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Anisotropy and anisotropy-triad dynamics in spin-glasses
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We present a physical picture for the spin triad (n,P,q) and anisotropy triad (X,P, Q) in-
troduced in our earlier work. A discussion of some of the experimental implications of an-
isotropy relaxation is then given, and it is argued, by citing examples of less complex sys-
tems with random anisotropy, that such relaxation is independent of the processes respon-
sible for the time-dependent remanence associated with the spin-glass state. (It is suggested
that increasing the spin dimensionality will shed light on this latter question. ) The form of
the anisotropy torque is considered, including global triad and global single-axis anisotropy;
it is also shown how global averaging over local triad anisotropy can yield global single-axis
anisotropy. Expressions are derived for the macroscopic dissipative coefficients in terms of
time integrals of equilibrium correlation functions. Finally, it is shown, in the limit of van-
ishing anisotropy, that only the macroscopic modes contribute to the total magnetization
and to the new spin-space rotation angle which we introduce in this paper.

I. INTRODUCTION

We recently presented a macroscopic theory of
Heisenberg spin-glasses (SG's), including the effects
of movable anisotropy. ' The macroscopic variables
employed were the magnetization m, the spin triad
(n,p, q) (this specifies the orientation of the three-
dimensional SG state; n may be taken along the
remanence, but p and q are not directly observable),
and the anisotropy triad (N, P&Q) [this specifies
the anisotropy torque I; if (N, P, Q) coincides with

(n,p, q), then I =0]. Only the long-wavelength
limit was considered, so only dissipation involving
uniform relaxation (as opposed to diffusion) was in-

cluded. Phenomenological dissipation parameters
associated with each of the macroscopic variables
appeared in the theory, and it was shown how some
of them could be simply related to torque measure-
ments. One of the most stressed aspects of the work
was that it incorporated relaxation of the anisotropy
triad [consistent with certain aspects of both torque
and electron spin resonance (ESR) measurements],
but relaxation of m and the spin triad was also in-

cluded.
A number of aspects of the theory remains to be

discussed and developed. One such development in-
volves applying the theory of Ref. 1 to the study of
ESR line shapes and linewidths; this will be done
(with applications to experiment) in a separate pa-
per. This paper will be devoted to questions of the

physical interpretation of the spin and anisotropy
triads, the potential experimental implications of the
relaxation of the anisotropy triad, and the evaluation
of various parameters (both reactive and dissipative)
which appear in the theory.

An outline of this paper is as follows: In Sec. II
we present a qualitative physical picture for the spin
and anisotropy triads. Section III provides a discus-
sion of some recent torque experiments and their
bearing on the interpretation of anisotropy in spin-
glasses. In Sec. IV we discuss the relation of the re-
laxation of the anisotropy triad to other metastabili-
ty effects in spin-glasses. (We conclude that the re-
lation is tenuous; a complex antiferromagnet with its
spins pointing in all three directions, but with ran-
dom anisotropy, should also possess an anisotropy
triad which can relax. ) We also speculate on the na-
ture of the ground-state degeneracy which is be-
lieved to be responsible for the metastable
remanence effects associated with the spin-glass
state. In Sec. V we consider the anisotropy torque,
and the different forms it may take. Section VI con-
siders the dissipative coefficients, showing how they
involve time integrals over correlation functions.
This permits them to be evaluated using, for exam-
ple, numerical simulations. In Sec. VII we show
that, in the limit where exchange dominates aniso-
tropy, localiztxl (nonmacroscopic) modes do not con-
tribute either to the magnetization or to the new
spin-space rotation angle 50 which we introduce in
this paper. In the Appendix we discuss the ortho-
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gonality of the spin-wave modes, and show how this
leads to the new 58.

II. PHYSICAL PICTURE

Bm 5f BO

Bt 58 '
Bt 5m

(2.1)

Before proceeding with the developments of this
paper, it would be appropriate to discuss the physi-
cal meaning of the spin triad (n,j,q) and the aniso-
tropy triad (N, P, Q). At the outset let us neglect an-

isotropy and note that in this case only the spin
triad (n,p, q) is defined. [Therefore, another name
for (n,p, q) might be "exchange triad, " since only
the exchange interaction determines the macroscopic
state in this case.] For a Heisenberg SG in equilibri-
um, since all the spins have fixed orientations with
respect to one another, one can specify the orienta-
tion of any given spin by giving its orientation with
respect to a set of coordinate axes which are rigidly
attached to the spin system. Thus if the spin sys-
tem rotates uniformly (with respect to some labora-
tory frame), we can specify the orientation of the
spin system by indicating the orientation of the spin
coordinate axes. The spin triad (n,p, q) serves as the
set of spin coordinate axes, where we take n along
the remanence (if there is a remanence), and p and q
may be chosen arbitrarily. [It is somewhat similar
to the problem of attaching coordinate axes to an el-

