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The cluster-variation method (CVM) is discussed in the thermodynamic limit of an infi-
nitely extended lattice. The relationship between the variational principle for the free ener-

gy per lattice point as valid in the thermodynamic limit and the CVM formalism is estab-
lished. It is proved that for suitably chosen hierarchies of CVM approximations the nth ap-
proximation to the free energy per lattice point f, underestimates the exact value f and that
f„~fmonotonically as n —+ ao. CVM approximations of this kind permit a particularly
appealing interpretation of the entropy approximation involved. As a practical conse-
quence, the results of this theoretical investigation suggest how to construct a "best se-

quence of approximations" that can serve as a basis for extrapolations.

I. INTRODUCTION

The cluster-variation method' (CVM) is a method
of obtaining approximations to the equilibrium ther-
modynamic properties of lattice systems. The
method has been applied to a variety of systems over
a number of years (for examples see Refs. 2—11).
However, as pointed out by McCoy et al. ' in a re-
cent paper, there have been very few investigations
into the underlying nature of the approximations
that are involved in the CVM.

This paper reports a theoretical investigation into
the CVM specifically addressing the fundamental
question whether the CVM approximations con-
verge towards the rigorous solution in the thermo-
dynamic limit of an infinitely extended lattice. In
view of the practice of extrapolating CVM results to
obtain estimates of the exact values for thermo-
dynamic quantities, this question is of prime impor-
tance, also from a practical point of view.

In this paper it is shown rigorously how to con-
struct a sequence of CVM approximations that is
guaranteed to converge to the exact result for the
free energy per lattice point of the infinite lattice
system. This is done by first establishing the rela-
tionship between the CVM and the variational prin-
ciple for the free energy as valid for an infinite lat-
tice system. This extends the analysis of the CVM
for a finite system of N lattice points as given by
Morita. ' ' Morita, however, did not consider the
influence of taking the thermodynamic limit. This
limit procedure is, however, essential to any theoret-
ical analysis of the CVM, since, firstly, mathemati-
cal models of physical systems only exhibit thermo-

dynamic behavior in this limit, and secondly, in

practice the CVM is applied as if the lattice in ques-
tion were infinite in extent. This second point is ob-
vious if one considers the way in which the relative
occurrence of a specific type of cluster (set of lattice
points) is determined and the fact that boundary ef-
fects are neglected.

The main results of this work are contained in
Theorems 2 and 3. Theorem 2 shows that a suitably
chosen hierarchy of CVM approximations underesti-
mates the free energy per lattice point and monoto-
nously converges to some limit; Theorem 3 estab-
lishes that this limiting value equals the exact result,
under slightly more restricting conditions on the
hierarchy of approximations. An interesting impli-
cation is that there might be sequences of approxi-
mations that do converge, but not towards the exact
result. However, this possibility has not been inves-

tigated any further.
It will be necessary to make use of some well-

established results from rigorous statistical mechan-
ics; in connection with these results the reader is re-
ferred to Ref. 16, where references to original papers
can be found.

The organization of this paper is as follows. In
Sec. II some necessary concepts from statistical
mechanics for infinite systems will be reviewed and
the relationship between the variational principle for
the free energy per lattice point in the thermo-
dynamic limit and the CVM will be established.
Section III contains an analysis of the entropy ex-
pression used in the CVM. Section IV gives the
main theorems and their proofs, and Sec. V contains
some final remarks.

27 6841 1983 The American Physical Society



6842 A. G. SCHLIJPER 27

II. CVM AS APPROXIMATE
VARIATIONAL PRINCIPLE

For simplicity of presentation, this discussion will
be restricted to the case of the Ising model on Z,
the square lattice in two dimensions. (For a discus-
sion of the range of validity of the results, see Sec.
V.)

The Ising model can conveniently be described as
follows. With each lattice point or site a EZ, we
associate a variable S, ("spin"), which can take
values in Qo= [ —1, 1 j. The configuration space for
a finite subset A of Z is Qx ——(Qp), and the con-
figuration space for the infinite system on Z is
Q =(Qo)

Viewing Qo as a discrete metric space, observables
of the system are real-valued elements of C(Q), the
(continuous) functions on the configuration space Q.
On Qp we have as a priori measure the (unnormal-
ized) counting measure po. The product measures
on QA will be denoted by po as well. Integration
with respect to p[] will be denoted by enclosure with
a set of angular brackets with a subscript 0.

For example, if a, b EZ,
(S Ss )p= 1 [S (co)] Sb(ro)dpo(co)

O{a,bI

S,'Sb
S =—1, 1Sb ———1, 1

In other words, the angular brackets (with subscript
0) denote expectation values without interactions, or,
equivalently, at infinite temperature (apart from a
normalization factor).

