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It is shown that a trilinear symmetry breaking which destroys the equivalence of the
states in a continuum generalization of the p-state Potts model yields first-order phase tran-
sitions for all p & l, in contrast to the results of the symmetric theory where there is a
second-order transition for p &2 and a first-order transition for p & 2, in d =6—e dimen-
sions, and in spite of mean-field —theory predictions. A calculation in renormalized pertur-
bation theory, to one-loop order, on a three-trilinear-coupling theory yields two new accessi-
ble and partly stable asymmetric fixed points beyond the symmetric one, except for the

13three-state Potts model, one for 2.2 &p & ao and the other for 1&p & —.There is a
13fixed-point runaway for the first one when p &2.2 and for the second when p & 3, which

are interpreted as the usual first-order transitions. For the indicated ranges of p the transi-
tions are of first order near a spinodal point, with uniaxial ordering in the first case and
transverse ordering in the second. Critical exponents that could describe the approach to
the spinodal points are explicitly calculated.

I. INTRODUCTION

The study of the nature of the phase transition in
the p-state Potts model' is of great current interest.
The critical value p, (d), as a function of dimen-
sionality d at which the transition changes from
second order when p &p, (d) to first order, when

p &p, (d), has been determined in recent
momentum-space renormalization-group (RG),
works by Pytte and Aharony in both d =6—e and
in d =4—e' dimensions. It has been suggested
by Pytte that despite the presence of a stable and
accessible fixed point for 2&p & —, ,

' there is a
first-order transition near a spinodal point in

10
d =6—e dimensions. For p g —, it is assumed that
the fixed-point runaway corresponds to the usual
first-order transition, whereas it seems definitely es-
tablished that for p & 2 there is a second-order tran-
sition. '

Critical exponents have also been calculated and
although it is clear that for p & 2 these are the ex-
ponents obtained earlier for the second-order transi-
tion, it is not certain that the exponents are at all
adequate to describe the spinodal point when

10
2&p & —, (Ref. 3) because of the role that instan-

tons or critical droplets play in a first-order transi-
tion.

The works of Pytte and Aharony, either in
d =6—e or in d =4—e' dimensions, are restricted

to the neighborhood of p=2 as far as the ordered
state which distinguishes between a first- and a
second-order transition is concerned. Indeed, (p —2)
must be taken as a small expansion parameter in the
Landau-Ginzburg free-energy functional if this is to
be used to describe a first-order phase transition by
means of an expansion in a few low powers in the
continuum fields. Physical implications for the in-
teresting three-state Potts model are then obtained
by extrapolation of (p —2) to l.

The nature of the phase transition in the three-
state Potts model has been a matter of controversy
for some time. ' Assuming the transition to be of
first order, it has been shown by Blankschtein and
Aharony that this can be changed into a second-
order transition, either at a critical or a tricritical
point, by means of linear and quadratic symmetry-
breaking perturbations in d =4—e' dimensions,
which can easily be introduced experimentally in the
numerous physical realizations of the three-state
Potts model, '"' and in the fewer ones of the four-
state model. '""'

Theoretically, quadratic symmetry-breaking per-
turbations in the continuum Potts model can be
shown to follow from an anisotropic coupling be-
tween the components of the Potts vectors in the
discrete model' and this should reflect, for example,
the effect of anisotropic stresses in the magnetic
transition of certain cubic ferromagnets. " An an-
isotropic coupling in the discrete model also gen-
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crates trilinear symmetry-breaking perturbations in
the continuum Potts model.

The work of Ref. 11(a) is carried out assuming
that the underlying symmetry is that of the rotation-
ally invariant (two-component) XY' model and that
the trilinear coupling w « (e') ' ~ . As a conse-
quence, although w changes under iterations of the
renormalization group, it need not be fully renor-
malized, and the critical exponents determined by
the fixed-point value of the quartic coupling are
those of the XFmodel.

The continuum p-state (p =n+1) Potts model
with n-component "Potts vectors" belongs, in gen-
eral, to a different universality class than the contin-
uum n-vector model. It is only for the two-state
Potts model —the Ising model —that there is an ex-
act cancelation of the tensorial coefficients in the
trilinear terms. These coefficients reflect the
discrete symmetry of the permutation group S„+~
under which the Potts Hamiltonian is invariant. '

For all other p&2 these tensorial coefficients play
an important role, except in the "restricted" contin-
uum Potts model of Zia and Wallace, ' where the
underlying symmetry is in the tensorial coefficients
of the quartic terms.

It is well known that unless the trilinear terms are
artifically suppressed or taken to be vanishingly
small, as in Refs. 11(a) and 14, the continuum Potts

field theory has to, be studied in d =6—e dimen-
sions. ' ' We argue that it is only then that one can
work out reliably the consequences of the underlying
discrete symmetry. The quartic terms that are usu-
ally needed to stabilize the P theory may, eventual-
ly, have to be renormalized as well as suggested in
recent work by Fucito and Parisi. ' Unfortunately,
this seems to demand renormalization at an inter-
mediate dimension which can only be done approxi-
mately.