lipsoid of revolution, such as an American football.
One axis can point along the long direction, but the
choice of the other two is arbitrary. Once painted
on, the coordinate axes are marked forever. The
same is true of (n,p, q) for SG's.] We assume that
the low-frequency modes of this system only involve
two effects. First, the system can rotate as a whole;
second, its spins can polarize, without changing
(n,p, q). The elements of this argument exist for a
collinear ferrimagnet. Here, the sublattice magneti-
zations Mz and Mz are opposed to one another in
equilibrium. The state can be changed by rotating
or changing the magnitude of Mz or Mz. Certainly
changing either magnitude involves polarization.
Furthermore, rotating M~ alone can be decomposed
into part overall rotation of both Mz and Mz, and
part polarization of both Mz and M~ without
overall rotation. In a SG, however, rotating a single
spin can be decomposed into part rotation of the
system as a whole, part polarization of the system,
and (in addition) part localized modes which are
not observable with macroscopic probes (and thus
are not relevant to macroscopic theories; see Sec.
VII). The equations of motion for the spin-space ro-
tation angle 58 and the polarization (or magnetiza-
tion) 5m are given, in the absence of dissipation, by

where y is the gyromagnetic ratio and f is the free-
energy density. Once f is known, one can compute
the equations of motion. The free-energy density is
generally taken to be of the form

T

m mr2

f= —m H+ n +f,„,
2X X

(2.2)

III. ON THE RELAXATION OF SPIN-GLASS
ANISOTROPY

Iri this section, we will discuss a number of exper-
iments designed to determine the symmetry of the
anisotropy (triad or single-axis), as well as experi-
ments designed to study the relaxation of spin-glass
anisotropy.

Triad and single-axis anisotropy are distinguish-
able by the fact that, for triad anisotropy, there is a
restoring torque for rotations about any axis,
whereas for single-axis anisotropy there is a restor-
ing torque only for the two rotation axes which
change that preferred axis. In the context of spin-
glasses, the simplest way to see the restoring torque
associated only with the third axis would be to ob-
serve a longitudinal resonance. That is, for a sys-
tem prepared in a cooling field H„and in an applied

where now we introduce anisotropy: f,„yields I
via I ~= XBf

—I'dO~. The form (2.2) yields
m =m, n+7H when m is in equilibrium
(Bf/5m=0). The form of f,„ is not generally
agreed upon. In Sec. V we present an argument
that, locally, f,„should depend upon the orientation
of the spin triad (n,p, q) with respect to the anisotro-

py triad (N, P, Q ). Let us now consider the meaning
of (N, P, Q).

When anisotropy is turned on, it is possible for
the spin system to "see" the lattice orientation.
However, we must keep the anisotropy weak com-
pared to the exchange, otherwise the spins reorient
so much in the presence of anisotropy that we must
revise our view of the spin triad. In terms of the
football analogy, we may think of exchange (rather
than leather and air) as producing the shape of the
football, and anisotropy as providing springs at-
tached to it. If the spring tension is too large, the
football will become very distorted. We wish to
consider weak anisotropy (or weak springs), which
does not much distort the strongly exchange-coupled
SG state (or the sturdily built football), but which
give the SG state (or the football) an overall orienta-
tion. The preferred overall orientation for (n,p, q) is
given by (N, P, Q), if the anisotropy is of a triad na-
ture. If the anisotropy is of a single-axis nature,
only n will tend to align with E, p and q being ob-
livious to their orientation about n.
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field H along H„one applies an rf field H«along
H„and looks for a resonance. Such longitudinal
resonance experiments have been very useful in
studying the anisotropy energy in superfluid He. '

Such a measurement would give unambiguous evi-
dence that SG anisotropy is of a triad nature. Un-
fortunately, such measurements are more difficult
for SG's than for He, since ESR in SG's requires
microwave spectrometers of nearly fixed frequency,
whereas nuclear magnetic resonance (NMR) in He
has a more flexible frequency range.