The Hamiltonian for a finite subset A of Z,
A&8, is

H[A]= g &[X],
xcA

for the infinite system on Z is a positive linear
functional on C(Q), normalized in such a way that
p(1)=1. Restricted to C(Q&), A finite, it defines a
probability measure dp~ on Q~, which is absolutely
continuous with respect to dpo so we have

dpi' ——p[A]dpp,

where p[A] is the reduced density function associat-
ed with the finite subsystem in A. This means that
for an observable FEC(Qx) of the finite system,
the expectation value of F in the state p is

p(E) = I„+(co)dp~(~0)

= f„F(~)p[A](~)dpo(~)

=(~p[A]), (5)

(p[A]),=1 .

Lattice translations induce translations on the set of
observables in a natural way; hence a state may be
translationally invariant; the set of translation-
invariant states will be denoted by I.

We can now formulate the exact variational prin-
ciple for the free energy per lattice point f as valid
for the infinite system in the thermodynamic limit
(see, e.g., Ref. 16, p. 48):

f=min[p(e) —s (p)]
pEI

Here P=(kT) ' has been taken as unity, and

HrA
p(e)= lim p

x z2

Sp(A)
s(p)= lim

where @[X]is the potential function for the cluster
(set of lattice points) X.

We shall assume that the interaction 4 has a fi-
nite range, i.e.,

Sp(A) = —p (lnp[A])

= —(p[A] lnp[A] )p (10)
@[X]=—0 if diam(X) &R

for some R p0, where

diam(X) = sup
~

~a b~~—
a, bGX

Moreover, we shall assume that the interaction is
translationally invariant. Note that no other kind of
symmetry is assumed, such as rotational invariance
or isotropy, and that many-body interactions are al-
lowed.

We shall have to make extensive use of the con-
cept of a "state" for the infinite system, which gen-
eralizes the concept of "expectation value": a state p

Hence S&(A) is the entropy for the finite subsystem
in A in the state p, s (p) is the mean entropy per site
in the thermodynamic limit, and p(e) is the mean
energy per site in the state p in the thermodynamic
limit. Note that only p(e) has been defined as yet,
not e itself.

Using translational invariance of 4 and p, we
have

p(e)= lim
p(C&[X )

z'xcx
Mx (A) p(@[X])= lim

z'xylo
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where M» (A) is the number of translates of X that
are contained in A, and 0=(0,0)EZ . For each fi-
nite X

p(e) =g*p(@[X])

=Q* (p[X]@[X])o . (12)

Equation (12) justifies the definition

e =+*C[X] (13)

This way of treating the energy term is standard
practice; it provides a way of calculating the energy
per site by adding separate contributions from all
different types of clusters.

In the cluster-variation formalism the entropy
term is treated in an analogous way: Following
Morita, ' ' we introduce the Mobius transform of
lnp by

lnp[A]= g q[X]
XCA

q[X] g ( 1) I
~ I lnp[Y]

YCX

(14)

where q is translationally invariant because p is.
For the entropy per site we can write

M» (A)—s(p)= lim g* p(q[X)) . (15)
~ z2»

Note that in contrast to the situation for the energy
term, where the number of nonzero terms in the
summation is finite for all A [Eq. (2)], in this case
interchange of limit process and summation is not
trivially seen to be valid.

The CVM approximation can now be derived
from the variational principle Eq. (7) by making the
following three modifications:

(Al) Interchange limit and summation in Eq.
(15), thus obtaining for the entropy

s (p) = —g*p(q [X])

lim =1
x-z2

and so we have, due to the finite range of the in-
teraction [Eq. (2)],

( ) ~ p(C&[X]) (11)
»~o

Let us now order Z lexicographically and let g»
denote summation over XCZ with the property
that 0 is the first element of X. Then

III. THE ENTROPY EXPRESSION

In this section it will be proved that the expres-
sion (16), correctly interpreted, actually represents
the entropy per lattice point in the thermodynamic
limit. In this expression the entropy is calculated as
a sum of contributions of all types of clusters, analo-
gous to the representation (12) of the energy term.

Let, for each finite A CZ, A&0 the first element
(in lexicographic order) of A be denoted by p(A).
Let

Z+ =IzEZ2
~

0(z]
Let us now define for any p EI a function D& on the
finite subsets of Z as follows:

Definition 1:If A&0,

Dp(A)=—
X

XCA, X Bp(A)

p(q [X])

&p[X]q [X]&o (17)

and

X
XCA, XBp(A)

(A2) Truncate the series in Eq. (16). Clusters X
corresponding to terms retained in the summation
will be called "preserved, " following Morita's use of
this phrase.

