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We consider the problem of growth of order on arbitrary length scales in a thermodynam-

ically unstable system. Starting from simple physical ideas about self-similarity, we develop

a renormalization-group formalism to treat the case of an initially disordered square-lattice

single spin-flip kinetic Ising model in zero field subjected to a quench to a final temperature

TF lower than the critical temperature T,. We derive and solve recursion relations for the
structure factor C(q, t) and for the short-range order parameter e(1,0;t). We find that
C( q, t) has, as a function of wave number q, an approximately Gaussian peak at q =0 that
sharpens to a 5 function as the time, t, after the quench goes to infinity. This peak is associ-

ated with the growth of domains. At intermediate times the width, q (t), decreases as

(t —to) ' . The area under the peak increases with time logarithmically at first and tends

asymptotically to the square of the equilibrium magnetization. The average magnetization
is zero for all finite times. At long times and small q, scaling laws follow analytically from
the recursion relations. As a function of t and of TF, C(q, t) exhibits a pulse and peak
structure similar to, but richer than, that previously found for quenches within the disor-

dered phase. We discuss the relation of our results to Monte Carlo, experimental, and previ-

ous theoretical work and conclude with suggestions for improvements.

I. INTRODUCTION

There exists a variety of thermodynamically un-
stable systems which, though rigorously incapable of
generating true long-range order, can nonetheless
produce order on arbitrarily large length scales.
Consider a very large system that is initially com-
pletely disordered with respect to some order param-
eter P. At some time the temperature' is rapidly
lowered to a value below a critical temperature T, .
Suppose the system is then thermodynamically un-
stable with respect to two degenerate equilibrium
states. The system will immediately begin to phase
separate into domains of the two competing states.
The degeneracy of the two "final" states is tan-
tamount to saying there is no external ordering field
(i.e., the conjugate to the order parameter) acting on
the system. Consequently the system will, strictly
speaking, never be able to choose between the equi-
librium states and there will never be symmetry
breaking in the problem. The average value of the
order parameter over an infinite system will remain
zero for all times. However, as time evolves, the
domains of the competing equilibrium phases grow
inexorably larger and locally it will appear that one
has long-range ordering —the longer the time the

longer the range.
Such situations are common. In a condensed-

matter context there is "ordering" in the absence of
an ordering field for antiferromagnets, superfluid
He, superconductors, and a variety of order-

disorder transitions. The early evolution of the
universe may also provide examples of this type. In
the final analysis, for very long times, it would be
virtually impossible to distinguish between true
long-range order and the type of local order we dis-
cuss here.

The physical situation described above is intui-
tively obvious but mathematically elusive. The ex-
isting theories are not powerful enough to distin-
guish between the size of a domain and the range of
local equilibrium correlations in a domain. These
conventional approaches have difficulties treating
this problem because it involves the development of
order on all length scales larger than that character-
izing the disordered phase and the competition and
interaction between those many length scales. We
now appreciate that problems involving many com-
peting length scales are conveniently treated using
renormalization-group (RG) methods. In this paper
we develop such a treatment.

The particular problem we study is the sudden
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temperature quench, in zero field, of a square-lattice
ferromagnetic kinetic Ising (KI) model with spin-
flip dynamics. We wish to treat here the case where
the quench is from a high temperature Ti to a tem-
perature TF below the transition temperature T, .
The approach we use is a direct extension of the
generalized RG methods developed recently to treat
a temperature quench within the disordered region.

Our main results (see Sec. V) are that the average
magnetization, for an infinite system, is zero' for
all finite times t after the quench,
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In (1.2) q is the wave vector, ME(t) is an effective
time-dependent magnetization, and C(q, TF) is the
equilibrium-structure factor associated with the
temperature TF. The function f(x) is peaked about
x =0 (approximately a Gaussian) and its integral is
unity. The width q~(t) is to be associated with the
growth of domains of size L (t) =2mlq (t). .