Another approach to the study of anisotropy em-
ploys torque measurements. These typically involve
rotation of the magnetization about a perpendicular
axis. ' ' This method is not capable of distin-
guishing between triad and single-axis anisotropy be-
cause only one of the three axes is probed.
Nevertheless, such studies have proved very useful,
for they have revealed the fact that the anisotropy
triad (or axis) moves, even for T/Tz values as low as
0.05 (where Ts is the SG transition temperature). '2

Reference 1 considered such motion, according to a
single relaxation time. However, recent work at
T/T~ =0.3 indicates that relaxation of the anisotro-

py torque takes place on multiple time scales. '

This complicates the data interpretation, so to avoid
such effects anisotropy torque relaxation must be
suppressed as much as possible. The experi-
ments' ' indicate two ways to achieve this: to al-
low T/Tg to remain very sma11, or to keep the
remanence close to H, (corresponding to only small
rotations of the magnetization). It is not unlikely
that many of the experiments which have been per-
formed, involving large rotations of the remanence,
probably involved a partially relaxed anisotropy,
rendering their interpretation difficult. In addition,
studies where the remanence is reversed by an H ap-
plied opposite to H, may also be difficult to inter-
pret.

One study, by Fert and Hippert, has been done at
a very low value of T/Tz (-0.015), and the results
indicate very little relaxation of the anisotropy
triad. ' Furthermore, by performing torque mea-
surements about two mutually perpendicular axes,
Fert and Hippert were able to obtain results con-
sistent with triad anisotropy, and an anisotropy
free-energy density f,„consistent with the form,

f,„= E)cosf ——,E2cos t/I—1 2 (3.1)

with E~ &&Kz. Here n N+p P+q Q= 1+2cosp.
(The work of Ref. 12 is also consistent with
E~ &&K2.) To help confirm these results, it would
be of value to have ESR measurements on the same
type of material, CuMn (e=20%), for the same
range of T/Tg. In particular, with anisotropy relax-

ation suppressed, one would expect to find ESR res-
onances in agreement with the predictions of Henley
et al. , based on triad anisotropy. [ Note Added in
Proof. This has recently been done by E. M. Gullik-
son, D. R. Fredkin, and S. Schultz, Phys. Rev. Lett.
50, 537 (1983).] Note that, in the past, ESR mea-
surements have been performed at relatively high
T/Tg where anisotropy relaxation may have taken
place ' '
IV. RELATION OF ANISOTROPY RELAXATION

TO OTHER SPIN-GLASS
METASTABILITY EFFECTS

Because SG's possess the unusual property of an-
isotropy relaxation, as well as unusual time-
dependent remanence effects, ' it is natural to in-
quire whether or not these properties are linked.
The answer, we believe, is that they are not. Specifi-
cally, we will suggest other systems which should
possess anisotropy relaxation.

In accordance with the picture presented in Sec.
II, we assume that the exchange interaction is much
larger than any microscopic anisotropy interactions.
Consider now what is perhaps the classic SG,
CuMn, whose Mn go onto Cu sites in the host fcc
lattice. The Mn sites are nearly random, so the
Ruderman-Kittel-Kasuya- Yosida (RKKY) exchange
constants between Mn are nearly random, thus lead-
ing to a series of nearly degenerate ground states, or
equilibrium configurations (EC's).' Assume that the
system is in one of these EC's, where the spins point
in all three spin directions, and that we have not yet
turned on the anisotropy. (Of course, we are treat-
ing the spins as classical. ) The state may be speci-
fied by indicating: (1) which EC is involved [this
means giving a table of numbers for the spin direc-
tions, which identifies an EC for its spin triad in
some standard orientation like (i,j,k )], (2) the actual
orientation (n,p, q ) of the spin triad, and
(3) the orientation (A, B,C) of the lattice. Of
course, without anisotropy, (A, B,C) is irrelevant. If
we now turn on anisotropy, which is random, each
spin reorients slightly in the anisotropy field and the
adjusted exchange field of its neighbors. In the
language of quantum mechanics, the wave function
changes to first order and the energy changes to
second order. The reason the anisotropy in SG's is
metastable (i.e., it can change direction) is that the
ground-state energy is the same for all lattice orien-
tations, if one averages over a large sample. Thus if
one rapidly rotates the zeroth-order part of the wave
function (n,p, q), by rotating the remanence, and
then waits, the system slowly adjusts (i.e., metasta-
bility) the first-order part of its wave function to
minimize the total energy for its new (n,p, q) This.
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is quite unlike what one has for a ferromagnet in a
crystal with a preferred axis, where the anisotropy
energy comes in to first order, and does not produce
any internal adjustments of the spins. In this case
there are only two orientations of the magnetization
m which minimize the anisotropy energy (i.e., rn

along or opposite to the preferred axis). The aniso-
tropy axis is fixed to the crystal in this case.