(A3) Determine the minimum of the approximate
expression for p(e) —s (p) now obtained:

(p[X](@[X]+q[X]))o
X

X preserved

by variation, not of p EI, but of those reduced densi-

ty functions p[X] for which X is a preserved cluster,
taking into account the necessary consistency rela-
tions among them. (The term "consistency rela-
tions" is used for relations of the following kind: If
YCX then p[X] can be "reduced" to p[Y] by in-

tegrating over the spin variables in Xg Y.) Thus the
CVM is clearly based on three distinct steps of
modification. It will be shown that (Al) is fully jus-
tified, provided the infinite series in Eq. (16) is inter-
preted properly. The existence of (A2) has been

brought out by Morita in the case of a finite system.
An error may be introduced by (A3) because of the
fact that, whereas every p EI determines a consistent
set Ip[X]

~

X preserved), the converse may not
necessarily be true. The existence of (A3) as a non-
trivial modification is entirely due to the fact that
we started out from the variational principle for the
infini te system.

= —g*(p[X]q [X]) (16) Dp(e)=0
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Compare this with the expression for Sz(A) from
Eqs. (10) and (14):

s (A)= —g p(q[x])
XCA

XCA

D (A) will act as an approximation to
P 'S (A). In cases where there is no risk of

P
confusion, the subscripts p on Dz(A) and S~(A) will

be omitted, and s will be written for s (p).
Lemma 1. For pEI and A, A'CZ, finite and

nonempty, we state the following:
(i) Dp(A) =Sp(A) Sp(Ai—[p (A) I ).
(ii) Dq(A)=D&(A+x) for all x EZ,
(iii) If A C A' and p (A) =p (A'), then

D (A) &D (A')

(iv) Dp(A) & s (p) & 0.
(v) If (A„), n EN (where N= Z+ BIO—I) is a se-

quence of finite subsets of Z, where (a) p(A„)=x
for all n, with x fixed, and (b) A„CA„+( for all n,
then lim„D&(A„)=L exists and L &s(p). [L
may depend on the sequence (A„).]

Proof: Proposition (i) is an immediate consequence
of Eqs. (17) and (19).

Proposition (ii) is an immediate consequence of
the translational invariance of p.

Proposition (iii): With the use of the strong subad-
ditivity property (see, e.g., Ref. 16, p. 45) of the en-

tropy function,

S(A, UA, )+S(A, AA, ) &S(A()+S(Ap),

with A( ——A'i [p(A') ) and A2 ——A, we have

S(A') —S(A'i, Ip(A')I) &S(A)—S(Ai [p(A)])

A CAn,
then, for any peI,

lim Dp(A„) =s (p)
n~tm

Proof. Define for A CZ, A finite, sets A" by

(k) A(k 1)X
[ (A(k —1))

(20)

(breaking down A in lexicographic order). We then
have from Lemma 1 (i)

S(A) = D(A") .
i=0

(21)

Consider a sequence of "mutilated cubes" Cn CZ+,
defined by

or, by (i), D(A') &D(A).
Proposition (iv) can be shown to be a consequence

of (iii). For a detailed proof see, e.g. , Ref. 17, pp. 40
and 41.

Proposition (v) is an immediate consequence of
(iii) and (iv).

Theorem 1. Consider a sequence of finite
An CZ+, n EN, with

(1)p(A„)=0 for all n,
(2) for any finite A CZ+ there is an ns CN such

that for all n )nb

C„=[x=(x(,x2)EZ
i

n(x2—&n —1 if x(%0, 0&x2&n —1 if x( ——0, 0&x((2n —lj

Note p (C„)=0 for all n

According to Lemma 1 (v)

limD(C„)=L &s (22)

I

(meaning that C„ is contained in the translate ofnb

C„" with 0 as its first element) we have, combining
Lemma 1 (ii)—(v) and Eq. (23),

for some L. Now choose e & 0. From Eq. (22), there
exist some nb EX such that

«D(C2„)&D(c„")&D(C„)&L+-
nb

Hence
iD(C„) L

i
& —,Vn &—nb . (23)

iD(C„") L
i (—— (26)

Consider C„ for n & nk From Eq. (2. 1),

4n —n —12

S(C„)= g D (C„")
i=0

The number of sets C„" with this property (25) is
readily seen to be

For every C„"with the property that A (n) =4(n nk) +3(n nb)— — (27)

c„,c[c„"—p(c„")] (25) For C„"without property (25) we shall use
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0 &D(C„")&D( IOI ) =S( t01)

where use was made of Lemma 1 (iv), (iii), and (i).
The number of sets C„"without property (25) is

B(ri)=
I
C„

I

—&(n)

4—n +8nnb 4n—b+3nb =O(n)

%e now have

(28)

S(C„) I. =—
I
C„

I

' g D(C„")+
I
C„

I

' Q D(C„") I—
n l

without {25) with {25)

S(t03)+
I
C.

