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Effect of dilution on phase transitions in a transverse Ising model
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The effect of random bond (site) dilution on the phase transition of a three-dimensional

transverse Ising model is studied by a cluster variation, along with perturbation expansion
method. Complete phase diagrams in the temperature —concentration —transverse-field

space are constructed for both the cases. The value of critical transverse field as a function
of concentration, at zero temperature, exhibits a discontinuity at the critical value of con-
centration for the existence of phase transition, as conjectured by Harris. As is expected for
the existence of a second-order phase transition, the static susceptibility diverges on the crit-
ical surface.

I. INTRODUCTION

The transverse Ising model (TIM) was introduced
by de Gennes' as a pseudospin model for hydrogen-
bonded ferroelectrics like KH2PO4 (KDP). Since
then, TIM has been useful as a model for various
systems, for example, cooperative Jahn-Teller sys-
tems like DyVO4 and induced magnetic systems. '

In two or more dimensions TIM has a finite-
temperature phase transition which can be depressed
to zero temperature by increasing the transverse
field to a critical value. The one-dimensional TIM
at zero temperature is also critical at a critical value
of the transverse field. The TIM therefore serves as
a model of quantum-critical phenomena at zero
temperature. It is also known that the quantum-
critical behavior of the zero-temperature d-
dimensional TIM as a function of the transverse
field is the same as the temperature-dependent criti-
cal behavior of the (d + 1)-dimensional Ising
model. ' Recent real-space renormalization-
group calculations have reproduced these properties
of TIM. ' ' More recently, TIM has also been
used in the meson-field theory' and in lattice-gauge
theories. "'

Recently there has been interest in the problem of
disorder in the TIM, which may apply to DKDP-
KDP (where DKDP represents deuterated KDP)
mixed systems' and diluted vanadates. ' ' Bond-
and site-diluted TIM have been studied by Green's-
function techniques using random-phase and
coherent-potential (RPA-CPA) approximations and
some theoretical inconsistencies have been ob-
served. An interesting feature of the diluted TIM
was conjectured by Harris —the critical transverse
field as a function of concentration at zero tempera-
ture should display discontinuity at the percolation

concentration. Earlier theoretical treatments of the
diluted TIM, for example, series expansions and
CPA calculations, and experiments could not
verify Harris's conjecture. Recent real-space
renormalization-group calculations for a two-
dimensional bond-diluted TIM (Refs. 27 and 28) at
zero temperature could show the existence of this
discontinuity as a result of two fixed points at the
percolation threshold. More recently, dos Santos
performed real-space renorrnalization-group calcula-
tions for the complete phase diagram and critical
surface of two-dimensional bond-diluted TIM on a
square lattice and verified Harris's conjecture.

Real experimental situations, to which the diluted
TIM can be applied, correspond generally to three-
dimensional systems. ' ' ' However, on the other
hand, to the knowledge of the author, detailed calcu-
lations of the phase diagram and critical surface do
not exist for a three-dimensional diluted TIM. The
purpose of the present paper is to present a cluster
variation-perturbation calculation of the phase dia-
gram of three-dimensional bond- (site-) diluted TIM.
We use a two-spin cluster variation al method,
equivalent to the methods which have been used for
dilute Ising ' and dilute Heisenberg models,
along with a perturbation expansion, which is valid
near the transition temperature. Complete phase di-
agrams are constructed for a three-dimensional sim-
ple cubic lattice, both for bond- and site-diluted
cases. A discontinuity in the critical transverse field
as a function of concentration of bonds (sites) at
zero temperature is observed at the critical concen-
tration. It is the first time that a discontinuity as
conjectured by Harris is being verified for a three-
dimensional diluted transverse Ising model. The
static susceptibility is found to diverge on the criti-
cal surface.
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In Sec. II we present formal variation-
perturbation theory for the TIM. Sections III and
IV contain the application of the theoretical
development of Sec. II to the bond- and site-diluted
TIM, respectively, where we develop analytical ex-
pressions for the critical surface and static suscepti-
bility of the system. Numerical calculations of
phase diagrams and susceptibility are presented in
Sec. V along with a discussion of results and con-
clusions.