It is possible to imagine two other situations, one
like a SG and one like a ferromagnet, both of which
have metastable anisotropy. The first case is a com-
plicated antiferromagnet, with the spins pointing in
all three directions ("3D antiferromagnet") making
it very similar to the particular EC we considered
for the SG. If the anisotropy is random for this 3D
antiferromagnet, there will be no preferred anisotro-

py triad fixed in the lattice; the system will be very
similar to the case of the SG we have already con-
sidered. The second case is a disordered ferromag-
net, where the spins are located randomly in some
matrix (which need not even be crystalline), and the
anisotropy is likely to be random. Thus the aniso-
tropy energy does not have any preferred direction
to first order, and the anisotropy must enter to
second order to show a preferred axis. Because the
random anisotropy makes the spins noncellinear, the
state is three dimensional thus requiring a spin triad
and an anisotropy triad. '

%'e thus are of the opinion that the metastability
displayed by the anisotropy in SG's is not unique to
SG's, but rather is due to the random anisotropy in-
teractions in SG's. One can probably study aniso-
tropy relaxation in SG's independently of remanence
relaxation. This is consistent with the fact that
these two types of relaxation have very different
types of characteristic time dependences, the aniso-
tropy relaxing exponentially, and the remanence re-
laxing as a power law with a small exponent (nearly
logarithmic). '

It is currently believed that the peculiar
remanence effects of SG's are associated with noner-
godic behavior: The SG has many nearly degenerate
EC's, and it undergoes transitions between these
EC's, but there are large barriers between different
EC's, so they are not populated according to a
thermal equilibrium distribution. ' Presently, rela-
tively little is known about these different EC's, nor
about the rate at which transitions take place from
one EC to another. '

One of the difficulties in dealing with the SG
state is that it is difficult to see how it develops in a
continuous (or nearly continuous) fashion. One is
given X spins with more or less random exchange
interactions, and one finds, as stated earlier, that it
has many nearly degenerate ground states, or EC's.
Typically one studies spin dimensionality n =1(Is-

V. THE ANISOTROPY TORQUE

From very general considerations, one can deter-
mine the form expected for the metastable anisotro-
py torque (and energy) in the spin-glass state. Let us
write down the Hamiltonian for the system:

H =Ho (5.1)

1H0= —
2 QJJS;'SJ, Jij=Jji

I,J

1

H&= —
2 QDijapSiaSjpr Dijap=DJfpQ

I,J
a, P

The local field at site i is given by

(5.2)

(5.3)

BHH
as,.=QJjSj +QD,j pS&p. (5.4)

J J,P

The total torque on the spin system is given by

ing spins) and n =3 (Heisenberg spins). Consider
now the question of how the number of EC's NEc
depends on n. This is done in the work of Bray and
Moore, using the long-range model of Sherrington
and Kirkpatrick. For N=200 they find the se-
quence N, q

-2)& 10', 105, 5 when n = 1,2,3. Thus it
is not unlikely that NEc decreases as n increases, un-
til a spin dimension is reached (n=n, ) where
NEc ——1. For larger values of n the energy may de-
crease, but no additional EC's are found. It is also
quite possible that for n & n, the energy cannot de-
crease any further, so that (in the sense of energy
minimization) the "frustration" in the system has
been totally released. It should be noted that for
n~oo (the spherical model), the Sherrington-
Kirkpatrick model is believed to be ergodic, ' con-
sistent with the above hypothesis, since a system
with XEc——1 should have ergodic behavior. Such a
system may only be a very complex type of antifer-
romagnet.

We close this section by remarking that it may be
of interest to determine the nature of the different
EC's that develop as n is decreased, or equivalently,
how the different EC's coalesce as n is increased. I
would suggest that, as n increases, different EC's
may relax topological defects, in a sense similar to
the way that an n =2 ferromagnet with line defects
can have those defects disappear when n is increased
to 3 ("escape into the third dimension" ). This does
not, however, answer the question of how the defects
would arise, because the topology of the SG state for
any n is likely to be extremely complex. This is to
be contrasted to the case of, e.g., an n =3 ferromag-
net, where decreasing n to 2 need not introduce to-
pological defects.
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a, p

= l g Eapp g Sia Jij Sjji+ g Dij jjPj 5

If the spins are uncorrelated to the lattice, then only

P and 5, and a' and 5', contract. This occurs to
zeroth order in perturbation theory. If the spins are
correlated to the lattice (e.g. , from first-order pertur-
bation theory), then more contractions occur:

AX 'Jp ' Sj
ap ij5

(5.5)
A~ ~

——A 5~5 ~ +B5p 5 +C5+ 5~ .

(5.9)

(Note that the torque due to exchange sums to zero. )

Now assume that there is an equilibrium orientation
(0)

S; for the ith spin and that the spins have all been
rotated via

(0)
Sia $Raa'Si a'

Note that (5.9) is consistent with (5.8). Placing (5.9)
in (5.6) and employing (5.7), one finds that

I
&
— 2$&[B—sing+(B+C)sin(2$)] .