I

' 2 [D«")—L l +C.
with(25)

B(n) S A(n) e B(n)
&

with (25)

for n sufficiently large. Hence

I
C„

I
'S(C„) +I. —

However, C„
I

'S(C„)—+s, and so

lim D(C„)=s
n~oo

(29)

(1)p(A„)=0,
(2) U IXC Z'Ip(X)=0and @[X]~OICA„,
(3) A„CA„+i.

Consider the sequence (or hierarchy) of CVM ap-
proximations defined by

Now consider the sequence (A„) of the theorem.
From Eq. (29) and Lemma 1 (iv)

s &D(Cz) &s+e

r

f„= min, p[A„] g' IC'[X]+q[X])
x 0

XCA„

(30)
for any e&0 and p sufficiently large. For n suffi-
ciently large C~CA„, hence by Lemma 1 (iii) and
(iv)

s &D(A„)&D(Cp) &s+e
and hence

lim D(A„)=s
n~oo

Since we have established

s =limD(A„) =lim —g' p(q [X])
n x

XCA„

the above theorem provides us with the correct in-
terpretation of the infinite series

—g' p(q[X])

for the entropy s(p) [cf. Eq. (16)].

IV. CONVERGENCE OF THE CVM

Consider a sequence of finite subsets of Z, (A„),
with the properties that, for all n EX,

In view of the specific way of truncating the series
for the entropy, the entire approximate expression
for [p(e) —s(p)] can be and has been written in a
form with only the density function p[A„] for the
largest preserved cluster appearing explicitly. The
abbreviation IT stands for "internally trans-
lationally-invariant, " meaning that the state on
C (QA ) defined by p[A„] is translationally invariant

under translations within A„. This is the conse-
quence of the consistency relations to be obeyed by
the set of p(X),X preserved cluster. Condition (2) on
the sequence (A„) ensures that the energy term is
not affected by the approximations and is just tech-
nically convenient but unessential. The minimum
defined in (30) can be shown to exist using a com-
pactness argument.

Theorem 2. Let A„and f„be as above and let f
be the true free energy per lattice point in the ther-
modynamic limit. Then

(i) f„&f for all n

(ii) f„&f„+i for all n

(iii) lim f„=f„exists
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and f„&f.
Proof. Consider for p CI the expression

pte) —De (A ) = (pt &. I X'
I &I&)+e P') I )

XCA„

By Lemma 1 (iv)

min [p(e) D&(—A„)j & min [p(e) —s (p) j =f .
pGI p E-I

Since each p GI determines an internally

translationally-invariant reduced density function
p[A„],while the converse may not be true, we have

f„= min . p[A„] g* [@[X]+q[X]j
p[A„]IT 0

XCA„

&min[p(e) —D (A„)j &f .
pEI

This proves (i). To prove (ii), note that

f„+I) min p[A„+I] g* [@[X]+q[X]j + min p[A, +I]p[A„)]i.t. p[AN+1]
XCA„

X
XCA„+i,Xg A„

pt&)) .

In the first term we can reduce the density function p[A„+I] to p[A„] and in minimizing with respect to
p[A„] instead of p[A„+I], we only drop the condition that p[A„] is derived from an i.t. p[A„+I], so the first
term is greater than or equal to

min p[A„] g* [C&[X]+q[X]j =f„.
P[A„]i.t. X 0

XCA„

As to the second term,

p[A. +I]
X

XCA„+),Xg A„

~t&I) =(pt&. +i) -X+ X
'XCA„+, XCA„+,y (0) XCA„XCA„q (oj

p[A„+I]p[A„y [Oj ]
pf&. i&to))pt~. )

st&))

pt~. )pt".+i&to)I
)

)1—
p[A„y j Oj ] 0

'

where we have used the inequality

1lnt)1 ——.

Integrating out the spin variable at 0, this last ex-
pression is seen to be equal to zero, so the second
term is greater than or equal to 0 and hence

f.il &f.
proving (ii). (iii) now follows from (i) and (ii).

Theorem 3. Let A„, f„,f, and f be as above,
and let the sequence (A„) obey the following addi-
tional condition:

(4) For any finite A CZ+, there is an nb GN such
that, for all n & nb, A CA„. Then

lim f„=f .