II. TWO-SPIN CLUSTER THEORY
FOR THE TRANSVERSE ISING MODEL

being Boltzmann's constant and T the absolute tem-
perature. The perturbed free energy F' can be writ-
ten as

—PF = —PF+PFO = (ln( exp( —P V) )~ ),

where

Tr[ . exp( —PA ~)]

Trexp( —PA &)

In the two-spin cluster approximation, we have for
the perturbed free energy

We consider the Hamiltonian

~=—2/ J,,s,'s,'—2/Bs, '—g r, s,",
(ij) i i

PF2 ———g (in(exp( —PA;J))~ ), ,

with the two-spin Hamiltonian

(9)

where S; are the spin- —, operators, J,J are the
nearest-neighbor interactions, and 8 is an external
uniform magnetic field which, if otherwise men-
tioned, will be considered to be zero. I; is the trans-
verse field. We introduce the spin-deviation opera-
tors o.; as

M~J —— 2JJS—Sf +2J(JS(s;+SJ')+2J~JS
—(r,s,"+r,s,") . (10)

Substituting Eqs. (4), (8), and (10) in Eq. (9), and
adding the unperturbed free energy Fo, the total
averaged free eriergy can be written as

o. =S—S'l (2) PF= N—(z —1)(—ln[Trexp( —PA t)]),
where S is the internal-field or molecular-field
parameter which describes the long-range order. In
general, in case of disordered systems S should be
site dependent, but in this section for simplicity
and for treating the bond-diluted case in Sec. III we
take S to be site independent. In terms of o.; we can
write

BNS 2S g—J;J ——Q[8—2SJ;(0)]o;

—g r, s,"—2$ J,,~,~, ,
i (ij)

+ ( ln[Tr exp( —PA»)] ), ,
Nz

4,= —[8+2SJ,(0)]S,'—I,S,"

and

» (2J~J'S—SJ. +——2,;Sf

+A,,s,'+ r, s,"+r,s,"),

(12)

where z is the number of nearest neighbors and N is
the total number of sites. Hamiltonians 4 & and P &&

are given by

where J;(0)=Q.JJ. Now we divide the total Ham-

iltonian in two parts as
where

A,;=8+2S[J;(0)—JJ ] . (14)

and

BNS 2S —QJ;J——Q (rpS

—g [8—2SJ;(0)]cr; (4)

In order to calculate the total averaged free energy
we therefore need to calculate Trexp( —PA &) and
Tr exp( —PM»). As can been seen diagonalization
of A

&
is simple and one can then directly calculate

the unperturbed partition function

(5) Z, =Trexp( —PA &) . (15)

The averaged unperturbed energy is then given by
The diagonalization of A &~ is not simple and there-
fore in order to evaluate the partition function

PFO (ln Trexp( ——PA ~)——), , Z»= Tr exp( —PA») (16)

where ( ), means average over all the configu-
rations of disorder (bonds or sites). P=(k&T) ', kz

we develop a perturbation expansion near the phase
transition temperature in powers of k;. Details of
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the perturbation expansion and evaluation of Z» are
given in the Appendix. Finally the averaged free en-

ergy I can be calculated by performing the configu-
ration averaging in the expression

PF—= —X(z —1)~lnZt~, + (lnZn~, .
2

As can be seen from the Appendix the two-spin
cluster partition function Zn is written as a sum of
two parts as

Zu =Zo+Z2 ~

where Zo and Z2 are given as

III. BOND-DILUTED TIM

(17)

and

Zp =2[cosh(PR&J. /2) +cosh(PJ&& /2)] (20)