This implies an anisotropy energy density of the
form

a' f,„= 2B cos—f (B+—C)c os( 2$) . (5.11)
Then

I „=yg e ji„R R55 gD;i' 'Sjs' . (5.6)
a,a'

p, 5,5'

(0) (0)= Y g Dij sp Si5 Sja''

A 5p, 6'a' (5.8)

Explicitly, the rotation matrix R is given by

R a =5aa cosP+ Papa (1—cosg) —eaa „f~iniI(,
(5.7)

where g is the axis of rotation, and g is the angle of
rotation. Now consider

(0) (0)~p5)a'5' =1 g Dij p5Sia'Sjs'
/, J

(o) (0)=1'g +ji sp Sj5' Sj a'

Note that this symmetry is independent of the de-
tailed form of D;~ ji, only the bilinear nature (with
respect to the spins) of the spin-lattice interaction
Hi is required to obtain this form. Also note that
for interactions satisfying D,Jap ——+DIJpa we have

C=+B (D,j.p +D,.j~— (5.12)

The minus sign is appropriate to the
Dzyaloshinsky-Moriya interaction, and yields only a
cosg dependence in (5.11), a result obtained in Refs.
25 and 7. It corresponds to Kq ——0 in Eq. (3.1). The
plus sign is appropriate to interactions like to dipo-
lar interaction, and yields a cos(2$) amplitude as
large as the cosP amplitude in (5.11). It corresponds
to E2=4E& in Eq. (3.1), a result also obtained in
Ref. 7.

We should also observe that if the SG has some
remanence, Eq. (5.9) will become more complex.
A~ a ~ will now contain the terms

A, 5+m m5 +B&5pamzmz +C,5+mqm ~ +A2mpm55 5+B2mpm 5qq+C2mpm5 5~

which causes the torque, Eq. (5.6), to contain the terms

—2Bip&sing(m m') —B2(mXm')zR +(Ci+C2)(m'Xm")&,

where

m a g apiri jj iria g R aji jj
p p

Thus the B~ and B2 terms involve both SG and axial
symmetry, and the C~+ C2 term involves only axial
symmetry. All three terms should appear for a
mixed phase (SG and ferromagnet) if there is ran-
dom anisotropy. Note that for a ferromagnet with a
preferred anisotropy axis a, Ap~ ~ will contain the

term

A3a palm m~,

so the torque will contain the term

A3(rn' a)(m'Xa),

as expected for a uniaxial ferromagnet.
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Let us now consider the possibility that the
(N, P,Q) is not uniform over a sample of SG. Be-
cause of the strong exchange coupling throughout
the sample, we expect (n,p, q) to be uniform, but no
such energy drives (N, P,Q) to uniformity. Accord-
ing to Ref. 1 (N,P, Q) relaxes to (n,p, q), driven
dominantly by the anisotropy torque. If a sample of
SG is quenched below T~ very rapidly, it is possible
that the (N, P,Q) relaxation is not total, so one may
not be in a local equilibrium state. We wish to show
that, for an appropriate distribution of (N, P,Q ), the
local triad anisotropy can simulate global single-axis
anisotropy.

Consider (3.1) for the anisotropy free-energy den-

sity f,„. If we express cosP in terms of the Euler
angles (a,P, y) we obtain

1+2cosg =cosp[1+cos(a+ y)]+cos(a+ y} .

(5.13)

A random average over a+ y, with cosp= n N held
fixed, yields

(f,.) = —( —,&) ——,&2)(n N) ——„&2(n N)',
(5.14)

up to a constant, for a given value of n N. If, fur-
ther, one has a distribution of values n N about
some average value, the fully averaged anisotropy
will have even smaller coefficients than given by
(5.14). The extreme limit of this is complete ran-
domness, with no dependence on n N, which has
been averaged out.

VI. THE DISSIPATIVE COEFFICIENTS

In this section we derive expressions for the dissi-
pative coefficients, in a form such that they may be

I

determined by numerical simulations. We therefore
consider a SG consisting of classical spins. Our
method is a generalization of that given in the text-
book by Reif. There, one considers the dissipative
coefficient of a single particle in a fluid, by consid-
ering the time dependence of its velocity. In this
case it is most convenient to study the time depen-
dence of the internal field h and the anisotropy
torque I, both of which can be monitored for a
given state of the system. (h will be discussed in
Sec. VII; I was discussed in Sec. V.) Near equili-
brium in H=O, both I and h will be small. In that
case the differential de of the energy density e takes
the form'

h:X'—(m m„n—), (6.2)

(6.3)

for small rotations 8 of (n,p, q) and 0 of (N, P, Q),
Eq. (6.1) becomes

(6.4)

This establishes that the fluctuations possess the
thermal averages

(Xh )=(IC 'I )=(3k T)V (6.5)

(where V is the volume of the system), on applica-
tion of the equipartition theorem.

