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We study in detail, within the adiabatic approximation for the structural degrees of free-

dom and on exact grounds for the magnetic ones, the d=l magnetostrictive spin- —, XY
model in the presence of an external magnetic field along the z axis. We calculate the
specific heat, magnetization, isothermal susceptibility, and the structural order parameter
and spectrum (including the sound velocity). The system presents, in temperature-field

space, three structurally different phases: the uniform (U), the dimerized (D), and the
modulated (M) phases (the latter can be either commensurate or incommensurate with the
other two). The critical frontiers U-D and U-M are of the second-order type while the D-M
one is of the first-order type; all three join at a Lifshitz point. The U-M frontier presents a
new type of multicritical point on which the frozen structural wave vector vanishes. The
phase diagram is quite anomalous for high values of the elastic constant. Several other ef-
fects are predicted. The present theory is expected to be applicable to substances like TTF-
BDT [tetrathiafulvalinium bis-cis-(1, 2-perfluoromethylethylene-1, 2-dithiolate)-metal],
TTF-BDS [tetrathiafulvalinium bis-cis-(1, 2-perfluoromethylethylene-1, 2-diselenolato}-

metal], MEM(TCNQ}2 (N-methyl-N-ethyl-morpholinium ditetracyanoquinodimethanide},
and eventually the alkali-metal tetracyanoquinoditnethanides (TCNQ).

I. INTRODUCTION

In the last decade a considerable amount of work
has been dedicated to the study of the so-called
spin-Peierls instability (SPI) (for an excellent recent
review see Bray et al. '), which induces structural
phase transitions in systems that are quasi-one-
dimensional in magnetic interactions although three
dimensional in crystalline interactions. Typically,
the systems present a uniform ( U) phase (referred to
as the disordered one from Landau's standpoint, cor-
responding to a system of atoms equally spaced
along the chain) at high temperatures and a more
complex phase (referred to as the ordered one) at low
temperatures; this phase can be structurally dimer-
ized (D phase) or can present complex structural
modulations (M phase) depending on external
parameters such as the magnetic field. The
structure of the M phase might be either commensu-
rate or incommensurate with that of the U phase;

in any case, the problem is quite analogous to that
of systems exhibiting Peierls instability. ' ' The
spin-Peierls type of structural phase trans-
ition has been exhibited on several substances, par-
ticularly on the TTF-BDT [tetrathiafulvalinium
bis-cis-(1, 2-perfluoromethylethylene- 1, 2-dithio-
late)-metal] and TTF-BDS [tetrathiafulvalinium
bis-cis-(1, 2-perfluoromethylethylene- 1, 2-diseleno-

lato)-metal] compounds ' '
I (TTF)+-

[MX4C4(CF3)q], with (M,X)=(Cu, S), (Au, S), and

(Cu, Se)I and A+-(TCNQ) [2+-tetra-
cyanoquinodimethanide, ' with A + equal to
Na+, K+, lb+, Cs+, and NH4+; within certain re-

strictions we could include herein A equal to
MEM»z (Refs. 25—28), NMP (Ref. 29), and TTF
(Ref. 30), where MEM + is N-methyl-N-ethyl-
morpholinium and NMP is N-methyl-phenazinium],
through magnetic susceptibility, ' ' ' ' ' ' electri-
cal conductivity, ' ' ' ' specific heat, ' '

magnetization, ' ' latent heat, ' optic proper-
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ties, ' x-ray, ' neutron scattering, ' ' and EPR
(Refs. 13 and 18) experiments. The theoretical ap-
proaches to this phenomenon have been performed
through the use of the magnetostrictive quantum
XY (Refs. 2,3,5,31—37) and Heisenberg
models; the former, although less frequently realis-
tic, presents the advantage of being exactly solvable
with respect to the magnetic degrees of freedom.
For both models, and more particularly for the
Heisenberg model, preliminary or detailed discus-
sions have been performed concerning various quan-
tities such as entropy, specific heat, ' ' magneti-
zation, ' magnetic susceptibility, ' ' ' ' ' and
structural order parameter, "' ' ' ' ' as well as
the influence, on some of them, of an external mag-
netic field ' ' ' ' ' ' ' and of an external
stress. '4'

Let us now concentrate on the magnetostrictive
spin- —, XY model where the magnetic coupling con-
stants are assumed to depend only on the mean dis-
tances between spins (adiabatic approximation ),
i.e., the structural fluctuations are neglected; this as-
sumption is expected to be acceptable if we take into
account that the system is three dimensional with
respect to the crystalline degrees of freedom.
Pincus ' showed that an XY antiferromagnetic chain
is, at vanishing temperature, unstable with respect to
dimerization, Beni and Pincus exhibited next that
this instability induces a second-order phase transi-
tion between the U and D phases, under the assump
tion that no other phases have to be considered. Du-
bois and Carton proved next that, at the critical
temperature T, and coming from high temperatures,
there appears a structural order which indeed is a di-
merization. Finally, in a recent paper we have ex-
hibited that below T, down to T =0, no contribu-
tions to the structural order appear other than the
pure dimerization one; the same statement seems to
be true in the presence of an XY coupling anisotro-

33,35

If a magnetic field H (perpendicular to the XY
plane) is applied to the system, important modifica-
tions appear in the equilibrium configuration, as the
wave vector q, characterizing the "frozen" structure
might no longer be that which corresponds to a di-
merization, and consequently phase transitions to-
ward a new phase, namely the M phase, might
occur. The magnetic field dependence of q, has al-
ready been detected both theoretically ' ' and exper-
imentally; however, the available discussions can be
considered as preliminary. Within this respect we
have recently presented the complete phase diagram
in the T-H space (all three U, D, and M phases)
where two special paints clearly appear, one of them
being a Lifshitz point, the other one, referred to as

starting point, has a nature which we attempt to elu-
cidate herein (Sec. IV). Furthermore, in Sec. II we
present all the details concerning this phase dia-
gram; the influences of T, H, and the harmonic and
anharmonic elastic constants on the dimerization or-
der parameter (Sec. III) and on the specific heat,
magnetization, isothermal magnetic susceptibility,
saund velocity, and relevant optic frequency (Sec.
V), are discussed as well.