As shown in Fig. 1 we find a very sharp central
peak developing at q =0 as time evolves. The area
under this peak is given by ME(t), which approaches
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FIG. 2. Effective magnetization squared as a function
of time for uF ——0.42. The solid line represents M~(t), the
area under the central peak [see (5.19)], while the dots
represent MG(t), the value obtained by assuming that the
peak is Gaussian, [see (5.22)]. The arrow points to the
equilibrium value of the magnetization squared
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the equilibrium spontaneous magnetization squared
for long times (see Fig. 2) even though for any finite
time the average magnetization is zero. The width
q~(t) is shown as a function of time in Fig. 3. We
find that q~ decays as (t —to) '~ for intermediate
times, where to is roughly associated with the time
at which well defined domains appear. This is in
agreement with other theoretical, '" ' Monte Car-
lo, ' ' and experimental ' ' results. For long
times we find a crossover to a much slower decay
for q (t) going as (lnt)

We also present results (Fig. 4) which demonstrate
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FIG. 1. Structure factor C(q, t) vs q„/m=q„/~ for
several times, u~ ——tanhKF ——0.42, and ui ——0. The growth
and progressive narrowing of the central peak can be
clearly seen.
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FIG. 3. Width of the central peak vs time, for the tern-

peratures indicated (see Sec. V). The triangles and dots
are the results of our calculation, while the solid lines are
fits to the form q /tr=P '(t to) '~' and th—e values of P
and to for the three temperatures are given in Table II.
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FIG. 4. Structure factor C(q, t) as a function of time
for q„/m =q~/m=0. 02 and u+ ——0.42. The equilibrium
value is approximately 18.

the existence of a "pulse" structure at finite wave
numbers. This structure was previously found, in a
simpler form, in one dimension and in paper I.
Similarly, we look at the dependence of C(q, t)
on the final temperature TF for fixed wave number
and find two peaks (see Fig. 5) for long times. The
peak for TF & T, was obtained in I, and there is now
also a peak for TF g T, .

We believe that our approximate calculation leads
to a good qualitative description of this system with
quantitative reliability in the short and intermediate
time regimes. There are, however, some aspects of
the calculation which oversimplify the problem and
lead to implausible very-long-time freezing and un-

freezing behaviors. We will discuss this behavior
and the reasons for it in Sec. VI.
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FIG. 5. C( q, t) vs uF, at times indicated for 9x /w= 9y /m =0.03.
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In the next section we define our problem more
carefully and discuss related work. We follow this
in Sec. III with a qualitative discussion which we be-
lieve physically motivates the use of a RG treatment
in this problem. The key aspect here is the develop-
rnent of domains on arbitrary length scales and the
existence of a self-similarity in the problem connect-
ing different length and time scales. This self-
similarity can be exploited by developing recursion
relations connecting problems on these different
time and length scales. We indicate how these re-
cursion relations lead to a solution of the problem.

In Sec. IV we recapitulate the RG method intro-
duced in paper I and discuss the rather involved
derivation of the main mathematical result of this
paper: the recursion relation satisfied by the struc-
ture factor C(q, t) T.hose not interested in these de-
tails can jump to Sec. V where we present the results
of the solution of the recursion relation for C(q, t).
In the final section we discuss the limitations of
these results and speculate on how they can be im-
proved.

II. BACKGROUND AND MODEL STUDIED

The problem we study here is the simplest among
a family of problems occurring in magnetic, solid,
and fluid systems. We should differentiate between
systems where the order parameter is conserved
(fluids, and some ferromagnetic systems) and those
where it is not (antiferromagnets, superfluid helium,
superconductors, order-disorder transitions in al-
loys). We must also differentiate between systems
where the conjugate field is externally adjustable
(e.g., ferromagnets) and those where it is not (e.g. ,
antiferromagnets, fluids). Finally, there can be cou-
plings to auxiliary fields which may play a major
role in describing the dynamics in a system (as in the
coupling to flow via the velocity field in a fluid).
We study the case of a nonconserved order parame-
ter, in zero external field, and in the absence of
mode coupling effects.