In this section we apply the theory of Sec. II to a
bond-diluted TIM. In this case the single-spin parti-
tion function Z& is found to be

Z, =2coshI(P/2)[I +4S J; (0)]' where

+(A,; —A,J) V(R;1;J;1)],

Z2 ——p[(A,;+AJ) U(R,i',Jgi)

(21)

R+ R
U(RJ;J~ }= [exp(PR I/2) —e p(PJ~/2)] — [exp( PRJ/2—) exp(PJ—~/2)]

4Rj R J J R

p2
V(RJ;JJ ) = (R+ ) [exp(PRJ/2) —exp( —PJJ/2)] (R ) —[exp( 13R J/—2) exp( —13J~/2)]-

EJ

(22a)

(22b)

with R+ ——Rj+Jj'For the bond-diluted case R;j
and A,; are given by

R; =(J; +41 )'~

A,; =2$[Jg(0}—J;J ] .
(23)

The averaged free energy of the system can be ob-
I

I

tained by substituting Eqs. (18)—(23} into Eq. (17)
and performing the configuration averaging over the
random distribution of bonds. However, we leave
the averaging for later on and concentrate on the re-
gion near the phase transition. A self-consistent
equation is obtained for the variational parameter S
by minimizing the total free energy Ewith respect to
S. This leads to

(J~(0)P 'tanh(P/2)), = ((Zn) '[(D;+DJ)2U(R 1;JJ)+(D; DJ) V(R J;JJ—)]), ,
z —1

(24a)

with

P =[I'+4S 'J'(0)]'i'

and

(24b)

D; =Ji(0)—JiJ . (24c)

Assuming that a second-order phase transition exists, as the transition temperature T, (=1/P, ks) is reached
the internal field parameter S approaches zero. One can therefore obtain an equation for the critical surface
simply by linearizing Eq. (24) in S, which, for the critical surface in the temperature —transverse-
field —concentration space, leads to

(J; (0)),tanh(pI /2) = ((Zo) ( I[J (0)—JJ] +[JJ(0) Jz, ] I [U—(R 1,'JJ)+ V(R 1,'JJ)]
2zI

+ [2[J,(0)—J~J][JJ(0)—JJ;]][U(RJ,'JJ) —V(RJ,Jj)])), . ' (25)

In order to perform configuration averaging, it
should be kept in mind that J;(0), JJ(0), and JJ are
dependent random variables. In the expressions,

I

where JJ does not appear along with J;(0) [as on the
left-hand side of Eq. (25)], J;(0) can take one of the
z+1 values, denoted by J,
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J =mJ (m =0, 1, . . .,z)

with a probability

P(J )= '
x (1—x}'

m!(z —m)!

(26)

(27)
2(z —1)a—zR(R —1)=0 . (34)

Eq. (33) leads to the following relation, which deter-
mines the critical transverse field for a pure TIM in
the present approximation for the existence of phase
transition at T =0,

where x is the concentration of magnetic bonds. On
the other hand, in expressions where J,z and J;(0)
occur simultaneously, like on the right-hand side of
Eq. (25), depending on the choice of J;J, the distribu-
tion of J;(0) changes. For example, when J,J ——J,
J;(0) takes the value

J =J+mJ (m=O, l, . . . ,z —1)

with respective probabilities

(28)

z 1
h(p~/2)

8U(J)
z —1 I Zp(J)

(31)

It can be seen from Eq. (30) that in the limit I ~0,
Eq. (30) leads to the constant-coupling—
approximation result for the bond-diluted Ising
model, ' which is

x tanh(PJ/2) = 1

z —1
(32)

From this relation the well-known constant-
coupling —approximation result for a pure Ising
model (x =1) is recovered. Prom Eq. (32) the crit-
ical concentration of bonds for the existence of
phase transition in an Ising model turns out to be
x, =1/(z —1).