The importance of trilinear symmetry breaking
for the continuum one-state Potts model has been
discussed recently, ' ' but the general-state model
has not been considered so far. There is the possibil-
ity that new fixed points in a RG approach may
lead to new critical behavior and eventually change
the nature of the phase transition. The purpose of
this paper is to explore this possibility, which cannot
be ruled out a priori. Indeed, as will be discussed
below, mean-field theory with trilinear symmetry
breaking predicts a quite different behavior from the
symmetric theory. In the limit of very weak aniso-
tropies that may always be present experimentally,
this is relevant to the phase transition in the physi-
cal realizations of the three- and four-state Potts
model.

To study the effects of trilinear symmetry break-
ing we resort to a RG calculation in renormalized

perturbation theory with dimensional regularization
and minimal subtraction, to one-loop order, in
d =6—e dimensions.

In Sec. II we explain how the effective Hamiltoni-
an is obtained for trilinear symmetry breaking into
m "longitudinal" and (n —m ) "transverse" field
components, with n =p —1. This yields a three-
trilinear-coupling theory and the further work is re-
stricted to a single longitudinal component. In Sec.
III we follow Pytte along lines initiated by Priest
and Lubensky, and analyze the stability of the fluc-
tuations around mean-field theory, assuming a uni-
axial ordering. In addition to the dependence on

(p —2) that one has in the symmetric theory, the
sign of the ratio v/u, in which v is the trilinear cou-
pling between one longitudinal and two transverse
field components and u between pure longitudinal
components, is shown to be crucial to the stability
analysis. The coupling between pure transverse
components does not appear in the fluctuations
about mean-field theory.

One of the main conclusions of mean-field theory
is that if u/u & 0 and

~

U/u is not too small, trilin-
ear symmetry breaking is relevant to change the na-
ture of the phase transition, leading to a continuous
second-order transition for p )2. However, there is
nothing intrinsic in mean-field theory that enables
one to decide on the sign of v/u, and for that pur-
pose, we argue that one has to resort to a RG study
of the fluctuations. These turn out to exclude, in a
nontrivial way, a negative v/u.

In Sec. IV it is shown that there are three non-
trivial fixed points: the symmetric one and two new
asymmetric fixed points, one for 2.2 &p & oo and

13
the other for 1 &p & —, . In the first one, which has
two nonzero fixed-point couplings, such that
v*/u* )0, there is a fixed-point runaway for
p &2.2 which is one of the intriguing results of
this work, and we interpret this to correspond to the
usual first-order transition. Note that this is in con-
trast to the symmetric theory, described by our first
fixed point, in which there is a continuous second-
order transition with a stable fixed point for p & 2,
as in Ref. 3. The fixed-point ratio v*/u* favors a
first-order transition near a spinodal point for
p) 2.2 . Our second asymmetric fixed point also
turns out to describe a first-order transition near a
spinodal point for p & —, , whereas there is a fixed-

13
point runaway for p) —, that we interpret as the
usual first-order transition. Whenever this third
fixed point is stable we argue that this corresponds
to ordering in the transverse components. The criti-
cal exponents associated with the fixed points are
also calculated in Sec. IV. Some implications of this
work and possible extensions are discussed in Sec. V.
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II. MODEL

We follow recent authors ' taking the effective Hamiltonian of Priest and Lubensky for the p-state Potts
model,

4 = ——,f (r +k )Qg;;(k)g;;( —k)+.w fgg;;(k)g;;(k')g;;( —k —k')

—u4;; k;; O'
JJ

k"
J~

—k —k' —k"

—U4 fQg;;(k)g;;(k')Qg(k")Q;;( —k k' —k")—, (2.1)

where Q;; are the diagonal elements of a p &(p di-
mensional traceless tensor. With the model renor-
malized by dimensional regularization, the integra-
tions are extended over all momenta k in dimension
d =6—e, and the summations are over the p Potts
states.

The bare propagator takes the form
r

where

a
aii

p —a
p —a+1

' 1/2 0 if i&o.
&. 1 if i =a (2.5)

—1/(p —a) if i )a

(g,, (k)QJ( —k))= ~„——
p r+k2 ' (2.2)

with the normalization such that

gg;;(k)g;;( —k)=+A (k)A (2.6)

with the tensorial coefficient coming from a particu-
lar representation of the Q;;, in terms of the com-
ponents A (a=i, . . . , p —1) of the p-state Potts
model,

The A (k) then become the components of the con-
tinuous field A (k).