II. UNIFORM CHAIN

where p is the elementary magneton, H &0 by con-
vention, and I JJ J are local exchange integrals, and
where, for future convenience, we have considered
an even number of spins. Through the Jordan-
Wigner transformation

j—1

aj —— g 2S SJ+, (2)
i=0

we may introduce pseudofermion (spinless magnetic
excitations) creation (aj ) and annihilation (aj) apera-
tors, and rewrite the Hamiltonian as follows:

Pi ~ = ——, g JJ(aj ai+i+aj+iaj. )
j=l

2N

+@HE aj aj NpH, —
j=l

(3)

where the additive term comes from the transforma-
tion

g 1

Sj 2 aj aj (4)

By introducing next the Fourier-transformed quanti-
ties

2N

bk= Q e'J"a ( —m. &k &n).
and

2N

Je —— g e' JJJe( —m &q &n.),
j=l

the Hamiltonian becomes

Am ——Ap+V, (7)

I.et us consider a cyclic linear chain (with a fixed
lattice parameter equal to unity) of spins —, whose

magnetic contribution to the Hamiltonian is given
by

2N 2N

4 ~ = —g JJ(SJSq+i+SJSJ"+i ) pHQ SJ—,
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where

~o=—
I Jo I Yet, bt, bt, N—h (8)

ek
—=h —cosk,

h=pH/I Jo I,
( ik+ i(q —ki)

J
aq=

(10)

(12)

The present treatment holds for both Jo&0 and

(this contribution is the only one in the uniform
phase) and

V= IJoI g g/i~btbt, q
q+p k

with
p&+p(&)+p(&)+. . . (13)

where I'p" is the magnetic free energy associated
with 4 o, [the superscript (1) has been introduced for
future convenience, and refers to the fact that the
crystalline unit cell under consideration contains
only one atom], symmetry excludes odd-order terms,
and

Jo &0. However, strictly speaking, Eq. (8) is correct
as it stands only for Jo & 0; for Jo & 0, one can intro-
duce a description in terms of holes (instead of par-
ticles ) and verify that the Hamiltonian remains
equivalent to that of Eq. (8), except for the sign of
the magnetic field.

Let us now calculate the magnetic contribution
F to the free energy of the system by treating V as
a perturbation to P p within the temperature-
dependent Green's-function framework; we obtain

kg T l &/'k~ T A'Ik~ T

f dpi f drj(T, [V;„i(ri) V;„,(rt)]), „0(j =2,4, . . . ) . (14)

where T, is the chronological operator, the thermal average is denoted by angular brackets, whose subscript
"con" denotes that only connected diagrams are to be considered, and

4 or/R —4 or/R
Vini r =e (15)

In the expansion (13) we shall retain only the first two terms (Fz" corresponds to a simple two-vertex ring dia-

gram) as we are presently interested only in the detection of the structural mode (characterized by its wave vec-

tor q) responsible for an eventual instability of the system; later on we shall come back to this point. We ob-

tain, through use of the quasicontinuum limit g&~N/qt dk,

(&)

fo —= ————f dkln 2cosh
Ep 2t 1l'

NIJoI 7r o 2t

and

p(1)
fz = = —g f dk IAi I

G(k, q),
NIJoI n. ~o

with

(16)

(17)

and

t=—ksT/I Jo I

G(k, q) =—g 1

2 „(iso„ei,)(iso„e—i, q)—~n

(18)

where co„=ter(2n+1), with n =0, +1, +2, . . . . Through standard complex-plane integration and use of Eq.
(12), we Anally obtain

2
Jq ~

z tanh(e&+q/z/2t) —tanh(Ep q/g/2t)fz" ——— g dk cos k
2m ~p Jp ~k+qn —~k —qZ2

(20)
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Let us now take into account the elastic contribu-
tion F, to the free energy of the system. Unlike the
case for the magnetic contribution, this one will be
treated only approximately (in the adiabatic approxi-
mation; see Ref. 47) in the sense that we neglect
structural fluctuations; this approach should be very
crude if applied to a fully one-dimensional system,
but is hopefully quite acceptable to describe sub-
stances which are three-dimensional from the
structural point of view although fairly one-
dimensional in the magnetic interactions. By
neglecting anharmonic elastic contributions (they
play a minor role as will become clear further on) we
have

clear later on), i.e.,

J(u) =J(0)+J'(0)u, (23)

we obtain the parameter JJ which appears in Eq. (1),

JJ ——J(0)+J'(0)(XJ+)—XJ ),
and hence

Jq J——(0)5q p+ J'(0)(e 'q —1)Xq,

(24)

(25)

where we have used Eqs. (6) and (22) [we note that
Jp ——J(0)]. By substituting Eq. (25) into Eq. (20)
and by taking into account Eqs. (16) and (21), we ob-
tain the total free energy Fof the system:

2N (
F, = g —(XJ+)—XJ)

j=1
J+

=2NCQ (1—cosq)
~ Xq

~

q

(21)

where C is the first-neighbor harmonic elastic con-
stant, XJ is the mean position of the jth spin (with
respect to its position in the uniform phase), and

2N

2zj, (22)

We can now go back to the magnetic contribution.
If we assume that the interaction between first-
neighboring spins is characterized by an exchange
integral J(u) where u denotes the incremental dis-
tance (with respect to that of the uniform chain) be-
tween two spins, and expand up to the linear term
(higher-order terms play a minor role as will become

F (1) & 2 2f
~~ J

~

fP + 2 g ~q )q
q~o

where

cpq—:(1—cosq)(E Lq ), —
c

] J(o)
I

i
J'(o) i'

1Lq=
4m. sin(q/2)

f~dk COS k
sink

h —cos(k +q/2)tanh
2t

—tanh
h —cos(k —q/2)

2t

and

(26)

(27)

(28)

(29)

(30)

06
The critical surface in the (t, h, k) space which

04
(U)

0.2

0 TL Tr MTt'

4 2 4
FIG. 1. Uniform-chain relevant phonon spectra associ-

ated with sets of reduced temperature t, magnetic field h,
and elastic constant K. The cases I and III exhibit the
trigger of incommensurate (or high-order commensurate)
structural instabilities.