We shall now concentrate on the zero-temperature
phase transition. Equation (30) can be simplified in
the limit T~O, which leads to, for the transition
line in the I -x plane at T =0,

4(R —1)(1—x)a + (R + 1) [1+(2z —3)x ]a
—R(R —1)(R+1) [2+(z —2)x]=0, (33)

where a=I /J and R=(1+4a2)'~2. With x =1,

P(J )
z '

m(1 )z —1 —m (29)
z —1!

m!(z —1 —m)!

Using the above-discussed averaging procedure, we
get the following relation which determines the criti-
cal surface of the bond-diluted TIM:

[2+(z —2)x ]—tanh(Pl /2)
1

r
4

[ [1+x (2z —3)]U(J)+(1—x)V(J) ],Zp(J)

(30)

where U(J), V(J), and Zp(J) are U(R;J;JJ),
V(R;~;Jp ), and Zp, respectively, with J1 replaced by
J. For a pure TIM (x =1) this gives

In order to compare results of our theory with other
existing results, we made calculation of the critica1
transverse field for a squared lattice (z =4} and
found a, =3.334, which should be compared with
the series expansion result a, =3.04. At
x =1/(z —1), which, in the present approximation,
corresponds to critical concentration for the bond-
diluted Ising model, we find that Eq. (33) has two
different solutions for the critical transverse field

One solution is a, =O and another is a finite
nonzero real solution. This clearly shows the ex-
istence of a discontinuity in the value of the critical
transverse field as a function of concentration at
zero temperature for the critical value of concentra-
tion, which is in accordance with the Harris conjec-
ture. Detailed numerical results for the complete
phase diagram of a three-dimensional simple cubic
lattice will be presented in Sec. V.

Finally, in this section we obtain the static suscep-
tibility for the bond-diluted TIM. The averaged free
energy F is a function of S, which in turn depends
on the external field B, taken to be finite to calculate
the susceptibility. Therefore the magnetization M
and susceptibility 1 will be given by the relations

p
BF(B,S)

(35)
BB

and

dM(B, S ) BM(B,S ) dM(B, S ) BS
dB aB aS aB '

(36)

XBJpz(z 1)xA(J I )

Xp G(J, l,x,z)

where Xo is a constant and

1——tanh(PI /2),rA(J, I )=
Zp(J)

B(J,I,x,z) = 8zxU(J)

p

(37)

(38)

tanh(PI /2),r (39)

where the derivative BS/BB is to be determined
from Eq. (24) in the presence of the external field B.
As we are interested in the region near and above T,
(where S =0), the calculation of the susceptibility X
is much simplified and we obtain
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and

G(J,I,x,z)= [2+(z —2)x]—tanh(pr/2)
1

4
[ [1—(2z —3)x]U(J)

zp(J)

+(1—x)V(J)] . (40)

Comparing Eq. (40) with Eq. (30), which gives the
critical surface in the T-I -x space, it can be easily
seen that on the critical surface G(J,I,x,z)=0,
which, in turn, with the use of Eq. (37), shows that
susceptibility 7 diverges on the critical surface, as is
expected in case of a second-order phase transition.
Detailed numerical results for g will be given in Sec.
V.

IV. SITE-DILUTED TIM

PF =—g [ln(exp( —PA, J. )),]x
(,ij )

+ Q [K;in&, (A,;;r)]x. , (42)

where the square brackets with subscript E; denote
averaging over all the configurations of E;, and

4, (A,;;I )=Trexp( —i' t),
with

(43)

dered systems. Separating the Hamiltonian A in
two parts, i.e., the single-spin part and the interac-
tion part, as in Sec. II, we can develop a cluster ex-
pansion. Following the procedure of Hoeppener
et al. and the method of Sec. II, we can write the
averaged free energy of the system in the two-spin
cluster approximation as

For the site-diluted TIM, in this section we use a
slightly different approach. The Hamiltonian of the
site-diluted TIM is assumed to be

