have

e
—(e /4') —e—r (Ax)I= fdt) (4~r}'" fd'x, exp-

4v
f(x, t) —Zx V')I —r + 0 ~ ~

The spatial integrals are of the form

d2 —(M)2/4r(p~y )+((/2)Jx&e x 7

therefore

I -ef dt)r'J " e " ' '~0 if j~O.
a~0

Similarly, all integrals involving a nonzero power of
r from the expansion vanish in the limit as e~O.
The only term that survives is the zeroth-order term:

e
—(e /4r) —r2

I=2nef(x, t) f dt)

= —,I(x,t) .

Therefore the contribution from this singularity in
the last term in Eq. (2.11}is

—,[u (p'"') —1] .

APPENDIX C

We have

B("(k,
~
k, co)=2—1/v —gk ——[2—E(1/v+gk )+i@)]

where

h =(1+k +ice)'/
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E =(1—21c) .
We write 2

8' '(k, co
i ki, coi, k2, co2) = g , ic—oj ———[1—(1+E)/2v] —g(1+E)kj

j=l J

2
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j=1
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1 1 1 1

2h J j

1 ——W"'(k ski, kg),

where

hj ——(1+kj +icosi)'i

kJ ——k —kJ .
We then write
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k 3
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where

k,'=gk,',

and

and

hq [1+(k kq) +i(co co@)]

kq ——k —kq,

W' '= W] '(k „~k,k„),

jism orn.

We have
APPENDIX D
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Using the expressions for 8' "and 8' ' of Appendix C, we have that
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k ) 1 1
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ko'n (n +m)
kmko hmo h(n+m)o+

~(n+m)0

nkp n(n+m) kp
7 3
rc (n+m)0
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7 3
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where the above expression is multiplied by 2 if m &n and

h„p ——(1+n k()}'~,
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