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Viscous flow of vortices in ideal type-II amorphous superconductors
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Low-field flux-flow resistivity in ideal type-II amorphous bulk superconductors Zr3Ni and

Zr3Rh in both as-quenched and annealed states has been studied. The results provide the first

experimental evidence that it is necessary to include all the energy-dissipation terms arising from
normal current in the vortex cores (Bardeen-Stephen mechanism), relaxation of the order

parameter (Tinhkam mechanism), and as well the slow diffusion mechanism of relaxation of the

order parameter caused by the anomalous term in the time-dependent microscopic theory

(Gor'kov-Kopnin mechanism) in the viscosity coefficient at low field. The last term is absent in

"clean" alloys.

The origin of the viscous force in the flux-flow
state of a type-II superconductor had been studied by
various authors. ' ' The viscosity was attributed to
different energy-dissipation mechanisms originating
from the normal current in the vortices and an elec-
tric field induced by their motion' [Bardeen-Stephen
(BS) term], the relaxation of the order parameter to-
wards its equilibrium value when it was forced to
vary in time by the motion of a vortex line3 [Tink-
ham (T) term], and the slow-diffusion mechanism of
the relaxation of the order parameter caused by the
anomalous term in the time-dependent microscopic
theory4 [Gor'kov-Kopnin (GK) term]. Kupriyanov
and Likharevs (KL) had shown within the framework
of the GK model by including the contribution of the
normal electron dissipation and that connected with
the time derivative term of the order parameter that
the BS, T, and "anomalous" terms could be obtained
from the microscopic theory. Explicit expression for
the anomalous viscosity coefficient in "dirty" bulk
alloys with I « (p ( l is the electronic mean free path
and gp is the zero-temperature coherence length) in
the low-field regime H, &

& H « H, 2 (H, ~ and H, 2

are the lower and upper critical fields, respectively)
was worked out by GK (Ref. 2). Until recently,
these theoretical results have only been tested in
several bulk and thin-film superconductors. ' In
one thin-film experiment, ' it was found that the GK
term alone could explain the data in the temperature
range t & 0.95 (t is the reduced temperature) rather
well. In other thin-film and bulk superconductors,
the viscosity coefficient seemed to follow the sum of
both BS and T terms over a wide temperature range.
Several remarks on these experiments could be
made. It was aruged that in thin films, ' the BS and T
terms were negligible under the condition of slow
motion of flux lines, as suggested by GK (Ref. 4).
Except for the thin-film experiments, results on bulk
samples were not compared with theoretical predic-
tions at low field. Moreover, significant curvatures in

the pf/p„(pf and p„are the flux-flow resistivity and
normal-state resistivity, respectively) versus h (re-
duced field H/H, 2) plots could be seen in the region
h & 0.2 (Ref. 7). Therefore it is preferable to mea-
sure low-field flux-flow resistivity in ideal type-II
bulk superconductors with very short electronic mean
free path where flux pinning is minimized. Then a
direct comparison with existing theories can be made.

In this paper, we show that the universal behavior
in the low-field flux-flow resistivity of ideal type-II
amorphous bulk superconductors can only be ex-
plained satifactorily by invoking all the aforemen-
tioned energy-dissipation mechanisms (BS, T and
GK). The superconducting properties of these
homogeneous materials are characterized by sharp
superconducting transitions at zero field, reversibility
in low-field magnetization, independence of H, 2( T)
on current density, arid almost field-independent
weak flux pinning force (-104N/m' at half the tran-
sition temperature T,).' Flux-flow measurements
were performed on as-quenched and annealed Zr3Ni
(210'C, 89 h) samples and Zr3Rh (280'C, 68 h)
samples. The annealed samples were found to exhi-
bit similar properties as the as-quenched samples. '

Therefore thermal annealing only provides samples
with a range of T, values (see figure captions).
Amorphous ribbons were prepared in the manner
discussed elsewhere. ' Structural analysis, thermal
annealing, and electropolishing of samples were also
described there. The flux-flow resistivity was ob-
tained by tracing I V(current-voltage) -curves at con-
stant field and temperature. The voltage was mea-
sured along the direction of the transport current.
Applied field was normal to the sample plane. Tem-
peratures were stablized to within 5 mK.