The trilinear and the cubic terms become

H = —J g A(x) A(x'),
(xx')

(2.3) Qgrigiig(i = g DapyAnApAy
a, p, y

(2.7)

with p(p —1)-dimensional vectors A(x). This repre-
sentation is Qg, , g, , g, ,

.g,., = g E pysA ApAyAs, (2.8)

p —1

Q;;=+A a;;, i=1, . . . , p
a=1

(2.4)

a, p, y, 5

with the tensorial coefficients

1 if P=y) ~
1

D py:ga;;a;;ajj , y, X (p —a —1) if P=y=a
[(p —a )(p —a+ 1)] otherwise

(2.9)

and

a p y 6
Eapys =~a;;a;;a;;a;;, (2.10)

3g DapqDppvDyqv = 1 D~py,
p, v, 'g

(2.13)

which is nonzero only for certain symmetrical com-
ponents, in particular,

(p —a)'+1
(p —a+1) (p —a)

(2.11)

It also turns out that combinations of D py and
E py~ yield specific sum rules that can serve as a
check on the tensorial coefficients. In what follows
we only make use of

which appear in the one-loop diagrams for the two-
and three-point irreducible vertex functions, respec-
tively.

With a trilinear symmetry breaking into m longi-
tudinal and (n —m) transverse components A& and

A~ (n:—p —1), we have

(2.14)

2
QD~pyDpy, ——1 ——5~, ,
p, y

(2.12)

@=1 q)m

and the effective Hamiltonian is
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~=—
4

~+k' A a+ Q Dp~ApA g+3U Dpq pAqAr+W DqrsAqAr As
p, q, r q, r, s

u4 Aa A p+U4 EapygAaA pA
a,p a, p, y, 5

where (p, v, ri ) & m indicates longitudinal and
(q, r,s) & m indicates transverse components, while
the other indices run over all components. Note
there is no trilinear coupling between two longitudi-
nal and one transverse component because D&„q=0
from Eq. (2.9). We neglect symmetry breaking in
the quartic part of the Hamiltonian which is ir-
relevant to our discussion. Also, an external-field
term that would be needed for a detailed study of
the equation of state has been omitted. Below the
critical temperature one may assume a spontaneous
symmetry breaking that favors ordering along a
longitudinal component, and this will be done in the
following section. To single out the longitudinal
component as the critical components in the disor-
dered phase, one may add a quadratic symmetric-
breaking term '

A = ——g n —m A —m A

(2.16)

with g & 0, and let g be vanishingly small to ensure a
dominant trilinear symmetry breaking.

For simplicity, it will be assumed that m =1 since
this is sufficient for the uniaxial ordering that we
have in mind. A meaningful trilinear symmetry
breaking requires that n & 1, i.e., p &2 but our re-
sults can presumably be continued to p & 2.

III. ORDERED PHASE IN MEAN-FIELD
THEORY

We assume, following Priest and Lubensky, ' that
uniaxial ordering takes place with

(2.15)

rL, r —12(p———2)cuQ+24(u4+bv4)Q2,

rT r+12cvQ——+8(u4+3c v4)Q
(3.4)

and stability of the mean-field solutions requires
that both rl and rT be positive. This decides when a
first-order transition is favored against a continuous
second-order transition. Note that A MF and rL are
independent of the trilinear terms in U and m and
that w, which couples transverse fluctuations, does
not appear so far. In contrast to the symmetric
theory, Eqs. (3.4) involve different couplings in the
term linear in Q.

The extrema of the mean-field free energy, deter-
mined by B~MF/BQ=O, yield a small-Q and a
large-Q solution. The first one, which develops con-
tinuously from Q =0 with r &0, yields

1 U21———p (r[
p —2 Q

(3.5)

Before discussing this solution, note first that the
sign of u or v is irrelevant in Eqs. (3.2) and (3.4).
These equations are invariant under the simultane-
ous change u~ —u, Q~ —Q, and v~ —v. They
change, however, when the sign of v/u is changed.

For p & 2, Eq. (3.5) yeilds

I

in the notation of Ref. 3.
Following Pytte we find that the coefficients of

the quadratic parts in the longitudinal and trans-
verse fluctuations at zero momentum in Eq. (2.15)
that yield the corresponding inverse susceptibilities
are

A (k)=Q+& (k), a=1
=W~(k), a&1 (3.1)

rT & 0 if —& ——, (p —2),
(3.6a)

where the order parameter Q is the thermal average
(A~), for a= 1, and W (k) is the fluctuation part.
Equation (2.15) yields then the mean-field Hamil-
tonian

A M„=——,rQ'+(p —2)cuQ' —(u4+bv&)Q

(3 2)

rr &0 if —& ——,(p —2),

and, for the continuation to p & 2,

rT &0 if —& —,(2 —p),

rT &0 if —& —,(2 —p) .
(3.6b)

where

c=L (p —1)) '",
b =c (p —3p+3)

(3.3)

Given a U/u & 0, rT is always negative for p & 2 and,
if v /u is not too small, rr will be positive when con-
tinued to p &2. This results in the same unstable
(stable) local ininimum for p &2 (p &2) that was
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found before when v =u.3

Consider next v/u &0. Then rT is always nega-
tive for p &2 but, if

~

v/u
~

is large enough
(

~

v/u
~

&1 is sufficient for the four-state Potts
model), rT will be positive for p & 2, and the small-Q
local minimum is stable allowing a continuous
second-order transition for p & 2. This is a new re-
sult not anticipated by the symmetric theory.