~(0) —+

The dissipative part h of h is given by'

de= TdS+ h dm

—(m„/X)m dn —I (d8 —do) . (6.1)

Here d9 rotates (n,p, q) and ds rotates (N, P, Q).
Neglecting the change in entropy density dS, and
with

(6.7)

and, for a microscopic state, by

h = (y/g)[(D+m—„E)h—m„E(h n)n+m, (E+E')I Xn] . (6.6)

Changes in h due to this source, on going from time t to t+~, where ~ is large compared to a "collision
time" but small enough that

~

Ah
~

&&
~

h ~, ~

b I
~

&& I
~

over this interval, are given, for a macroscopic
state by

h(t+r) —h(t) = (yr/X)[(D+m„—E)h —m„E(h n)n+m„(E+E') I' Xn]

h(t+r) —h(t}= f (h(t))dt'= —p f dt'(AE(t')h(t))iodt'. (6.8)

(Here the angular brackets with subscript zero denote the equilibrium statistical average. ) Use of (6.4) gives
I

AE(t') = V f [Xh(t") h(t")+E-'I (t")~ I (t")]dt"

t ~ I ~

= VXh(t) f h(t")dt" + VK 'At) f I (t")dt" . (6.9)
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Placing (6.9) into (6.8) and rearranging the domain of integration yields

( h(t +r) —h(t) ) = —VPwXh(t) f ( h(0) h(s) )Ods —V(I3r/K) I (t) f ( I (0)h(s) )Ods . (6.10)

Comparison of (6.7) for a macroscopic state with the statistically averaged value over microscopic states, (6.10),
yields

and

(D+m, E)5 tt m„—En ntt (PX——V/y) f (h~(0)hti(t))Ddt

m„(E+E')= (PXV—/2') f ( I'(0) h(t) Xn )odt .

(6.11)

(6.12)

D= f (n h(0}n h(r))odt,=
r

X V
m, E= f ( h(0) h(t) —3n h(0)n. h(t) )Ddt .

2y

(6.14)

(6.15)

Thus D depends upon the autocorrelations of n h,
and E depends upon the nonisotropic nature of the
autocorrelation of h. No such obvious interpreta-
tion arises for E' and F.

VII. ON THE SPIN TRIAD

The calculations of the previous sections depend
upon our ability to define various quantities. Of
these quantities, h still is incompletely defined, since
it requires m, m„X, and n:

h=X '(m m„n) . — (7.1)

For 7, one may use standard expressions in terms of
equilibrium correlation functions, as has been done
by %alker and Walstedt; for m one employs

m= QS;, (7.2)

Similarly, study of I yields

(E+2E'+F)5~tt= f (I ~(0)I p(t))Ddt
yIC

(6.13)

and a repetition of (6.12). These equations yield the
four dissipative coefficients. Note that, in (6.12), it
is assumed that n does not fluctuate significantly.

It is not clear that Eqs. (6.11)—(6.13) provide a
practical means to determine the dissipative coeffi-
cients (via, e.g., numerical simulations). However,
they serve the purpose of showing the correlations
on which the dissipative coefficients depend. Only
D and E have a ready interpretation. From (6.11)
one has

Reference 4 provides a definition of the rotation
angle 50 by which the SG has been rotated slightly
from some standard orientation (no,fo,qo). From
58 one has n =no+58 Xno (to lowest order in 58),
so that n is determined from 50. Specifically, Ref.
4 gives

58&——(2q) ' g e~ttPt tt,
a, P

5t.,=n-' g (S,.)5S,ti,
i'd%

q—=(3n)-' g (S,.)'.

(7.3)

(7.4)

(7.5}

Here (S; ) is the restricted ensemble average (about
an EC} at the ath spin component of the ith spin,
6S;p is the small change in S;p, and n is the number
of spins in region 9F.