0 0.1 0.2 03 0.4 05 06 t 0 05 10 15 20 (

FIG. 2. Critical lines (solid) in the reduced-temperature
magnetic field space; they separate, for different values of
the reduced elastic constant It", the uniform (U) from the
dimerized (D) and modulated (M) phases. Various
constant-q, lines (dashed) are indicated as well; those as-

sociated with q, =m. and q, =0, respectively, correspond to
Lifshitz (solid dots) and "starting" (open dots) points.
Note that the (a) and (b) scales are different.
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separates the disordered phase (uniform chain) from
ordered phases (dimerized or modulated chain) is
determined by a soft-mode criterion, namely

roq (t, h, E)=0 [i.e., E=Lq'(t, h)], where q~ is the

wave vector of the first (coming from the U phase)
structural mode with respect to which the system
becomes unstable, i.e., q, maximizes Lq for fixed t
and h. To be more precise, coq ——0 determines the

C

metastability limit of the U phase; this limit coin-
cides with the critical one if and only if we are fac-
ing a second-order phase transition; this seems to be
indeed the case all over the critical surface, as
strongly suggested by the analysis of the particular
cases treated in Sec. III [if it is so, neglecting F& and
higher-order contributions in Eq. (13) is fully justi-
fied as long as we do not enter into the ordered
phases]. We have illustrated in Fig. 1 the influence
of t and h on the spectrum cuq. In Figs. 2(a) and 2(b)
we present t-h phase diagrams associated with dif-
ferent values of X; several constant-q, lines are
presented as well. We remark that (a) at fixed value
of h and increasing t we obtain the sequence (non-U
phase) —(U phase) if h &1, and the sequence (U
phase) —(non-U phase) —(U phase) if h y 1 and not
too high; the critical frontier is universal (the same
for all values of K) at the first-order asymptotic con-
tribution in the limit t ~0, and is given by

h —1 t ln(2EV mt )-—1 —(t/2)lnt .

(b) At fixed value of t and increasing h we obtain, at
intermediate temperatures, the unusual possibility of

'
a sequence (non- U phase) —(U phase) —(non- U
phase) —(U phase) if E&ICAL=0.2; this possibility
disappears for E &K*. It is remarkable that the
same value E*=0.2 separates two different re-
gimes in the y-t phase diagrams where y denotes a
spin-XY coupling anisotropy which can be intro-

33duced in the model (in our present model y=0);
(c) The constant-q, lines cut the h axis at points

tc

0.8-

0,6-

0.0-

LP LP LP

04 =0.2

I 1
I

ISi-
0.122 0.124 I

Q SP 02SP Q4 Q6 SPQ8

LP LP LP

01

I , SP SPi=
0 0.2 04 0.6 0.8 1.0= 1.2 1.0
FIG. 4. Variation of the wave vector q, (associated

with the structural instability) along the critical line [q,
against the reduced temperature (a) or magnetic field (b)]
associated with given values of the reduced elastic con-
stant K; LP and SP, respectively, denote Lifshitz and
"starting" points; q, =0 and q, =m, respectively, denote
the uniform and dimerized phases. (b) The K = oo curve
(dashed) satisfies h =cos(q, /2); the q, =0 variation of the
K =0.2 line has been designed slightly below the abscissa
only for visual purposes.

satisfying h =cos(q, /2); this fact can be easily un-

derstood if, following along Peierls lines ' we re-
mark that q, =2kF where k+ is the Fermi wave vec-
tor of the problem [through Eq. (10), ek =0 impliesF
h =coskF]. (d) For a given value of E, the q, =~
and q, =0 points are special ones: The former is an
inflection point and corresponds (as we shall illus-
trate further on) to a Lifshitz point where two
second-order (U Dand U-M) cr-itical lines and one
first-order (D M) critical line -converge; the latter is
a peculiar one (obtained, as far as we know, for the
first time and referred to hereafter as starting point)
whose characteristics will be discussed later on (it is
systematically located slightly above, in what con-
cerns h, another inflexion point). (e) The critical
temperature at vanishing magnetic field (see Fig. 3)
satisfies '

0.2-

0 1 2
FIG. 3. Reduced-temperature —inverse-elastic-constant

phase diagram associated with vanishing magnetic field;
U and D, respectively, denote the uniform and dimerized
phases

1
dk

sin k
h

cosk
tanh

m o cosk 2t
'1

1—ln —if t~0
77

if t~~
8t

(31)

(31')

(31")
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FIG. 5. Locus of the maxima of L, with respect to q, :
several constant-field (solid) and isothermal (dashed) lines
are indicated. Constant-field lines: (a) the vertical
asymptotes (dotted-dashed lines) are located at
q, = arcc,=2 arccosh; (b) h =0 {h—+ ao) is associated with the axis

q, =m (axis Lq =0). Isothermal lines: (a) all of them
c

start, for h =0, on the axis q, =m. and are partially con-
tained therein; (b) all of them are partially contained in
the axis q, =0 and finish, for h~oo, at the corner

q, =L =0' (c) the t —+0 (t~tx)) line corresponds toqc= q
=

Lq —+00(Lq —+0). The solid (open) dots correspond to

Lifshitz ("starting" ) points. The numbers between
parentheses are the associated values of t.

( h=o)

5 f

FIG. 6. Vanishing magnetic field dimerization order
parameter g as a function of the reduced temperature t
and elastic constant E; @=0, V5. The lower E is, the
more important become the anharmonic effects {a& 0) in

order to avoid an unphysical growth of g in the low-

temperature region.

Along the t-h critical line associated with a given
value of E, q, varies continuously [see Figs. 4(a) and
4(b)j. It is interesting also to analyze the main prop-
erties of the function L~ because it does not depend
on E: In Fig. 5 we present the locus, in the q, -L&

space, of the maxima of Lq with respect to q (as t
and h vary). The thermal dependence of L~(t, O)
provides the vanishing-field critical line in the t-E
space (see the basal plane of, Fig. 6).

III. DIMERIZED CHAIN: ORDER PARAMETER

A. Equation of state

m i.e. each unit cell of the crystal now contains twoI. t us now consider the dimerized phase of our system, i.e., ea
'f hase . The magnetic contrI ut1on to ethspins (hence the lattice parameter is twice its value m the uniform p

Hamiltonian can be written as follows:
N

= —g [J(22))(S" S" +S" S2 )+J(—22))(S2 S2 +1+S jS2~j 2)+j IpH~ S2. 1+—S2.
j=l

where rj is the dimerization or order parameter (the d1stances between 'g '
g p'en nei hborin s ins are now alternately

1+2rj and 1 —2q)). By using, as before, the transformation (2), we obtain

N

y [J(29)(u2j —1~2j +~2ju2j —I)+J( 27)(a2ju2j+1+~2j+lu2j)j
j=l

+p y (~2j —I+2j —I +I22jI22j) +pH

= ——,g [J(2rj)(e '"cpck+e'"ckck)+J( 2rj)(e ' ckck+e'—ckck) j+pHQ (cktc~ + ckc)k~pH,

(33)
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where n—/2&k &m/2 and
( K=0.4)