The large-Q solution to the mean-field free energy
yields

(p —2)c u
rL =

Q4+bV4

6(p —2)c uvrT=
Q4+&V4

[3u4+(b+6c )v4j,(p —2)c u 2

(u4+bv4)

together with

(p —2) c u 1 (p —2)cu

Q4+bv4 2 Q4+bv4

(3.7)

(3.8)

in which r, is the value of r where the large-Q
minimum crosses over from a metastable point
when r & r, to an absolute minimum for r & r„adn
Q, is the discontinuity of the order parameter at the
first-order transition. At the same time, the small-Q
minimum changes from at absolute minimum when
r &r, and becomes metastable for 0&r &r, . In dis-
tinction to previous work, the sign of the first term
in rT is not only determined by (p —2) but by the
sign of v /u as well.

When v/u &0, rT is positive for p &2 with a
stable large-Q minimum that favors a first-order
transition at r =r„similar to earlier work. Howev-
er, if v/u &0, rT may become negative for small
positive (p —2), and the large-Q minimum is un-
stable. The continuation to small negative (p —2)
would again yield a stable large-Q minimum and a
first-order transition.

To summarize, if v/u & 0 trilinear symmetry
breaking does not seem to be relevant in determining
the nature of the transition and there is the boun-
dary between second-order (p &2) and first-order
transitions (p &2) at p =2 that was found before.
If, instead, v/u &0 but v/u

~
& —,(p —2), the break

in trilinear symmetry is relevant to the order of the
transition and, for p & 2, a second-order transition
may be expected. For small positive (p —2) this
prediction is consistent with the exclusion of a first-
order transition from the stability of the large-Q
minimum in Eq. (3.7), when v/u &0.

The results for p & 2 should be taken with some
care because it is not clear that one has a meaningful
trilinear symmetry breaking when the number of

components n &1, with a fixed longitudinal com-
ponent. Nevertheless, if a second-order transition
due to trilinear symmetry breaking occurs for p & 2,
that transition, if at all possible, should remain a
second-order one, with trilinear symmetry breaking
becoming irrelevant, when p & 2. A possible
mechanism by means of which this could take place,
but which cannot be accounted for in mean-field
theory where u and v are fixed parameters, is a
change of sign of v /u with the sign of (p —2) or the
vanishing of v.

To decide if the second-order transition suggested
by the stability argument around mean-field theory
when p & 2 can actually be expected, we resort to a
RG calculation in the following section. As a pre-
liminary to a one-loop calculation in dimension
d =6—e, we argue that one can take Pytte's work as
a guide to relate the renormalized inverse transverse
susceptibility XT to the mean-field expression for
the large-Q rT in Eq. (3.7). It is shown there that
the same sign of (p —2), which determines the na-
ture of the transition in mean-field theory, also
determines the transition in a RG calculation. The
renormalized XT at the first-order transition when

p & 2 was found to be

2

2XT '- co'(I*)
Q4+6V4

(3.9)

where co(l") is the renormalized trilinear coupling,
which includes a further nonlinear dependence in
(p —2). The quartic couplings u4 and v4 do not
have to be renormalized when p -2, and it is impli-
citly assumed that Eq. (3.9) is the dominant sign-
dependent [with (p —2)] term in XT' for larger p.
From the fact that there is a stable positive suscepti-
bility for p-2, it is inferred that this is the case for
all p & —, , for which a fixed point exists.

We have to be somewhat more cautious in the
presence of trilinear symmetry breaking. Although
the trilinear symmetry breaking term in rT, Eq.
(3.7), is the dominant term when p-2, it is possible
that a RG calculation does not yield a finite rT un-
less p is larger than a threshold above 2. It will be
shown in the next section that this is precisely the
case. Nevertheless, we argue that there will be a
sign-dependent trilinear symmetry-breaking term,
basically similar to

I 6(p —2)c u v

u4+bv4 u
(3.10)

above threshold, as in the first part of Eq. (3.7),
which has to be positive for a stable first-order tran-
sition to take place, and this is only possible if
v" /u' &0, with u* and v" the fixed-point values of
the couplings at p near threshold. We assume that
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the renormalization of the quartic couplings u4 and
U4 is unnecessary for the main effect of trilinear
symmetry breaking near the threshold for p. We ex-
pect (XT ')„to be the dominant contribution to XT

'

due to trilinear symmetry breaking when p is close
to 2. The possibility of a negative (XT )„with
v*/u* & 0 could be warning that the first-order tran-
sition is not stable.

A RG study of the (p —2) dependence of the
fixed-point ratio u'/u*, and of w* ju* in a calcula-
tion to higher-loop order, should be crucial to decide
the role of trilinear symmetry breaking on the na-
ture of the phase transition in the p-state Potts
model.