A = 2+—J,JS SJ'K(K~ —28 QS,'K;
(ij ) I

and

~,' = —X,S,'E, —rS,"E,

A, ; =2 g J;1rj +28 .
j

The two-spin Hamiltonian A,
&

is given by

(44)

(45)

—r ps,"K, , (41)

where the random numbers E; take the values E; = 1

if the site i is occupied by a spin and E;=0 if the
site i is unoccupied, i.e., occupied by a nonmagnetic
atom. Averaging E; over all possible configurations
[K;] gives the concentration x of spins, which is in-
dependent of the site index i, if the system is as-
sumed to be homogeneously disordered. In the
present case we introduce site-dependent internal-
field parameters ~;, which describe the long-range
order and the fluctuating local fields for the disor-

(2JJSf—sj'K;KJ rjs E; —r(SJ'K ) . —(46)

As usual, considering only the nearest-neighbor in-
teractions, we have Nz/2 different pairs of neigh-
bors. It is easy to see that the contributions to free
energy [Eq. (42)] F that come from pairs (ij) where
both sites are occupied by magnetic atoms can be
separated from those coming from the pairs (i,j)
where only one site is occupied by a spin. Applying
these considerations and rearranging the terms in
Eq. (42) we can write the averaged free energy in the
two-spin cluster approximation

Nz
PF2 ——Nx [in'—&&(k;;I )]x + [K;K&[in@2(A,; 2'&, A&

——2Jr;;I ) —21n4&(A,;;I )]]&

+Nz[K;(1 —KJ)[ln@&(A,; —2Jr~. ;1 ) —21n&b&(A, ;;1 )]]x. , (47)

where

4&,(k;,1,,;I ) =Tr exp( —PMn)

with

(48)

~;,= —(2J,,S,'s,'+ x,s,'+ x,s,'+ rs,"+rs,") .

(49)
As in the bond-diluted case, A q can be diagonalized
easily and one can directly get 4&(A,;;r). For calcu-
lating 42(k;, XJ;r), once again we note that the di-
agonalization of A

&& is not simple and therefore we
use the perturbation expansion in powers of A,;, as
discussed in Sec. II and described in Appendix.

I

Once 4& and 42 are known, one has to perform the
averaging over all the configurations of E;. Here we
use an approximation called the "first approxima-
tion" by Hoeppener et al. , where we assume that
~; does not depend on site i and put ~; =xS. A more
general approximation, as in the case of a diluted
Heisenberg model, with a site dependent ~; may be
expected to give better results. However, we
checked, by explicit calculations, that in case of
site-diluted TIM this other approximation does not
change the general qualitative results appreciably.
We therefore use the above-mentioned first approxi-
mation for averaging the free energy, which leads to
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P—F2 ———,Nzx in@2(2B +2J (z —1)xS,2B +2J (z —1)xS;I')

In the present case 4& and 42 are found to be

4, (A, ;I )=2 cosh [(P/2) [I p A, ]'~
J

and

4z(A, , A, ;I ) =Zp(J)+4PA, U(J), (52)
I

+Nzx (1—x)in@i(2B+2J(z —1)xS;I') N—x(z —1)in@i(2B+2JzxS;I ) . (50)

I

where Zp(J) and U(J) are the same as defined ear-
lier in Sec. III.

By minimizing the averaged free energy F2 with
respect to S, a self-consistent equation for S is ob-
tained as

L
tanh(PL/2) ——tanh(PE/2)+Sx(z —1)U(J)[Zp+16Px (z —1) J S U(J)] '=0, (53)

where

[I 2+4x2(z 1)2J2S~]i&2

I

can linearize Eq. (53) in S and can get the following
relation which determines the critical surface of the
site-diluted TIM:

and

K =[I' +4x z J S ]'~
(zx —x +1)—tanh(PI /2) =Sx (z —1)

1 U(J)
r Zp(J)

Once again, as in the bond-diluted case, assuming
the existence of a second-order phase transition, one

(54)

It can be verified easily that in case of a pure trans-

6.0- ~

5.0-

4.0-

3.0-

2.0.

l.0 .