CIF

c)c

N

g exp[i (2j —1)k)aqj.
N J

N
j(2J')kge a,,

(34)

In order to diagonalize the Hamiltonian, we finally
introduce new fermionic operators through the
transformations

.25

1
Ck ~ (Rk+Pk) ~&2

iek
ck = (ak —pk)e

&2

where

Hk =arctan(ri tank)

with

(35)

(36)

Yl

0.5

03 (K

t=o

J(2ri) —J(—2g)
J(2')+J( —2g)

Whenever Eq. (23) holds we have

J'(0)g
9—2

J(0) I7T &

(37)

(37')

0.2-

O. i-

I

0.1 0.2 0.3 04 0.5 h

g (ek&k&k+ek~k~k )

k

where

(3g)

where we have used Eq. (30). The Hamiltonian be-
comes

h

0.6-
, hM'.Du- line04-, '
h

"m ---=-
UD- line

(@=0.4)

(u)
(c)

ek=h —(cos k+g sin k)'~~,

ek—:h + (cos k + ri sin~k)'~~ .
(39)

+ln 2cosh
2t (40)

It is straightforward to see that g=0 provides ex-
pression (16). The total free energy is given by

The free energy Fo ' [the superscript (2) denotes di
merization] associated with this Hamiltonian is
given by

(2)
(2)

I
J(0)

I
N

n/2= ——f dk In 2cosh
2t

0 0.& 0.2 0.3
FIG. 7. Dimerization order parameter g as a function

of the reduced temperature and magnetic field; a=O, V5.
(a) The projection of the surface on the q =0 plane is indi-
cated as well (dotted-dashed). (b) Isothermal lines; the
dotted-dashed lines indicate the g&0+ g=O first-order
phase transitions (t =0, 0.05, and 0.1 imply h~ =0.325,
0.312, and 0.285); (c) magnetic field temperature phase di-
agram; the solid and the dotted-dashed lines are, respec-
tively, second- and first-order critical lines; the UD and
DU lines are metastability limits. LP denotes the Lifshitz
point.

f= =fo +—U(gia, 5),
I
J(0)

I
N

(41)

where U(g;u, 6) is an elastic potential more general
than ECg in the sense that it may include even
anharmonic contributions (characterized by the
parameters a) 0 and 0&5&1); these contributions
(which modify absolutely nothing in the results ob-
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tained in the preceding section) play, for small
values of E, an important role as we shall see in the
present section (the role played by odd anharmonic
contributions is a relatively secondary one and is
neglected herein). In order to perform numerical ap-
plications we shall adopt

A (ri;a, 5)
2m'

sin k

(cos k+ri sin k)'/

Ek ek
tanh —tanh

2t 2t

4

U(ri;a, 5)=E ri +
1 —ri /5

(42) where

(43'}

which provides Eri if a=O, diverges if g grows

up to 5, and whose asymptotic expansion in the lim-

it g~O is given by EC (ri +art ). To be precise let us

point out that the inclusion of anharmonic terms in
the variable ri (instead of ri) simultaneously covers
possible departures of F, /N from C(2') and of
J(u) from J(0)+J'(0)u [see Eq. (23)]: this fact be-

comes clear if we remember the definition (37). Ac-
cording to our choice of a unit lattice parameter,

1

cannot exceed —, (a physically acceptable F,
should diverge at this point); in the (highly probable}
case that J(u) [or J(—u)] vanishes before reaching
this point, we must have 5=1 because I2}I can
grow up to unity [see Eq. (37)]; in the (speculative}
case in which J(u) could remain finite up to

I
ri I

= —,, then

5=
I
J(1)—J( —1)

I
/

I
J(1)+J(—1}

I
&1

The equation of equilibrium states df/drt=O
eventually admits, besides the trivial solution g=0
( U phase), the following one:

(2)fo aU
(43)

B(ri ) B(ri )

Therefore [through use of Eqs. (40) and (42)],

2 ~ 2

~(~', ,5)—= 1+ &(2—&/5}
(1—ri'/5')'

(44)

This equation (discussed in Secs. IIIB and IIIC)
provides, for given values of K, a, and 5, the order
parameter 21(t,h) in the dimerized phase (by defini-
tion ri )0) [see Figs. 7(a) and 7(b)].

A Mdk sin k

(cos k + rt sin k)'/2

0&k &kM & ~ (45)
2

'

Let us first of all discuss the case a=0 (V5):
Equation (45) becomes

B. Vanishing temperature

The discussion of the case t =0 is rather complex
and it is useful to separately describe six cases,
respectively, associated with six different possibili-
ties for the pseudofermion spectrum (see Fig. 8).
Let us first point out that in the cases (c) and (f) no
tion ri&0 exists. The solution in the other four
cases [(a), (b), (d), (e); see Fig. 9] satisfies

F(k (1
—2)1/2) E(k (1

—2)1/2)

(1—ri ). km

if g(1 (46)

rt E(k, (ri 1)' /ri) F(—k, (ri 1)'/ —/il}-
my(21 —1)

n/2 —k

m./2 —kM

if g)1 (46')

where F(x,y) and E(x,y), respectively, denote the elliptic integrals of the first and second kind, and where

k =0 and kM ——m. /2 in the cases (a) and (d), k~ =0 and kM k, in the case (b)——, k =k, and kM n./2 in the-—
case (e), with

2
1/2

1 —A
k, =—arcsin

1 —n
(47)

We remark that if h & 1 and h & 7} [cases (a) and (d)], Eqs. (46) and (46') imply r}(O,h) = ri(0, 0) where ri(0, 0)
satisfies
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K([1—rl'(0, 0)]' ')—E([l—rl'(0, 0)]' ')
m[1 —rl (0,0)]

[g'(0,0)—1]' ' [g'(0,0)—1]' '
g (0,0)E

q(0, 0) q(0, 0)

~ri(0, 0)[rj (0,0}—1]

(48)

if K&E= —, (48')

where E(x) and E(x), respectively, denote the com-
plete elliptic integrals of the first and second kind;
E =IC= —, implies rl(0, 0)=1; Equation (48) leads,
in the limit E +no, to—q(0, 0)-(4/e)e; Equation
(48') leads, in the limit K~0, to g(0, 0)
—1/mE; rI(o, h) presents two branches (see Fig. 9)
which join at h =h~ and we verify that hM & rl(0, 0)
(the equality holds if and only if E & K).