IV. RENORMAI. IZATION-GROUP
APPROACH

For a study of the fixed-point equations and of
the disordered phase the quartic terms in Eq. (2.15)
are not needed. It will be assumed that there is only
one longitudinal component that becomes critical as
r~O. To ensure that the remaining (p —2) com-
ponents are noncritical, an auxiliary squared non-
critical mass m may be introduced in the Hamil-
tonian via a term —

4 m AqAq summed over the

(p —2) q components. Since we are mainly interest-
ed in trilinear symmetry breaking, m will be taken
to be vanishingly small. It is also convenient to ex-
press u, U, and w in terms of the bare dimensionless
couplings up, Up, and wp by means of u =~' Qp,
U =~' Up, and w =a' mp, where ~ is an arbitrary
momentum-scale parameter and a=6 —d.

The renormalization is done by means of dimen-
I

for the longitudinal components, where

A, (p)= ,D„,=——,(p —2) c
n

A2(p) = —, g D
&qq

———,(p —2)c
q&1

and

rqq'( k) =k +m

—[B&(p)uoIt(k)+ B2(P)woI2(k)]

(4.1a)

(4.1b)

(4.2a)

for the transverse components, where

Bi(p) =D iraq
=c'

n q —1

B3(p) Dqqq+ g Dq~~+2 g D~qq
r&q r&1

(4.2b)

cp (p —3)—,

I;(k) being the one-loop diagram with i =0, 1,2
transverse internal lines shown in Fig. 1, in which
the m dependence is supressed since ultimatelyI ~0,

sional regularization and minimal subtraction at the
critical point, for fixed m .' ' The bare one-
particle irreducible (1PI) two- and three-point vertex
functions I,'J-' and I,'&~ transform as the tensors 5,J.

and D&j'k and are given by

1 I~'(k) =k —[A &( p) u oI (k)+ A&(p)uoI2(k)]

rI", ,(k)=e"D„,[u, +[C» (p) u oLo(k)+ C]p(p) u& 3(k) ]I,
where

(4.3a)

Cl&(p) =D&~& (p —2) c——
n

Ciz(p) = g D iqq
= —c'

D111 q &1

1 (k) =K D [uo+ [C2~ (p)uouoL &(k)+ u C32(p)L2(k)+ uowoC33(p)L3(k)] I,

(4.3b)

(4.4a)

where

C2)(p) =D)))D)qq —— (p —2)c-
C22(p) =Dfqq ——c

q —1 n

C23(p) =Dqqq +2 g D„qq+ g Dq,g
——c p(p —3)

r&1 s&q

rq««)=&' D«, [wo+[C3~(p)wouoL3(k)+C»(p)woL3(k)]j,

for 2 (q (p —2, and zero for q =p —1, where

(4.4b)

(4.5a)
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FIG. 1. One-loop contributions to the self-energy parts
of the longitudinal (a and b) and transverse (c and d) one-

particle irreducible (1PI) two-point vertex functions in

Eqs. (4.1) and (4.2). Dashed and solid lines represent

longitudinal and transverse free-field propagators, respec-

tively. Summation over the indices of internal lines is

given by Eqs. (4.1b) and (4.2b).

C3)(p) =3D(qq 3c——

2
q —1

2
n

3
C32 (P ) =Dqqq +3 g Drqq + P Dqss (4.5b)

r)1 qqq s)q

FIG. 2. One-loop contributions to the 1PI three-point
vertex functions I'~&'~ (a and b) given by Eq. (4.3), to I ]qq

(c—e) given by Eq. (4.4), and to 1"q'qq (f and g) given by
Eq. (4.5).

=c p(p —4) .

The same expression as Eq. (4.5), including q=p
—1, is obtained for I „qq(k)when r &q, with the fac-
tor Dqqq being replaced by D„qq. It follows from Eq.
(2.9) that all other three-point vertex functions van-
ish. In these equations, k is a shorthand notation
for the external momenta k~, k2, and k3 of the one-
loop triangular diagrams L;(k) with i =0, 1,2 trans-
verse internal lines shown in Fig. 2. Equations
(4.1)—(4.5) check in the symmetric case with the
unrestricted summations in Eqs. (2.12) and (2.13) be-

ing satisfied.
The longitudinal 1PI two-point vertex function

with an A insertion at momentum q, A = gP~
summed over all a, is given by

. I I)'"(k,q) =1+[2A)(p)uoLO(k)

summation g" &D~qq in that limit. In what fol-

lows, the renormalization is done for a fixed p y 2,
although ultimately the critical exponents for the
Gaussian model are recovered when the results are
continued to p =2.