A physically relevant situation is the ordering of
an alloy after a temperature quench. Hashimoto
et al. have carried out such experiments in Cu3Au
and have followed the evolution of the structure fac-
tor C(q, t) using x-ray scattering. There is good
qualitative agreement between their experiments and
our results. They find a growing central peak with a
width decreasing in time as (t to)—

There are several theoretical models which are be-
lieved to be appropriate to this problem. The sim-
plest field theoretical model describing an ordering
process with a nonconserved order parameter is the
relaxational time-dependent Ginzburg-Landau
(TDGL) model. 23 The conserved order-parameter

C(q, t)=C(q=O, T~)
™x

q

2

x [1+f(r)&(qr'")] . (2.1)

This clearly has an unphysical wave-number depen-
dence for small wave numbers. As they point out,
their result is incompatible with expectations, based
on physical grounds, that C( q, t ) should be com-
posed at long times of two peaks, centered at q =0,
with widths associated with two lengths: the corre-
lation length g and the domain size L. At late times
L »g. They conclude that in their "theory as well
as in Langer's theory of spinodal decomposition,
there is room for one effective length" only and
these theories describe "only the initial stages of the

counterpart of this model has been studied extensive-
ly since it models the problem of spinodal decorn-
position. This problem differs signficantly from the
one we have studied because of the conservation law
satisfied by the order parameter. If the wave-
number-dependent order parameter g» is conserved,
then P» 0 does not change with time. This means
that the q =0 component of (

~ g» ~
) is pinned at

its initial high-temperature value. This forces
(

~ g» ~
) to be peaked as a function of q for times

after the quench.
A more realistic description of our problem is

given by an antiferromagnetic spin-exchange kinetic
Ising (ASEKI) model. In this model the concen-
tration or, in magnetic language, the magnetization
m =g» o is conserved. The ordering in these sys-
tems is, however, at a finite wave number qo and the
order parameter is the staggered magnetization g-

qo
which is not conserved.

One can construct a model somewhat simpler
than the spin-exchange model if one neglects the in-
fluence of m on g- . This is the single spin-flip ki-

qo
netic Ising (SFKI) model (defined below). For
wave vectors near qo, it should be very similar to the
ASEKI model. Finally, we note that an antifer-
romagnetic square lattice with qo

——(~,m) (in units
of the inverse lattice constant) is equivalent to the
ferromagnetic SFKI (qo ——0) which we consider in
this work.

There has been theoretical and numerical work on
all three models listed above. Billotet and Binder
have studied the TDGL model in three dimensions
by using the method of Langer, Bar-on, and Miller
(which had been developed for the case of a con-
served order parameter. ) They found that this
method leads to a time-dependent structure factor of
the form [see Eq. (89) in Ref. 6]
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nonlinear relaxation process" where no domains
larger than g exist. Therefore their theory "as well

as Langer's theory are incapable of correctly describ-
ing the decay of metastable states. "

Kawasaki, Yalabik, and Gunton" also treat a
TDGL model. In some sense their calculation goes
in the opposite direction to that of Ref. 6. While
they also obtain a single length it is to be associated
with the growth of domains. Since they ignore the
effects of thermal noise, finite wave numbers never
properly equilibrate and the correlation length does
not appear in their calculation. After a series of
rather drastic approximations they obtain the result
that the width of their central peak decreases, for
very long times, as t

A phenomenological but very physical approach
to the long-time behavior in this system and a
TDGL model involves the assumption that the main
dynamical mechanism after local equilibrium is es-
tablished is via the motion of domain walls. Allen
and Cahn' have shown' in this case that the aver-

age domain size L grows as (t —to)' and found
some experimental support ' for their result from
direct observation of individual domain growth.
Subsequent theoretical investigations' ' along the
same lines support these conclusions.

Kawabata and Kawasaki' have carried out a
Monte Carlo study of the SFKI model (with a
slightly different fiipping probability than we treat
here). Qualitatively the structure factor they obtain
after a quench from infinite temperature down to
TF ——0.2T, is in agreement with the results we find
here and are observed in experiment. They find a
central peak sharpening about q =0 as time
proceeds and see a pulselike behavior for fixed q as
a function of time. They also find a width for the
central peak which "seems" to vary as t ' for the
longest times they treat.