0.2 0.4 0.6 0.8 )0 &= ~
—X

FIG. 1. Variation of critical transverse field (a= I /J) as a function of q = 1 —x (x being the concentration) at zero tem-

perature for bond-diluted ( ) and site-diluted ( ———) transverse Ising models.



6890 V. K. SAXENA 27

verse Ising model (x = 1) and in case of a site-diluted
Ising model (I =0), Eq. (54) leads to the same
behavior in the respective cases as obtained in Sec.
III from the case of bond-diluted TIM.

Concentrating on the zero-temperature phase
transition Eq. (54) simplifies, in the limit T~O, and
gives the following relation for the transition line in
I -x plane at T =0:

2x (z —1)(R + 1)a—(zx —x + 1)R (8 —1)=0 .

(55)

For the pure TIM (x =1), as is expected, this leads
to Eq. (34) for the critical transverse field at T =0.

As mentioned above, the behavior for I =0 is
found to be the same as that obtained in the bond-
diluted case, the critical concentration of spins in
the case of site-diluted case also turns out to be
x, = 1/(z —1). Once again, considering the zero-
temperature phase transition for this critical value

of the concentration of spins, we find that Eq. (55)
admits two different solutions for the critical trans-
verse field, i.e., a, =O and another finite solution,
verifying a discontinuity in accordance with the
Harris conjecture. Detailed numerical results and a
complete phase diagram for a three-dimensional
simple cubic lattice will be presented in Sec. V.

Finally the static susceptibility in the present case,
following the procedure of Sec. III, is found to be

X z(z —1)x A (J,I')
Xo

' ' ' Gi(J,I,x,z)
(56)

—Sx (z —1)
U(J)
zo(J)

' (57)

where 8(J,I,x,z) and A(J, I ) are the same as de-
fined in Sec. III and G& (J,l,x,z) is given by

G&(J;I,x,z) = (zx —x +1)—tanh(P1 /2)
1

I

I.
O)

~ —- ———
/

O Bi ~

/ /

6.0

FIG. 2. Phase diagram of a bond-diluted transverse Ising model. Continuous lines ( ) represent constant reduced-
temperature (T/To) transition lines in the transverse-field (+=I /J) —concentration (x =1—q) planes. Dashed lines

(———) are the constant-x transition lines for the transition temperature (T/T()) as a function of a. Dashed-dotted lines

(——) represent constant-o. transition lines for T/To as a function of q =( 1 —x).
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As in the case of bond-diluted TIM, one can see that
G&

——0 exactly corresponds to Eq. (54) determining
the critical surface of the site-diluted TIM, which
indicates that here also the static susceptibility
diverges on the critical surface.

V. RESULTS AND DISCUSSION

In this section we present the numerical results
and phase diagrams calculated on the basis of the
theories of Secs. III and IV. First we consider the
zero-temperature phase-transition line in the I -x
plane as calculated from Eqs. (35) and (55) for the
bond-diluted and site-diluted cases, respectively.
Results for a three-dimensional simple cubic lattice
(z =6) are presented in Fig. 1, from which one can
see that for q = 1 —x, =0.8, which corresponds to
the critical concentration of a diluted Ising model on
a simple cubic lattice in the present theory, the value
of a=l /J shows discontinuity both for bond- and
site-diluted TIM. However, the value of the discon-
tinuity b,a(x, ) is found to be more for the bond-
diluted case than for the site-diluted case. These re-

suits are in accordance with the Harris conjecture.
In order to compare the results of our theory with
other theories, we made calculations, based on Eqs.
(33) and (55), of the discontinuity b,a(x, ) at the crit-
ical concentration for a two-dimensional square lat-
tice (z =4) and found

b,a(x, ) =1.419

for the bond-diluted TIM and

b,a(x, ) = 1.277

for the site-diluted TIM. These values can be com-
pared with ha(x, )=1.746 obtained for a bond-
diluted TIM on a square lattice by real-space
renormalization-group method.