The bare vertex functions are renormalized elim-
inating the dimensional poles in e that appear in
the one-loop diagrams by means of dimensionless
renormalization functions Z~'(u, u, w;e) and

Z&2(u, v, w;e), where P and t)) denote the fields A

and A in the notation of this paper, while u, v, and

+2A2(p)UOL3(k)], (4.6)

where A ~(p) and A2(p) are the coefficients in Eq.
(4.1) and the one-loop diagrams are those in Eq.
(4.3), as shown in Fig. 3.

It can easily be checked that the vertex functions
are consistent with the Ising one-component (p =2)
limit, with no contribution to I'P&'(k) and I P» "(k,q)
from one-loop diagrams with trilinear couplings.
Furthermore, there is no question of trilinear
coupling-constant renormalization for p =2, since
I » &

——0, to one-loop order, as can be seen from the(3) =
vanishing of the tensorial coefficient D&&~ and the

e
FIG. 3. One-loop contributions to the 1PI two-point

vertex functions with one 3 insertion I'~I" (a and b)

given by Eq. (4.6) and I qq" (c—e). The wavy line indi-
cates the insertion point.
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w stand for the dimensionless renormalized cou-
plings, not to be confused with those in Eq. (2.15).
At the same time, each up, vp, and wp is expanded in
powers of u, v, and w, and the renormalized vertex
functions follow from

g+ =K up~ gU =K Vp~ g =K Wp

and we find,

(4.11)

in which the derivatives are taken at fixed bare di-
mensional couplings,

(1) (2) (2) (2) (2) (2)
» 8» tI5 qq Aqq

(1) (2, 1) (2, 1) (2) (2, 1) (2, 1)Z, r» —r+11 Z 2 I qq
I +qq

(z, ) r„,=r„„,(z, ) z, r„,=r„„,(1) 3/2 (3) (3) (1) 1/2 (2) (3) (3)

(2) 3/2 (3) (3)
ew we

(4.7)

where in the case of the two-point transverse vertex
functions what is renormalized is I

qq
——I

qq
—I .(2) (2) 2

The functions needed to make the renormalized
vertices finite are

P„=——u ——(p —2) c u2 2 3
Q

2 4

+ —,(p —2)c uv +c u

13„=——v+ —„(p—2) c vu

——,c [2——,(p —2)]u'

—
6 c p(p —3)vw +(p —2)c 11U

(4.12)

(4.13)

Z~ ——1 — (p —2) c u — (p —2)c v
(1) 222 2 2

6e 6e

Z~ =1— c v — c p(p —3)w(2) 1 2 2 1 2

3e 6e
(4.8)

P = ——w ——,c u w+ —,c p(13—3p)w' .

(4.14)

Z &
——1 ——(p —2) c u ——(p —2)c u

(1) 1 2 2 2 2 2

E

and the expansions for the couplings are given by

ttp =tt — 3(p —2) c tt
1 2 2 3

4p

2 2 2 3+ (p —2)cuu+ —cu
4e

up ——u+ (p —2)c vu2 2

12m

1 2 1

c [2——(p —2)]v 3

3e 4

1
Sc p(p —3)uw +—(p —2)c uu2 1 2 2

6e E
(4.9)

If one sets u =v =w, the symmetric coupling to start
with, one readily verifies that the root of P„=O,
P„=O,and P =0 is given by

(4.15)
10—3p

in accordance with Priest and Lubensky. Alterna-
tively, solving for the nonzero roots of Eqs.
(4.12)—(4.14) as functions of p, we find that the
symmetric fixed point (FP 1)

u~=v*=w*=u
sym (4.16)

is the only one in which none of the couplings is
zero. This follows from the nonzero solution of
P =0,

wp ——w — Sc wu +—c [—(p —3)—(p —4)]pw 3

26 12

to one-loop order.

w* = 2+10c
E

E c p(13 —3p), (4.17)

A. Fixed points

Equations (4.9) can be used to study the fixed
points, which are the roots of the Wilson P func-
tions defined as

and from the detailed solution of the two remaining
equations P„=Oand P„=O. The symmetric fixed

10 10
point is a solution when p & —, and, for 2 &p & —, , it
has been suggested to describe the spinodal point.

Next, we find the asymmetric fixed point (FP 2)

a
Pg(tt, V, W;E)= K tt

BK g.

a
Pq(tt, v, WjE)= K U

BK g.

a
P~(tt, u, w;E)= K w

BK g.

(4.10)

u *&0, u*&0, w*=0, (4.18)

u' =0.0243m, v* =2.073pe . (4.19)

From Eqs. (4.12) and (4.13) it also follows that for

shown in Fig. 4 as a function of p. This fixed point
has two remarkable features: First, it has a runaway
for p & 2.2, and second, it persists for any large but
finite p. In the limit of asymptotically large p,
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according to Eq. (3.10), and the transition should
remain of first order, with a spinodal point, for all
finite p.