There is, however, an obvious problem with the
Monte Carlo results in Ref. 17 since they obtain a
nonzero value for the average magnetization at fi-
nite times. This is a consequence of working with a
finite (40&(40 sites) system. If one repeats the cal-
culation of m(t) in Ref. 17 using a larger system
(XXX) one finds that the average magnetization,
m~(t), again approaches its equilibrium value, but at
a time which increases sharply with N. This leads
to the result m40(t)&m~(t). Clearly this implies
that in the thermodynamic limit m (t)=0. For any
finite system, a single domain will eventually engulf
the system, but in an infinite system there is always
an equal distribution of "up" and "down" domains.
Hence, it is necessary to check carefully the size
dependence of C(q, t) in a Monte Carlo calculation
before interpreting the results.

More careful Monte Carlo studies of the ASEKI

P[o,K]=exp(H[o, K])/Z(K), (2.2)

where H[o,K] is the nearest-neighbor Ising Hamil-
tonian characterized by a positive coupling
K =J/k~ T, J is the exchange constant, and Z(K) is
the partition function.

We assume that the dynamics of the Ising spins
are driven by a heat bath via a single spin-flip opera-
tor (SFO) D (K) which depends on the temperature
of the bath and is given by

D[o
~

cr';K] = gA~~'~~ W; [o',K]o;o—,',—(2.3)cr, o'

where 0, is a flipping rate,

(2.4)

tells us that the matrix D[o
~

a'gC] is almost diago-
nal, and we choose the spin-flip probability to be

model have been carried out in three' and two di-
mensions. ' These studies, which can only be car-
ried out for limited time ranges and with a coarse
wave-number resolution, lead to conclusions com-
pletely compatible with those we find here. They
show in both two and three dimensions that there is
approximate scaling of the form given by (1.2)
with MF(t) taking its asymptotic value and

q (t)-(t —to) ' for intermediate times.
As explained above we study here the SFKI

model on a square lattice. It is very convenient to
study this model: Some of the equilibrium quanti-
ties, such as the magnetization m and the nearest-
neighbor correlation function e(0, 1) are known ex-
actly ' as a function of temperature, and the
equilibrium structure factor C(q, T) has been stud-
ied by series methods. ' Moreover, we have pre-
viously obtained excellent agreement with many
known results when we have calculated m and
C(q, T) (as well as dynamic fluctuations in equili-
brium) using the same real-space renormalization
methods which were extended in I to time-
dependent problems. We recall that the SFKI
model (or a relatively simple variant) serves as a
reasonable first approximation for the dynamics of a
number of systems including certain antiferromag-
netic systems and the order-disorder process of
some binary alloys.

In detail, the model that we study here is precisely
that studied in Refs. 34 and 35, and in I. Therefore,
we merely recall here some definitions in order to in-
troduce notation: Consider a set of N classical
spin- —, Ising spins [cr] located at sites r; on a
square lattice with spacing c. In thermal equilibri-
um, at a temperature T, the probability distribution
governing these spins is
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a(K}
JY;[cr,K]= 1 — o; go;+s

a

a'(K)+ goi+s oi+s +~ &

a

with

a(K) =tanh(2K) .

(2.5)

(2.6)

C(q, t) = ge ' ' ga;o.iP[cr, t] .
l,J CT

(2.11)

We shall focus our efforts on the calculation of
C(q, t}. First, however, we want to discuss some
important qualitative features of the present prob-
lem.

m(t) = +ger;P[o, t—],1
l (2 9)

the nearest-neighbor correlation function,

e(1,0;t) = g go;o;+s P[o,t J,1

4N,-,

and, finally, the structure factor,

(2.10)

The 5, in (2.5) are the vectors connecting a site to its
four nearest neigbors. Thermal equilibrium between
the bath and Ising spins requires that P[o,K] be in-

variant under time translations generated by D (K),

e P[o,K]=P.[o,K], (2.7)

and this condition requires that a(K) in (2.5) be
given by (2.6).

All times are measured in units of the inverse flip-
ping rate e ', which can vary drastically depending
on the specific problem under consideration. a
may range from as low as 10 ' sec in some mag-
nets to hours (e.g. , in the case of binary alloys
where it is primarily determined by solid-on-solid
diffusion times which are very long). Hence, the
time domain of physical interest may be extremely
different for different problems. When we use ex-

pressions such as "early time" we mean at small,
but such times correspond to widely different physi-
cal times. While we assume that a is temperature
independent, as in Monte Carlo studies, this is clear-

ly unrealistic if one investigates a wide range of tem-
peratures. In comparing with experiment in detail
one must take this temperature dependence into ac-
count.