This definition is intuitively reasonable, but one
can fault it if one finds that a set of spin displace-
ments I5S tt' I corresponding to a localized mode v
can contribute to 58. In the Appendix, we obtain an
orthogonality relation for the normal modes
(neglecting anisotropy), finding that this leads to
another definition for the spin-space rotation angle
50. The new 50 has the same commutation rela-
tions as the old one and, further, no localized mode
can contribute to the new 50. Specifically, we have

58 =X 'QXJ, tt58jtt,
»J~
P

(7.6)

where 58jtt (SJ &&5SJ)tt~ (——SJ ) ~, and X;1 p is
the local susceptibility of the ith site due to a field at
the jth site [see Eqs. (A16) and (A12) of the Appen-
dix]. Thus in calculating

l

where one sums over the spins S; in the region A, of
volume V; for I, one employs the value of m when
the system is in equilibrium (h =H) for H= 0. The
only quantity which has not yet been determined is
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h=X '(rn —m, n)=X '(rn —m, OX&), (7.7) 5$ia g g eaPrsiP ))ij g g ( eypvsjp ~jk )5skv
p, v k

needed for the correlation functions in Sec. VI, one
should employ the 58 of (7.6) rather than that of
(7.3).
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APPENDIX

() y P~(~) y Ji S(o)

Py J

As a consequence, Q.J&$&'r' points along S r'..

g J,,s,',"=gx, s,(," .

(A2)

(A3)

Ordinarily, to determine the spin waves one works
with 5S;=S;—S,', and linearizes (Al) to obtain

In this appendix we extend some of Ginzburg's re-
sults, discuss orthogonality of the normal modes,
and introduce a new definition for the macroscopic
spin-space rotation angle 50.

Setting y=A'=1, the equation of motion for the
ith spin is given (when only exchange is considered)

by

S; = Qe pr;pg J,JS&p.
Py i

Thus in equilibrium one has

Mikav , Skv ~ (A6)

MQ ~v5Skv=CO 5Sk (A8)

which has the appearance of a conventional eigen-
value problem. However, M is not Hermitian. Even
defining

gTk
M;k =M;k 5, ,

Tk (0) (0)
5v v=5v v

—Sk'Skv (A9)

so that M is assured to give zero when multiplied on
the right, does not give a Hermitian operator M.
Hence the conventional theorems about eigenvalues
and eigenfunctions do not go through (see Ref. 3).

The approach that Ginzburg takes, on the other
hand, gives an eigenvalue problem with a Hermitian
operator and a weight function. The key to this ap-
proach is to work with both 5S; and 50;, where

50; S; =Oand

5S;=50 xS;, 50; =S; x5S;, (A10)
~(0) ~(0)

where we have assumed unit spins, so S; S; =1.
Thus (A4) can be rewritten as

50, =S; y5S;

=s, x( —s, x g x,,5s, )

J

= g x,,(5s, )„.
J

(Al 1)

%e can write this in a form which guarantees that
50; S; =5S;.S; =0 by defining

~ik av= P P (5ap5Pv 5av5Pp )SiP SJ'p ~ij'~ik .
PP J

(A7)

If we take 5S;a ~e ' ', then (A6) becomes

5S;a= +cap& 5$ pA;iS; +rS;, p P Jii5S&r
Py J Wi~ p=A, ; 5 P pj= W;. p (A12)

= Xe-pP'p X(JJ—~ 5J)5si.
Py . i

= —g g(e pP p'Xv)5S
Py i

(Note that, properly, W has no inverse. ) Then (Al 1)
can be written as

59; =
W~qap5$jp . (A13)

Inverting this in the subspace of transverse spin
components, we find that

5sjp=( W '),k pp8kr . (A14)
(A5)

One 'then differentiates (A4) with respect to time,
and employs (A4) to eliminate 5$J&.

Ginzburg makes this point in a slightly different
fashion, reasoning that 50; is like a local magnetic
field h;, and therefore that the form
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5sjp=xjk py58ky (A15)

should hold, where X is the transverse local suscepti-
bility. Comparison of (A14) and (A15) immediately
yields an explicit expression for 7:

—1
Xij,ap ( W }ij,ap (A16)

=—g g Uj.gej„,
v J

(0) (0)
Uij, a&= ~ 'Eapyep+ip Sjp Aij

P, y,p

( 5agp~ 5a~5p~)sip Sj~ A ij
P~p

P

(A17)

[Note that Ref. 23 studies a modified problem, that
of the transverse response of spin i to an arbitrary
(rather than transverse) field at site j. To study this
modified problem in our formalism we would modi-
fy (A12) to read Wijap=A, ,J5 p(+Wj, Jk,). For (2.10)
of Ref. 23 to agree with this, the factor of 5 p on the
left-hand side of (2.10) would have to be replaced by
5~Tl ]

In the spirit of Ginzburg's approach, we rewrite
(A4) using (A10):