The discussion of the RG equations in the disor-
dered phase does not assume that the model has to
order along the longitudinal field component. If the
ordering is along the transverse components, the
mean-field argument of the Appendix shows that
the only relevant trilinear coupling is 1' and this sug-
gests that the transition, determined in this case by
FP 3, is of first order for all p & 1. When 1 &p & —', ,
the stable (in one direction) fixed point indicates that
the first-order transition takes place near a spinodal

13
point, whereas the runaway for p & —, is interpreted

as the usual first-order transition. The boundary
between these two transitions occurs at p,

' = —, , in
10

contrast to the p, = —, of the symmetric theory.

1.3—

0.9—

0.7—

0.5— FP 2

0.3—

0. 1—
I P

2 2.2 3 4 5 6

FIG. 6. Dependence with p of the critical exponent g
given by Eqs. (4.27) and (4.28) for the new FP2. The p
dependence of the correlation length exponent v can be
read off by means of the relationship v ' —2=5', Eq.
(4.34), discussed in the text.

B. Critical exponents

For FP1 the critical exponents are known to
describe a second-order transition when p &2, and

10
possibly a spinodal point for 2 &p & —, . With g de-

fined as

i)=y~ (u*,v*,w*),

where ' '
(4.27)

y~"(u*,v*)= —,c (p —2)[(p —2)u' +v' ] . (4.29)

When p=2 this yields the g=0 that one expects to
have for the Ising model in d=6 —e dimensions.
For FP 1, we have the known ' '

BlnZp(1)

y~ (u, v, w)=a.
BK

=2p„(u,v, w )b', "u +2p„(u,v, w )b 2"v,
(4.28)

in which b ',
" and b 'z" are the coefficients in

Z~" ——1+b I"u +b("v, Eq. (4.8), we find

when in Eq. (4.8),

Z' ' 1+g 'v +
This yields, at FP 3,

y~ (w*)=— e,
3 13—3p

(4.33)

which gives the g =0 that one expects for the two-
component model in d g 4.

The correlation-length exponent v is given by
' '

2=y—&' (u2*,v*,w*) y&"(u—', v*,w*)

=5yIt"(u*,v~, w*) (4.34)

for critical longitudinal components, which follows
from the fact that the diagrams in the expansion for
I &2' are those in I 111, while the tensorial coeffi-(2, 1) ~ (3)

cients are those in I 11. Then

alnZ", )

y~g ( u, v, w ) =K
(1)

BK

1

ri = ——, (2 —p )e'/(10 —3p ), (4.30) =2P„(u,v, w )b iu

while for FP2 we find the result shown in Fig. 6.
With FP 3 describing the transverse components
becoming critical, we have

+2p„(u,v, w)b2V =6'", (4.35)

riT y& '(u~, v~, w"——) (4.31)

for the k dependence of I zqq(k, m) —m —k
which can be calculated from

BlnZp(2)

y~ (u, v, w)=a.
BK

=2P„(u,v, w)bi 'v+2P„(u,v, w)b2 'w,
(4.32)

in which Z&2'-1+b1u +b2U for the renormaliza-

tion of the (I) insertion in Eq. (4.8). This yields the
known3, 5,6

v '=2 ——,(2 —p)e/(10 —3p) (4.36)

for FP 1 and the v(p) for FP2 that is shown in Fig.
6. Accordingly, with y', '=6y& ' and Eq. (4.33) we

get
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5 p —3
v& —2= — t..

3 13—3p
(4.37)

for the transverse components.
In contrast to the symmetric theory, where there

is a range of p (p & 2) for which the transition is of
second order, as predicted by mean-field theory and
confirmed by the RG calculation, the present work
suggests that the transition is always of first order
when there is trilinear symmetry breaking ruled by
FP2 or FP3. For the latter, this is shown in the
Appendix. In these cases, the critical exponents
may describe the approach to the spinodal point,
subject to the reservations pointed out in the Intro-
duction.

V. CONCLUDING REMARKS

We have shown that in a three-trilinear-coupling
theory for the p-state Potts model there are three
nontrivial fixed points: the symmetric one and two
new asymmetric fixed points that are accessible and
partially stable; one for 2.2 &p & ao and the other

13
for 1 &p & —, . Analysis of the stability of the
mean-field free energy suggests that these two fixed
points do not correspond to second-order transitions
but to first-order transitions near a spinodal point.
In the present study we first assumed, following pre-
vious authors, that the ordering takes place along
one of the field components A of the p Potts vec-
tors A(x) and, accordingly, we introduced trilinear
symmetry breaking in the components of the fields.
This, in turn, breaks the equivalence of the p Potts
states, even in the disordered phase.