In the case (b}, the lower branch of g(o, h) cuts the
h axis at h =h~ (see Fig. 9) which satisfies

2/3 x" fic o
2

(49')hm- —e if E~ap .
e

Let us summarize by saying that the harmonic
approximation is physically acceptable for
E&E= 4 and leads to interesting features such as
the evidence of first-order phase transitions at van-
ishing temperature and h =h* (h~ &h* &h~). On
the other hand, severe defects are present if E &E:
We shall exhibit now that all the anomalies disap-

(1 g )&/21+(1—h~)'
2m 1 —(1—h~ )'/

(49) (o:=0)
Hence

I

I

I \

I case(e)
I

I

/t- /

I

/

/

I
/

/

I /

/

I /
/

I

I / r
I

/

I / /

case (f )
I ///

/ //

I
///P

K= 0.116
25-

20-
K = 0.15

l

—P 0 1 ~kc Tt k

1h 1g
+1'// k

case (d)0&3( h C 'I0& h&q&1 (b)(o) 15-

K=K= 1/410--- ----
Q, Tf

2 ~ K=O
// /

//
/g I

I

k
2

(c)

-lj
2

4 case (c)=0.15
= 0.116 05

(d)0(h&1& Ti0&q&1& h

05

(b)
0 1/4 05

K

1.5hM 1.0

FIG. 9. Vanishing temperature dimerization order
parameter associated, for different values of E, with the
six cases (separated by dotted-dashed lines) for pseudofer-
mion spectrum (see Fig. 8); a=0, V5. The lines within
regions where the harmonic approximation is physically
unacceptable are dashed. The small figure shows the E
dependence of h and hM.

-I[
2 k2 (f)

0
1&q& h

1& h&q (e)

FIG. 8. Six typical possibilities for the pseudofermion
spectrum. At t =0 only the regions with ek &0 are popu-
lated. In (b) and (e) we have indicated the wave vector q, .
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ed in Fig. 6; those obtained for general values of ii
are illustrated in Fig. 7. We remark that for a given
value of E and sufficiently high values of h, the
transition (U~D) becomes of the first order: The
special point [characterized by (tr, hr )] which
separates the second-order from the first-order re-
gimes appears, within the present context, where no
other structural order than dimerization is under
consideration, such as a tricritical one (in fact, it will
become clear later on that it is a Lifshitz point and
therefore its nature is much closer to that of a bicrit
ical one in the sense that two second-order and one
first-order critical lines converge on it). From this
point start two metastability lines, namely that of
the U phase into the D phase (noted as the UD line
and cutting the h axis at h =h~) and that of the D
p ase inhase into the U phase (noted as the DU line and
cutting the h axis at h =hM); see Fig. 7(c). The DU
line is, of course, the projection of the surface g(t, h)
on the plane (t,h) and, if prolonged with the
second-order critical line, it exhibits an inflection
point (which is precisely the I.ifshitz point).

The first-order critical line runs between the UD
and DU lines [see Fig. 7(c)), cuts the h axis at
h =h*, and is determined by the condition

il(00) = hM

0.5fl(0, h)

K=O. G =010

6= i.o----—6 = 065
05 IO itK=O. t'(6. G =0.5

q(00) =hM
10 'K=O, G&0

06.
K=O,(16 G =0.5

(c)K=0.4.Q =0

04- K=04. a =0.5 065

$ =1.0
5 =0.65

05

02

0 0.2 0.4 06 0.8 1.0 li 0 05 10 1.5 K

FIG. 10. Effect of anharmonicity on the vanishing
temperature dimerization order parameter g(0, h); (a) the
order parameter as a function of h for selected values of
E, a, and 5; (b) h~ ——g(0, 0) as a function of a for E =0.4
and different values of 5; (c) h~ as a function of E for
a =0.5 and different values of 5.

pearear when anharmonicity is allowed to come in
(a & o).

The t =0 discussion of the order parameter goes,
for the anharmonic case, similarly to that of the
harmonic one. The results are illustrated in Figs.
10(a)—10(c). We remark that (a) increasing a and
(1—5) lead to decreasing i)(0,h) [in particular
a~no and/or 5—+0 imply i)(O, h) —+0]; (b) E=O
leads to il(O, h}=5 & 1 for any value of a; (c) anhar-
monicity leads to no (large) qualitative modifications
for E&E=—, (E&E); see, for example, the case
E =0.4 (E=0.116) in Fig. 10(a) [Figs. 9 and 10(a)];
(d) h is independent from a and 5 (as expected if
we take into account that it concerns the limit
g~O} and is still given by Eq (49); (.e) her ——i)(0,0)
strongly depends on a and 5 (in particular, for 5= 1

it joins h~ in the limit E~O for any positive value
of a), and (f) within the (speculative} hypothesis
5&1, unusual sequences of two first-order transi-
tions may occur [see the case
(E =0.116; a=0.5; 5=0.65} in Fig. 10(a)]. To
conclude this section let us emphasize that anhar-
monicity is able to provide g (1 for all values of E
as physically desirable.

(50)f(t, h;ri(r, h))=f(t,h;0) .

Therefore,

(50')f (O, h~;iI*)=f (O,h*;0),
where i)~=ri(0, h~)=ri(0, 0). This equality leads,
through the use of Eq. (41) (with a =0), to

[1—(h*) ]' +h~ arcsinh*+ (i)~)
mK

2

=E([1-(q*)']'"),
which together with Eq. (48) determines ri* and h~;
we can verify a remarkable property, namely,

(52)h* =Qh~h

where we have used the property hM ——i)(0,0) and
Eq. (49); in the limit E~ ao we obtain
h ~ -(2V 2/e ) e

C. Finite temperatures

IV. MODULATED CHAIN AND STARTING
POINT%e shall now go back to the complete equation of

states [Eq. (43')] and discuss the dimerization order
parameter at finite temperatures; in order to sim-

lify the numerical analysis we restrict to
EpK= 4, a fact which authorizes us to neglect
anharmonic contributions, i.e., we adopt a=0, and
hence A = 1 [see Eq. (44)]; the results for E & E are
qualitatively the same as long as a & 0 (and 5=1 in
order to concentrate on the physically relevant
models). The results obtained for ii =0 are illustrat-

Up to now we have seen that, for a given E (as-
sumed from now on to be high enough to neglect
anharmonicity), a critical frontier in the t hspace-
separates the U phase from the polymerized ones,
namely the D phase (which occupies the low-h zone
of the ordered region, and has been the specific sub-
ject of Sec. III) and the M phase (which occupies the
high-h zone of the same region). In the present sec-