To motivate the proof, the following should be not-

Assume f„&f. By Theorem 2, this implies there is
an e & 0, so that for all n

f„&f e. — (31)

Let for each n the density function P„[A„]minimize
the expression in Eq. (30) and let p„be the state on
C(Q~ ) associated with this density function. So

ed. Theorem 1 shows that for any translationally in-
variant state of the infinite system the entropy ex-
pression used in the CVM approximations defined
by Eq. (30) is "almost correct" for large n. This
gives us control over approximation steps (Al) and
(A2) (see Sec. II). However, (A3) might introduce a
lowering of the free energy that does not vanish as
n~~. It will be shown that such an assumption
leads to a contradiction.

Proof. From Theorem 2, we have

limf„=f„&f .
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f.=(P.l&. l X* f@l&j+s.Nil
X 0

(32) ID- (A ) D—(A )I (—
Xch„

where q„ is the Mobius transform of lnp„. Let us
write, for At A„,

for k sufficiently large. For the fifth term in curly
brackets in (37) we have from Theorem 1

D- (A) =-
~n X &P.[A.]e.[X]&o

X
XCA, X&p(A)

(p„[x]q„[x]&, .
X

XCA, X&p(A)

I
D-(A ) —s(p)

I
&—

for m sufficiently large. So, first choosing m and
then k, we arrive at the contradictory

f=min[p(e) —s(p) )
pGI

Compare this with Eq. (17). Although P„ is an
internally translationally-invariant state for the fi-
nite system in A„and not a translationally-invariant
state for the infinite system, statement (iii) of Lem-
ma 1 is valid for A and A' contained in A„, by the
same proof. So

D- (A) & D- (A') (34)

for A C A'CA„with p(A) =p(A'). Equation (32)
can now be written as

f„=p„(e) D- (A„)—. (35)

According to Theorem 1.4 of Ref. 16, the sequence
(p„) has a subsequence (Pk ) that tends to a thermo-
dynamic limit state P on C(Az& ), which means that
for each finite set A CZ+

pk[A]~p[A](pointwise) as kazoo . (36)

Using translational invariance, p can be extended to
a translationally-invariant state p on C(Q) with the
same mean energy P(e) and mean entropy s (p).

Now

p(e) —s(p) = [Pk(e) D- (Ak)]—+ [p(e) pk(e))—

+ [D- (Ak) D- (A )]-
+[D-„(A ) —D;(A )j

+ [D-(A ) —s(p)] . (37)

As e C C(Q~ ) [see Eq. (13)], we have for the second

term in curly brackets in (37), from Eq. (36),

I
p(e) —pk(e)

I

&—
6

for k sufficiently large. For the third term in curly
brackets in (37) we have from Eq. (34)

D- (Ak) D- (A ) (0 for k—)m .
A

For the fourth term in curly brackets in (37) we have
from Eq. (36)

&P(e) —s(p)

&fk+ —+0+ —+—
6 6 6

&f
2

[the latter two inequalities being by Eqs. (35) and
(37) and Eq. (31), respectively. ] Hence we must have
that f„=f.

V. DISCUSSION AND CONCLUSIONS

Convergence towards the exact result has been
shown for a specific class of hierarchies of CVM ap-
proximations [see Eq. (30)]. These specific hierar-
chies emerge in a natural way from an analysis of
the entropy expression Eq. (16) that is basic to the
CVM. Correct limiting behavior of a hierarchy of
CVM approximations is ensured only in the event of
the entropy approximations involved converging

correctly. Entropy approximations are always par-
tial sums of the infinite sum in Eq. (16). The partic-
ular type of partial sum D&(A„) [see, e.g., Eq. (17)]
that has been used throughout this paper is, again,
natural in the sense that it permits an intuitively
satisfying physical interpretation of the correspond-
ing entropy approximation: The entropy per site in
the thermodynamic limit is approximated by the in-
crease in entropy when one lattice point is added to
a large but finite system. This, in fact, is Lemma 1

(i). On the basis of the results presented in this pa-
per, it would seem advisable to use hierarchies as de-
fined in Eq. (30) as a basis for extrapolations.

The presentation in this paper has been limited to
the case of the Ising model on Z, but the results are
readily seen to be valid for any system with a finite
configuration space per lattice point 00 on any lat-
tice that permits a total ordering invariant under lat-
tice translations. The interaction 4 must obey the
condition of translational invariance and of finite
norm:

ll~'ll =X'll~'[»ll. &

where
I I@[X]

I I „is the supremum-norm on C(Qx).
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