A word of caution about our interpretation of
FP2, Eq. (4.18), is appropriate at this point. From
the close relationship between the renormalized Xq

'

of Pytte, Eq. (3.9), and the leading term in the fluc-
tuation correction to mean-field theory, when p-2,
it is reasonable to infer that (Xr ')„ofEq. (3.10)
should be the dominant contribution to X~ with tri-
linear symmetry breaking when p-2, based on Eq.
(3.7), if it were not that the threshold for FP 2 is de-

finitely above p -2, where Eq. (3.10) may be consid-
erably modified in a way for which we cannot pro-
vide a reliable estimate. The calculation of the
first-order transition becomes considerably more
complicated when (p —2) is not a small parameter,
and this is why earlier works have been restricted to
this range. ' In view of the role of instantons in a
first-order transition, which presumably is not fully
accounted for in the kind of perturbation expansions
used here and in the works of previous authors, it
does not seem worthwhile at present to determine
the precise way in which Eq. (3.10) is modified for
larger p. Since it is only the crudest feature of

(Xr )„—the dependence on U*lu* —that has been
used to interpret FP 2, we do not expect this to be a
severe limitation of our work.

Our main conclusions are the following. First,
that the RG treatment of fluctuations in the contin-
uum Potts model with trilinear symmetry breaking
results in two further first-order phase transitions
with stable and accessible fixed points, within

13
2.2 &p & —,—one continued to all larger p—a kind
of phase transition first discussed by Pytte. For
p )—, there is a fixed-point runaway in one of these,
which corresponds to the usual first-order phase
transition. The irriportant point in the case of FP 2
is that the fluctuations exclude a negative v*/u*
that would favor a second-order transition when

p )2, according to the mean-field prediction. In the
case of the three-state Potts model the only nontrivi-
al fixed point is the symmetric one. These results
suggest that one should not expect a second-order
phase transition in the physically interesting realiza-
tions of the three- and four-state Potts model in the
presence of weak anisotropic stresses. Although this
is a reasonable expectation, the theoretical bases for
it are part of the calculations of the present work.

Our second main result is that the second-order
phase transition that one expects from mean-field
theory in the case of trilinear symmetry breaking
with U/u & 0 and p & 2 is destroyed due to fluctua-
tions. This takes place with uniaxial ordering. Al-
though physical realizations of the p-state Potts
model have only been proposed so far for integer p,
we believe, nevertheless, that this is a result of
theoretical interest.

The nature of the transition may be changed fur-
ther with the addition of quadratic symmetry break-
ing. A preliminary mean-field calculation shows
that the rr for the small-Q solution in Eq. (3.5) has
an additional positive term so that I"z- could be posi-
tive for p )2, indicating a stable second-order transi-
tion. We do not know at present, however, how
the fixed-point picture with trilinear symmetry
breaking is modified by a break in quadratic symme-
try, and whether the runaway threshold of p is
lowered enough for the second-order transition to
become stable.

Another way of changing the transition could be
by the addition of an external field. It is quite possi-
ble that quadratic symmetry breaking may induce,
in general, a further break in trilinear symmetry.
Preliminary calculations on the three-state Potts
model show that this is the case. This and the above
extension will be explored in future work.

One can also go beyond a three-trilinear-coupling
theory and carry the symmetry breaking to all com-
ponents. In the case of the four-state Potts model
with one longitudinal component, this amounts to a
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APPENDIX

In the case of transverse ordering we write

(p —2)' A (k)=Qr+ W (k), a=2, . . ,n.
3 )(k)=a )(k), (A 1)

since n —1 =p —2, where the order parameter Qr is
the thermal average (p —2)'~ (A~), for a& 1, and
a (k) is the fluctuation part. The mean-field Ham-
iltonian becomes then

2 3 ~ 4~MF g «Qr cwgr (u—4+ , U4—)QT ~—
(A2)

and the coefficients of the quadratic terms in a &(k)
and W (k), for a & 2, that follow from Eq. (2.15) are

2rl r+8(u4+ 4 U4)g——r,
(A3)

rr r+ 12cwgr+2——4(u4+ , U4)gr . —

The absence of a linear term in Qr for rL is due to

five-coupling theory. It can be shown, however, that
the simpler three-coupling theory worked out here is
a solution of the latter. This and the results of fur-
ther work in progress will be reported elsewhere.
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rL = — r

rz- —— r
(A4)

independently of p, indicating that the small-Qr ex-
tremun is always unstable.

To study the stability of the large-Qr solution we
make the free energy the same for Qr ——0 and
Qr&0. When combined with BA M„/Bgr——0 we
find

w2c2
ri ——(3u4+U4)

(u4+ ~ U4)

w cry=
(u4+ 2 U4)

(AS)

which is always stable. The discontinuity of the or-
der parameter and the value of r for which the
large-Qr minimum crosses over from a metastable
point [r & r, (T)] to an absolute minimum
[r &r, (T)] are given by

Q, (r)=—1 wc

(u4+ ~ Ug)

w c
r, (T)=

(u4+ 2 U4)

(A6)

Thus whenever w is finite the mean-field Hamiltoni-
an (A2) has a first-order transition near a spinodal
point.

D ~~=0 when a&P. Note that the only trilinear
couplings that will determine the stability of the
mean-field solution is w. The extrema for small and
large Qr are again determined by BA MF/Bgr ——0
and, for the Qr that develops continuously from
Qr ——0 with r & 0, we find
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