5S;a= —Q eapysip g g kijEypv58j psjv
Ijj» J

where we have used 58&p'= i—co'"'58jp'
This relationship can also be derived from the

conventional treatments [it follows, after some alge-
bra, from (3.21) of Ref. 3]. If we consider that
58; is due to the uniform rotation modes (at zero
frequency), we may set 58; =5a, with 5a arbi-
trary, so (A22) yields

0= +5S; (co'"'&0) . (A23)

This says that finite frequency modes possess no net
magnetization. With (A15} this becomes

0= gxij p58j~~p (co'"'&0) (A24)

0 g Xij ap58j~~p (a) +0) (A25)

Here we have employed

It is (A25) which enables us to determine the mac-
roscopic spin-space rotation angles 56I~, associated
with zero frequency. Since 58jp is due both to 58p,
and to the 58j~p's, by (A25) we have

g gx.j.p58Jp= g gx...p 5e,=x5e. .
p ij p ij

(A26)

= Uji, vcr (A18) X.,=—am. raap=a /5S, . aHp

Use of (A15) in (A17) then yields Eq. (13) of Ref.
25:

~ ~

Xij,ap58jp Uij, ap5 ep

Letting 58jae '"', Eq. (A19) becomes

Uij, ap ejp ~ Xij ap58J'p ~

(A19)

(A20)

This is an eigenvalue problem with the weight func-
tion X;j p [=Xj;jk, by (A12) and (A16)]. Because U
and X are real and symmetric, the eigenvalues co are
real. (They are also positive if the system is locally
stable. } The orthogonality of two modes m and n

satisfying, e.g.,

(m) 2(m) (m)
UgJ~ap58Jp co Xij ap58Jp

=a ++X.J.PH, aHP
. iJ 'Y

=gx;, p, (A27)

58 =X 'ggx;J, ,p58, p
»J P

Note that, by (A15),

5e =x 'ggx;J, p58 p

(A28)

wheie X p
—X5 p follows from the macroscopic iso-

tropy of the spin-glass state.
Thus (A26) gives us our definition of the spin-

space rotation angle 58

is expressed as

(A21)

=X-' g 5S,.=X-'5m. , (A29)

0= +5e,"'
5s,'"', (A22)

This can be rewritten on multiplying by —iso'"' and
with (A15), as

in agreement with Eq. (2.2) of Ref. 4. We remark
that Ref. 4 took 58a ~ +,.58;a, in contrast to (A28).
Such a definition of 58a will likely not satisfy (A29).

The variable 58 satisfies the commutation rela-
tion
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[m, ,58.]=X-' g [5S.„QX.j,.p58jp]
ijk p

g Q Xig, ap[5Sky, Epi,gyp'5Sjv]
ij,k p,p, v

~ —1 (0)=N g g ep~vX iJ,apS'Jp Eyvil SJ)„p

(A30)

=[Sk~SJ„]=i+~5kjE~)ISg. Taking the expectation
value of (A 30), and using the fact that
gpX,J pSJ'p'=0 (a local field along the equilibrium
direction of the jth spin causes no spin rearrange-
ments) yields

([my, 58a]) = iX —'QX,J y
—— i5—ay . (A31)

where have employed [5Sk~5SJ„] This is as expected. " Further,

»8»8y]=X 'XX[ X Xv, p pp4J',"5SJ. X Xki,,x~~sPIs'5Si, ]
i j k I ppv A, , g, 5

—2 (0) (0)X g g lj, +akj, y)pj/lv iM's vsPJp SJs Sjg
i j,kP, p, v A, , q, g

Taking the expectation value of this, with

(Xja)p= g Xji pa Q X/j, ap (A32)

giving the response at the jth site in the ath direction to a unit field in the Pth direction, we have

([58,58y]) =iX g g (Xja)P(Xjy))„eP„„(SJ~,'Sg ' 5)„)SJ'q'—
P,p, v, A,

iX —g g (XJ )p(XJy)J„Ep„)„S~'„'
J 13~@~~

=iX 'QSJ~ (X, xX,y)
J

Clearly this is antisymmetric in a and y, so we may write

([58a,58p]) = ge pyTy,
r

(A33)

(A34)

where Ty must be proportional to some vector property of the SG (i.e., m or m„n) Since t.he magnetization of
a SG is usually small, we thus have ([58a,58p] ) =0, as expected.

To summarize, we have found a definition of the macroscopic spin-space rotation angle which satisfies the
expected commutation relations and contains no contributions from localized modes. This definition differs
from the one we employed earlier (Ref. 4), which did permit contributions from localized modes. Because their
commutation relations are the same, the hydrodynamics is unaffected. Only in microscopic calculations of
macroscopic quantities (e.g. , the dissipative coefficients of Sec. VI) would the difference become apparent.
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