MAGNETIC FIELD INFLUENCE ON THE SPIN-PEIERLS o ~ ~
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tion we intend to provide an analysis of the M
phase, and more specifically concerning the two fol-
lowing points: (a) What is the structural order in
the M phase, and (b) what is the order of the transi-
tion across the UM line? (Across the UD line the
transition is a second-order one; see Sec. III). This
discussion will also enlighten us as to the peculiar
nature of the "starting point. "

The full performance of this analysis demands the
knowledge of the free energy as a function of an ar-
bitrary structural order characterized by an order
parameter qq, where the wave vector q might or
might not be commensurate with the first Brillouin
zone associated with the uniform chain. With
respect to the M phase we shall restrict ourselves to
two particular cases (both commensurate), namely,
the trimerized and tetramerized chains (respectively
associated with "frozen" modes with wave vectors

q =2m/3 and q =m /2; note that an "acoustic" mode
with q =2ir/3 corresponds to an "optic" mode with

q =m /3). By following along the lines of Sec. III we
obtain the s-merized total free energy given by

(if s =2, r =1 and r =2 correspond, respectively, to
the previous families a and P} and

(s)

f

J(0) /N
/
J(0) /s,

(55)

The trimerized (s =3) and tetramerized (s =4) cases
that we have considered have the energy spectra
given by

f(s) f(s)+f(s) (53)

where fm and f," are, respectively, the magnetic
free energy and the harmonic elastic potential given
by

(s)
(s) Fm

J(0)l N

n/s= ——g f dk in[1+.exp( ek"'/—t)] (54)
r=1

e,")=h — —, g (j„"')' cos ',
r=1

Nk . 0kcos +V 3 sin — (s =3),
3 3 (56)

3
i y (j(3))2
r=l

Pk =arctan

' 2 1/2

g j„' ' cos (3k)

3

g j„") cos3k

a[0,n.], (56)

and

4 4 4
E ' ' ' '=h+ —, —,g (j' ') + — g (j„) +2 g j„cos(4k)

1/2 1/2

(
(4) (4) )2 (

(4) (4) )2J1 J3 J2 J4 (s =4), (56')

J'(0}
Jr + J(0) (gr+i gr (57)

and assuming in Eqs. (55) and (57) a sinusoidal
structural order parameter —this is reasonable for
not too low temperatures —given by

where j,' ' ' are the reduced exchange integrals. The
analyses of these two cases were performed by tak-
ing in the Eqs. (56}and (56') the expansion

I

/=5'. /6 for s =3 and g=m for s =4, obtained
through minimization of the total free energy.

From the equilibrium condition ()f"/()(i? )=0
and Eqs. (53)—(57') we obtain the respective equa-
tions of states for the trimerized and tetramerized
configurations:

(sI", /r) g
—(r)

i)„=i) c so(2n.r s/+ g), (57')
(58)

with r = 1,2, . . .,s. We have used the phases
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(59)

The results are presented in Figs. 11(a) and 11(b).
The transitions are of the second order on the UM
line (and only there).

Let us now conjecture what happens in the M
phase. We have seen in the case h =0 that
through the U-D critical point down to vanishing
temperature there is no other structural order than
pure dimerization. The same is true for h ~ 0 in the
whole D phase, as no other instability than that as-
sociated with q =0 (reduced Brillouin zone) is exhi-
bited by the spectra co~ ( t, h, rl( t, h ) ) and
co~(t, h, rl(t, h)). At this point let us interrupt our
analysis in order to indicate how the calculation of

I

2
N q

= all q +
~
aq

~

——&q&—
2 2

(60)

Nq = P?Zq —
71q

2 2

where

these spectra is performed. The quantities coq and
coq were obtained through a quite long but straight-
forward calculation of the free energy associated
with Hamiltonian (1), conveniently written in the
form (7), where A o corresponds now to a pure di-
merization (associated with the "optic" q =0 mode
in the reduced Brillouin zone) and where V corre-
sponds to the rest of the modes. We treat V as a
perturbation to A o within the temperature-
dependent Green's-function framework, and obtain

m/2

m, =E+ —f dk[G(k, q)[cos'(k —81, , )+cos'(k+81, , )

—2 cosq cos(k —81, &
)cos(k +81, z )]

+G'(k, q)[sin (k —8~~)+sin (k+81, ~)

+2 cosq sin(k 81, q )sin(k +—OI, ~ ) ]j,
n'/2

nq Kcosq+ —J dk[G(k, q)[e '&cos (k 81, &)pe'~c—os (k pOI, &)

(61)

—2cos(k OI, ~)c so( —k+OI, q)]

+G'(k, q)[e '~sin (k Ol, q)+e'~si —(nk+OI, q)

p 2 sin(k —Oq ~ )sin(k +Oq ~ )]), (61')

1

G(k, q) = ——, a a
&k +q/2 ~k —q/2

a a
&k gq/2 &k —q/2

tanh —tanh
2t 2t

+ ~ p
&k+q/2 ~k —q/2

13 P
&k+q/2 &k —qn

tanh —tanh
2t 2t

and

G'(k, q)
—= ——,

ek+q/2 —ek —q/2,

a
&k ~q/Z &k —q/Z

tanh —tanh
2t 2t

+ P a
~k +q/2 ~k —q/2

P a
&k yq/Z &k —q/Z

tanh —tanh
2t 2t

(62')
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where ek and ek are given by Eq. (39).
Let us now take up again the conjectural discus-

sion concerning the M phase. If we neglect soliton
effects as well as eventual three-dimensional mag-
netic ordering ones, it is plausible that in the M
phase things happen similarly to the D phase in the
sense that at a given point (t, h) a unique wave vec-

0 0.05 0.1 0.15 0.2 0.25

FIG. 11. (a) Critical lines (solid) in the t-h space for
different values of K; the constant-q, line (dotted) associ-
ated with the wave vector q, =m./2 (tetramerized modula-
tion) is indicated as well; the dashed lines indicate the
g=0 metastability limit associated with the fictitious
uniform-tetramerized transition. (b) Critical line for
K =0.4; the uniform-dimerized and the (fictitious)
uniform-tetramerized transitions are indicated as well (the
dashed and dotted-dashed lines, respectively, denote me-
tastability limits and the first-order critical line). (c)
Phase diagram indicating the uniform ( U), dimerized (D),
and modulated (M) regions; the q =2m. /3 and q =m. /2
first-order critical lines (which possibly correspond to
constant-q~ lines; see the text) are indicated (dashed) as
well; the q=0 line is qualitative and has been included in
order to characterize the nature of the starting point (SP);
LP denotes the Lifshitz point.