In Fig. 1 we have plotted pf/p„as a function of h

at various reduced temperatures T/T, for an an-

nealed Zr3Rh sample. It should be mentioned that
the I- V curves were reversible at increasing and de-
creasing transport current. It can be seen that for
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rather close to the KL value without the anomalous
term. Without loss of generality, one can set the
zero-temperature value of the TBS viscosity coeffi-
cient equal to the KL value and evaluate its tempera-
ture dependence according to Eq. (4). The results
are shown in Fig. 2. Thus the TBS value differs from
the KL value by at most unity. It is clear from Fig. 2
that neither one of the energy-dissipation mechan-
isms alone can describe the universal trend in the
present data, contrary to previous findings.

Adding all the energy-dissipation terms discussed
above, we plot in Fig. 3 the GKTBS curve. For com-
parison, the GKKL curve is also included. There is
no adjustable parameter in the curve fittings. It can
be seen that within experimental uncertainties (verti-
cal bars) the data follow the theoretical curves rather
well, suggesting that, indeed, all the three mechan-
isms (BS, T, and GK) are present. The agreement is

especially good for 0.66 & t & 0.95. Discrepancy
between experimental and theoretical values can be
seen, however, in the low-temperature region,
t & 0.66. Since the disagreement is within unity, it

might be due to the unknown temperature depen-
dence of the KL term or the inexact value of the TBS
contribution at T =0, On the other hand, an addi-
tional energy-dissipation mechanism due to the local
temperature gradient near the core of the moving
vortex was also proposed. " But this term can only
account for about 30% of the BS term. At this point,
it might be too premature to try fitting the low-

temperature data by assuming some functional form
for either the TBS or KL mechanism. The discrepan-
cies in the region t & 0.95 are due to the uncertain-
ties in the determination of H, (t)2and/or pair-

breaking effect. " The latter is known to suppress the
high-field flux-flow resistivity near T,."

Finally, two points need to be mentioned. The
velocity of flux lines vL can be estimated from the
simple expression vL = E/H, where E is the electric
field. ' The estimated values in the depinning region
with linear I Vdapnf/p„-it cu-rves are of the order
of 10 —10 cm/sec at all temperatures, comparable to
those observed in thin films. ' Thus slow motion of
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FIG. 3. Same as in Fig. 2, Theoretical curves are ob-
tained by combining those of Fig. 2 {see text for details).
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flux lines is also found in the present samples.
Moreover, the penetration depth k(0) is estimated to
be —5000 A, which is comparable to the effective
penetration depth A.,rr= A. '/d in thin films, where d is
the film thickness. Therefore the different behavior
in the viscosity coefficient between thin-film and bulk
samples remained unexplained. It is conjectured that
superconducting fluctuation in two dimensions might
have affected the flux motion in thin films.

In closing, it can be said that homogeneous amor-
phous superconductors (1 « (o) with minimal flux
pinning force provide ideal systems for the study of
energy-dissipation mechanisms in the low-field flux-
flow state. It is shown that the effects due to normal
current, relaxation of order parameter, and
anomalous term in the microscopic theory are
responsible for the observed flux-flow properties.
This provides an additional test of the formulation
and solution of the time-dependent theories in type-II

superconductor s.

'Y. B. Kim, C. F. Herripstead, and A. R. Strnad, Phys, Rev.
139, A1163 (1965); Phys. Rev. Lett. 13, 794 (1964) ~

2J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197
(1965).

M. Tinkham, Phys. Rev. Lett. 13, 804 (1964).
4L. P. Gor'kov and N. B. Kopnin, Zh. Eksp. Teor. Fiz. 64,

356 (1973) [Sov. Phys. JETP 37, 183 (1973)];65, 396
(1973) [ 38, 195 (1974)].

5M. Yu, Kupriyanov and K. K. Likharev, Pis'ma Zh. Eksp.
Teor. Fiz. 15, 349 {1972) [JETP Lett. 15, 247 (1972)].

V. N. Gubankov, Fiz. Tverd. Tela (Leningrad) 14, 2618
(1972) [Sov. Phys. Solid State 14, 2264 (1973)].

7N. Ya. Fogel', Zh. Eksp. Teor. Fiz. 63, 1371 (1972) [Sov.
Phys. JETP 36, 725 (1973)].

8T. Takayama, J. Low Temp. Phys. 27, 359 (1977), and
references cited therein.

S. J. Poon, S. K. Hasanain, and K. M. Wong, Phys. Lett.
93A, 495 (1983).

OS. J. Poon, Phys. Rev. 8 27, 5519 (1983).
"J.R. Clem, Phys. Rev. Lett. 20, 735 (1968).
' R. S. Thompson, Phys. Rev. B 1, 327 (1970).
' S. Imai, Prog. Theor. Phys. 54, 624 (1975).
' H. Meissner, J. Low Temp. Phys. 2, 267 (1970).