In Figs. 2 and 3 we present complete phase dia-
grams for three-dimensional (simple-cubic-lattice)
bond-diluted and site-diluted TIM's, respectively.
As can be seen from these diagrams, the discontinui-
ty in the critical transverse field at the critical con-
centration of bonds (sites) at zero temperature con-
tinues to exist at very low temperatures too. Fur-

i.o

/

6,0

FIG. 3. Same as Fig. 2 for a site-diluted transverse Ising model.
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ther, for lower transverse fields the critical tempera-
ture as a function of concentration also shows a
discontinuity at the value of the critical concentra-
tion. One can see that the shpaes of the critical sur-
faces for both the cases, i.e., bond-diluted and site-
diluted, are very similar. The only differences are in
the values of discontinuities at the critical concen-
tration. The phase diagrams of Figs. 2 and 3 can be
compared with the real-space renormalization-group

results for the critical surface of a two-dimensional
bond-diluted TIM on a square lattice. In this later
case the only discontinuity is that in the critical
transverse field at T =0 for the critical concentra-
tion. All other discontinuities observed in the
present theory for a three-dimensional case are ab-
sent in the two-dimensional case mentioned above.

In Fig. 4 we present the inverse static susceptibili-
ty XD/X as a function of temperature T/To (To be-

i0.0-- (o,4; ia)

(0.6; 3.0)
(0.6; l.2)

8.0--
( 0.8 ; 4.2 )

(0.8; 2.4)

(l.O; 4.8)

( l.o; 2.4)

6.0--

40

2.0--

l.o0.5 2.00 l,5 2.5
T To

FIG. 4. Inverse static susceptibility Po/P as a function of reduced temperature T/To for various values of concentra-
tion (x) and transverse field (a= I /J). Numbers in parentheses represent (x;a).
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ing the critical temperature of a pure Ising model
with I =0 in the present two-spin cluster approxi-
mation) for the bond-diluted TIM for various values
of the concentration x and transverse field I . As
can be seen in all the cases presented, Xo/X goes to
zero, corresponding to the divergence of the suscep-
tibility in case of second-order phase transitions. As
the numerical results for XDIX for the site-diluted
TIM were found to be very similar to those present-
ed in Fig. 4 for the bond-diluted case, we do not
present the susceptibility curves separately for the
site-diluted case. As can be seen the Xo/X vs-T-
curves deviate much from linearity in the vicinity of
Tc'

In conclusion, in this paper we used a two-spin
cluster-variation method along with a second-order
perturbation expansion valid near the phase transi-
tion to study the phase diagrams of three-
dimensional bond-diluted and site-diluted Ising
models in presence of a transverse field. A discon-
tinuity in the critical transverse field as a function
of concentration of bonds (sites) at the value of the
critical concentration x, at T =0, as conjectured by
Harris, was observed in both cases. To the best of
our knowledge this is the first time that the discon-
tinuity as conjectured by Harris has been observed
for a three-dimensional diluted TIM. Whenever
possible the results of the present theory have been
compared with other existing theoretical results for
similar systems, particularly the real-space
renormalization-group calculations on a square lat-
tice. We do not know of any experimental results
which can be used to check the present results and

I

APPENDIX

In this Appendix we calculate the two-spin parti-
tion function

Zu ——Tr exp( —PA n), (A I)

P'n —— 2J~Sf S—J' 1,;S(' A—)SJ —r(sg" +—S") .J

(A2)

We divide the Hamiltonian M&q in two parts A o and
4 &as

and

~,= —2J,,S,'s,'—r(s,"+s,") (A3)