FIG. 12. Example (K=0.4) of the relevant phonon

spectrum along an isothermal line (t =0.1) as a function
of the magnetic field h. The cases I—VI correspond to
those indicated in Fig. 7(b) (cases VII—IX are not indicat-

ed therein). In case I we are in the D phase, below the UD

line (this is the type of spectrum we observed in the entire

D phase, below the first-order DM line); in case II we are
in the M phase, between the DM and DU lines; the DU
line (coo——coo ——0) is achieved between the II and III cases;
the (unphysical) case III corresponds to the location of the
DM line (coo presents its most negative value); the case IV
corresponds to the UD line (coo ——0); in case V we are in

the M phase, above the DU line; in case VI we are in the
U phase; in cases VII and VIII we are once more in the M
phase; in case IX we are crossing the UM line (which,
above the starting point, is simultaneously a constant-q,
line as well as a constant-q~ line with q, =q~ ——0).

tor qM is "frozen"; constant-qM lines are expected to
exist and they should cut the U-M line at the point
associated to q, =qM [see Fig. 11(c)]. Within an as-
sumption of continuity the constant-qM lines should
run along the superior (with respect to h) branch of
the phase diagram associated with the fictitious
uniform-polymerized transitions [see Fig. 11(b)],and
possibly coincide with their "first-order critical line"
[see Fig. 11(c)]. The whole image enlightens the na-
ture of the "starting point" and is consistent with
the h dependence (at fixed t) of the spectrum
coq(t, h, ri(t, h)) and toq(t, h, q)(t, h)) as illustrated in
Fig. 12. Let us stress that negative values of coq and
coq denote that the order parameter which has been
taken into account [the dim erization parameter
q)(t, h) in the present case] is not the appropriate one
(other wave vectors are "freezing"). In other words,
it seems plausible that riq(t, h) is essentially a Dirac
5 function of q whose evolution at t =0 for instance,
is as follows: For h &h~ it is located at q =qr (ex-
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FIG. 13. Reduced specific heat (per couple of spins and in units of kq) as a function of temperature. (a) Universal (E-
independent) U-phase curves for selected values of the magnetic field; (b) vanishing magnetic field curves for selected

values of the elastic constant (the dotted-dashed line indicates the locus of the maxima of C„which occur at the respective

critical points).

tended first Brillouin zone), and while h approaches
unity its location monotonically runs down to q =0
(the amplitude should vanish as well in order to pro-
vide a second-order phase transition).

susceptibility, sound velocity, and the q =0 "optic"
frequency. We shall consider an harmonic elastic
constant K high enough to neglect effects from
anharmonicity.

The reduced isochore specific heat C„ is given by

V. DIMERIZED CHAIN: OTHER PROPERTIES

Let us now turn back to the D phase in order to
discuss the influence of T and H on the isochore
specific heat, magnetization, isothermal magnetic

(63)

where f is given by Eq. (41) (we recall that a=O).
We obtain, for rt =—0 (U phase),

(h —cosk) (h +cosk)+
2 h —cosk 2 h +cosk

cosh cosh
2t 2t

(64)

h+ —,
1

if taboo, Vh
4t'

2 &n if t Oand h(1
C„—' (1—h )'i

yqV t if t~O and h =1
—(A —1)/t

y3 3g~ [(h —1) +y4(h —1)t +y, t ] if t~O and h & 1

(64')

(yi, y2, . . .,y5 are pure positive numbers), and, for at&0 (D phase),
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cx )2 (ef)'~ &/2 ( k + 2 /2t)J 0 cosh (&k

I P dk
2 a y2r) cosh (~k4~i'

sin k
cos '(4~2') -2sin k)

2r [tanh(&kay2t) tanh(sk~

2k +g2$jn k)

(65)
sin4k

2k +q sin k

f dk
cosh2(pk /2t)

1

h'(& /2t) cosh (
+ 2 /2t)

dk
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0
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Bh

We obtain, for q—:0 (U phase),

&
h —cosk h +cosk

Pl = dk tanh +tanh
2m o 2t 2t

(66)

(67)

h if taboo, Vh
4t

1 [a—rcsinh+ys, (expI[ —(1—h~)'/~/t] arcsinhI
7r (1 h 2)1/2

—expI[ —(1—h )' /t] arccoshI)] if t~0 and h &1

yqWt —e '" "/' if t~0 and h &1

(y6 and y7 are pure positive numbers), and, for g&0 (D phase),

I = n'/2

dk tanh +tanh
h —(cos k+rt sin k)'/ h+(cos k+r) sin k)'/

2' 2t 2t

(67')

(68)

The results are presented in Figs. 14(a) and 14(b): They provide, as particular cases, situations which are com-
patible with those appearing in Fig. 2 of Ref. 34.

The reduced isothermal magnetic susceptibility P is given by

$2f
Bh

We obtain, for ri—:0 (U phase),

(69)

n/2
X= f dk

4mt cosh [(h —cosk)/2t] cosh [(h +cosk)/2t]
(70)

1 h1—
4t 4t'

if taco, Vh

if t —+0 and h ) 1

1
z &/z

if t~0 and h & 1
m(1 —h )'/

—[(h —1)/t]

ys

(70')

(ys is a pure positive number), and, for g+0 (D phase),

n'/2

2m t o cosh (ek /2t) cosh'(ef/2t)

w/2 sin k
dk ganh ——ganh-

2t 2t (cos +g sin k)

j"'dk 1 1

cosh (e /2t) cosh (e~/2t)
k sin k—2t tan h——tanh-

2t 2t (cos k+g sin k)
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structural degrees of freedom (more precisely we
have neglected structural fluctuations, an approxi-
rnation which should not be too crude if we consider
that the system is a three-dimensional crystal; we
have, furthermore, neglected eventual soliton ef-
fects).

We have extended (in what concerns the domains
of variation of the temperature, magnetic field, and
harmonic elastic constant) the available results ' '

for the specific heat, magnetization, and magnetic
susceptibility (see Figs. 13—15). Furthermore, a cer-
tain amount of interesting phenomena have been ex-
hibited (for the first time, as far as we know). We
now recall those phenomena which seem to be the
most relevant among them:

(a) The system presents, in the T Hspace-, three
structurally different phases: The uniform (U), the
dimerized (D), and the modulated (M) phases. In
the whole region of existence of the D phase, a
unique wave vector qM (namely qst ——m. /a, where a is
the lattice parameter of the uniform chain) charac-
terizes the "frozen" structure. This is probably still
true in the M phase in spite of the fact that qM con-
tinuously varies (between 0 and n/a) there. in, by tak-
ing values which can be commensurate or incorn-
mensurate with the Brillouin zone associated with
the U phase.

(b) The first-order critical frontier which separates
the D and M phases is such that the critical magnet-
ic field increases (decreases) with temperature if the
harmonic elastic constant is sufficiently small
(large).

(c) The frontier which separates the U phase from
the other two phases is a second-order one, and
presents two special points; one of them is a Lifshitz
point and corresponds to the point where the
relevant wave vector q, begins to differ from ala (it
is an inflection point of the frontier; furthermore,
the first-order D-M frontier joins precisely there the
second-order frontier); the other point, referred to as
"starting point, " exhibits a quite peculiar nature [see
Fig. 11(c)] and corresponds to the point where q,
vanishes (this fact occurs at finite temperature). The
Lifshitz and starting points monotonously approxi-
mate to each other for the decreasing harmonic elas-
tic constant.

(d) For sufficiently high elastic constants, fixed
temperature, and increasing magnetic field, it is pos-
sible to observe [see Fig. 2(a)] the unusual phase se-

quence nonuniform-uniform-nonuniform-uniform;
for all values of the elastic constant, intermediate
values of the magnetic field and increasing tempera-
ture, the sequence which occurs is U-M-U.

(e) The thermal dependence of the sound velocity
presents a gap at the U-D critical points (possibly at

the U-M critical points as well) which grows consid-
erably in the presence of an external magnetic field.
Less spectacular effects (softening) are predicted for
the q =0 "optic" frequency (some experimental indi-
cations for this softening are already available' ).

T, (H =0) T, (H) —piiH
T, (H =0) AT, (H =0)

'2

A, &0.
A, is theoretically determined to be 0.44 [Refs. 7
(Bray) and 34] or 0.36 [Ref. 7 (Cross)]; our treat-
ment provides X=0.9. A first analysis' of the exper-
imental data [relative to the same three substances in
(i)] was compatible with our value, while further
analysis' was more compatible with the other two
values.

(iv) The vanishing-field isothermal magnetic sus-
ceptibility also enables severe comparisons: for ex-
ample, in the region of the "knee at T„namely the
quantity

Experimental evidence of the above effects would be
very welcome.

As a final conclusion let us present a few numeri-
cal comparisons of the present theory with other
available theoretical and experimental results:

(i) The location of the Lifshitz point is character-
ized by Tt/Tc(H=0); experimental values [ob-
tained for TTF-Au-BDT, TTF-Cu-BDT, and
MEM(TCNQ)z] range between about 0.65 and 0.8
(see Ref. 1 and particularly Fig. 24 therein); theories
from Bray and Bulaevskii et al. provide 0.54, and
that from Cross provides 0.77; the present treat-
ment yields values which range from 0.59 to 0.68
while the reduced (harmonic) elastic constant K de-
creases from 0.6 to 0.06.

(ii) The location of the Lifshitz-point critical
magnetic field Hz is characterized by
Ht /T, (H =0); this quantity is experimentally deter-
mined [for the same three substances in (i)] to be
10.5+0.6 (Ref. 1), with H given in kilo-oersteds and
T in degrees kelvin; the Bray and Bulaevskii
et al. theories provide 11.2 and the Cross theory
provides 10.3. In terms of the present reduced vari-
ables we have

HL /~g(H =0)=(ke /gas )(ht It, (h =0))
=7.47ht It, (h =0),

where we have used the gyromagnetic ratio g=2
(EPR results' for TTF-Cu-BDT yield g ranging be-
tween 2.0016 and 2.0151) and Bohr magneton pii,
Ht. /Tc(H =0) varies from 7.4 to 8.0 while E in-
creases from 0.3 to 0.6.

(iii) It is both experimentally and theoretically
found that, in the limit H ~0,
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d [Jt'(T)/X(T, )]/d [T/T, ] r r

Experimental results (Fig. 10 of Ref. 1) for TTF-
Cu-BDT provide the value 2.7; in our treatment this
quantity presents, in the neighborhood of E =0.4, a
maximum value of about 2.5 (its value is about 2 for
both K =0.3 and 0.6).

(v) The vanishing-field derivative dX/dT
~ z

could, in principle, be negative; however, typically it
is positive; in this case by further increasing the
temperature (T& T, ), X achieves a maximum X,„
at T =Tm, „; the experimental evidence (Fig. 10 of
Ref. 1) on TTF-Cu-BDT provides a ratio
T,„/T, =4; in our treatment this ratio is, for
E =0.6, 2.5 and achieves the value 4 for E & 0.6.

(vi) In what concerns the ordinates of graphs X vs
T (vanishing magnetic field), it is possible to extra-
polate, in the limit T~O, the thermal dependence of
X in the uniform phase, thus obtaining X(T =0; ex-

trap); the already-mentioned experiment (Fig. 10 of
Ref. 1) on TTF-Cu-BDT provides a ratio
X,„/X(T =0; extrap)=1. 4; this ratio equals, within
the present treatment, the value 1.1 in the neighbor-
hood of X=0.4; within the Beni and Pincus ap-
proach the result is similar.

Similar to the other theoretical proposals available
in the literature, the present one is not strictly cap-
able of numerically reproducing, with a single set of

parameters, a large variety of experimental results;
this is not surprising if we take into account its in-
trinsic simplicity. However, we have exhibited that,
with values of K (quantity related to a subtle one,
namely the space variation of the exchange integral)
ranging from, for example, 0.4 to 0.6, an overall
description is possible which numerically is accept-
able and which qualitatively is no doubt quite satis-
factory. This fact raises (at least in our minds) the
hope that most of the predictions provided by the
present theory (particularly points (a)—(e) in this
section) can be verified in nature.

Note added in proof. Very recent experimental re-
sults [J. A. Northby, H. A. Groenendijk, L. J. de
Jongh, J. C. Bonner, I. S. Jacobs, and L. V. Inter-
rante, Phys. Rev. B 25, 3215 (1982); J. A. Northby,
F.J.A.M. Greidanus, %. J. Huiskamp, L. J. de
Jongh, I. S. Jacobs, and L. V. Interrante, J. Appl.
Phys. 53, 8032 (1982)] provide a quite clear sugges-
tion of the existence in nature of the phase diagram
indicated in Fig. 11(c) (particularly with respect to
the neighborhood of the Lifshitz point).
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