(A4)

A o can be diagonalized easily and the eigenvalues
and eigenvectors are found to be

which show the discontinuity conjectured by Harris.
As is well known, the two-spin cluster approxima-
tion is a suitable approximation only at higher tem-
peratures; the validity of the present results has limi-
tations. However, qualitatively, the results are very
reasonable and comparable to other existing
theories, particularly verification of discontinuity
conjectured by Harris for a three-dimensional case.
A renormalization-group analysis of the phase tran-
sition and critical behavior of a three-dimensional
diluted TIN is desirable in order to confirm and im-
prove the results of the present theory.

E =—,
~

4 ) =(2P+) '[(R; +J; )( ++)+
~

——))+21 (
~
+ —)+

~

—+ ))],
2

~
+2& =(2) '"(

~
++ &

—
~

——&),

E3
~

+3&=(2) '"(
I

—+ &
—

I
+ —&»

2

R
I

'p4& =(2Pp '[(JJ—Rg)(
I
++ &+

I

——&)+2(
I
+ —&+

I

—+ &)]
2

(A5)

with

Piyi =[R,J(R,J+Jij )]'

and

R,,=(J,', +4r')'" .

As we are interested in the behavior near the phase transition where the internal field parameter S and there-
fore the parameters A,; are very small (in fact A,;—+0 as T +T, ), we can safely d—evelop a perturbation expansion
in terms of the Hamiltonian A &. Thus we write for Z»
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Zn ——Tr exp( —PA u) =Tr exp[ —P(A p+~t)]

=Trexp( —PA p)+Tr g ( —1)"exp( —PA o)
n=1

&& f dt, f dt, f dt„M,(t, )M,(t, ) M,(t„) (A6)

where

4 &(t)=exp(tP p)A &exp( tA —p) . (A7)

Using the eigenvalues of the Hamiltonian A p given in Eq. (A5), one can directly write, for
Zo =Tr exp( —PA o)~

Zp ——2 cosh(PR t /2) +2 cosh(I3J J /2) . (A8)

Et is easy to verify that the first-order term (n =1) in expansion (A6) vanishes. Therefore, since we are interest-
ed in the region near T, where A,; =0, we look for the second-order terms only and neglect the higher-order
terms in expansion (A6). The second-order term can be written as

p
Z2=Tr exp( —PA o) f dtt f dt2A t(tt)Mt(t2)

4 p tif dtl f dt2(+k
I
mt(tt )mt(t, )

I
pk )exp( pEk), — (A9)

where
I
%'k) are the eigenstates of A o defined in Eqs. (A5). Substituting 4 &(t„) from Eq. (A7) and rearrang-

ing the terms in Eq. (A9) one can perform integrations to give

(qk Im, Iq ) I'
Z2 ——P g g exp( PEk)—. (A10)

k=1 m=1 m k

k~m

Ek are the eigenvalues of 4 p given in Eq. (A5). Using the eigenvectors
I %k ) defined in Eqs. (A5) one can

evaluate the matrix elements (qlk
I
4,

I

%' ). Finally we get, for Zz,

Zp ——pI(A, ;+A.J~)[U(R;i;J;i)+ V(R;~;J,J )]+K,;lj [U(R;J,J,J ) —V(R;J.;J,f )]I,
where

8+
U(R I;J1 )= [exp(PR i /2) —exp(PJ&/2)] — [exp( PR J /2) —exp(PJ J /2—)]

4Z,, EJ EJ g

(Al 1)

(A12)

p2
V(R 1',J 1 ) = t (R+) [exp(PR 1/2) —exp( 13J&/2)) (R —) [exp( ——PR 1 /2) —exp( PJ&/2)]) . —

lJ

(A13)

Finally Zqq can be calculated from the sum of the two terms ZIq ——Zo+Z2. We use these results in Secs. III
and IV for the bond-diluted and site-diluted cases, respectively.
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