Suppose we rapidly change the temperature of the
bath from Tq to TF. We assume, in keeping with
Monte Carlo studies of this problem, that this
quench is instantaneous. The Ising system will

respond to this quench through its dynamic cou-

pling to the bath via the SFO D (KF) which drives
the Ising system to equilibrium with the bath at
temperature TF. The probability distribution
governing the Ising spins for times t )0 is given by

P[o,t] =exp[tD (KF )]P[o,K, J . (2.8)

The nonequilibrium quantities of interest are the
magnetization,

FIG. 6. Domain structures imaged (Ref. 41) with 82
superlattice ref1ection in 23.0 at. %%uoA 1 inF ealloy . The
samples were quenched from 630'C and annealed at
570 C. In panel (a) the system was annealed for 100 min

while in panel (b) it was annealed for 1000 min. In panel

(c) we have taken a portion of panel (a) with approximate-

ly the same number of domains as in panel (b) and then
blown this portion up to the same size as panels (a) and
(b). Comparison of panels (b) and (c) illustrates the self-
similar structure of the system under simultaneous rescal-
ings of space and time.
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III. QUALITATIVE DESCRIPTION
OF APPROACH

Before discussing the formal aspects of this prob-
lem in the next section it is useful to consider the
basic physics involved in a qualitative and intuitive
way. At some early time t1, after the quench, some
ordered regions, domains, or droplets, will have
started to form [see Fig. 6(a)]. ' At some later time
t2&t~ the ordered regions will, of course, have
grown in size [Fig. 6(b)]. If we call l~ the charac-
teristic size of these domains at time t„then at t2

we have l2 & l1. If we wait long enough all length
scales larger than a lattice spacing enter the prob-
lem. We also notice that structures on a given scale
are built up from structures from a smaller scale so
that the various scales interact. This interaction be-
tween arbitrarily large length scales is the ingredient
which makes this problem difficult. An observable
such as C(qt) , will have contributions from all
length scales as time evolves and, in order to calcu-
late it, we must be able to treat the interaction be-
tween scales. In general we do not know how to
deal with such problems. The following physical
observation leads to hope.

Imagine that we begin, right after the quench, ob-
serving the system with a spatial resolution ~Z1.
After a while we will note, at time t&, the appear-
ance of domains. Let us now decrease the resolving
power of our "microscope" to b,t &&&~. Then, we

2

shall not be able to observe domains until a time
t2 & t1, at which time, however, the system will look
very much as at time t1 under resolving power bL1
[see Fig. 6(c)]. The system is self similar-if one
simultaneously changes the length and time scales.
Self-similarity can be conveniently exploited using
RG methods.

Let us make this slightly more quantitative. If
I

we look at our system with resolution b && (b & 1) at
time t it looks qualitatively like the system viewed
with resolution &&. at an earlier time t'=At (b, ~ 1).
In the structure factor C( qt, ), 2m /q can be associat-
ed with the resolution with which we observe the
system. Our self-similarity takes the form

C(q /b, t)-C(q, bt),
or letting q —+bq,

C(q, t)-C(bq, ht) .

(3.1)

(3.2)

Of course, one cannot expect (3.2) to be an equality.
It is more realistic to write

C(q, t) =Co( q, t)+Po(q, t)C(b q, b t), (3.3)

where one should a'low for overall resmling factors
such as Po(q, t) (just as in treating critical phenome-
na) and for contributions like Co( q, t ) which
come ' from short wavelengths not contained in

C(bq, ht). We assume that Co(q, t) and Po(q, t) can
be obtained from a local perturbation-theory calcu-
lation that does not depend on competing length
scales. Indeed we discuss in Sec. IV the derivation
of (3.3), and the determination of Co(q, t) and

Po(q, t).
There is one further point. Even though the sys-

tem under reso1ution ~~
1 at time t1 may look quali-

tatively like the system under a coarser resolution
EL2 at time t2, the interactions between the vari-
ables characterizing the two levels may be quite dif-
ferent. If, as assumed in this paper, the self-
similarity of the problem mn be implemented via a
mapping of our SFKI problem from level to level,
then the interactions at the different levels will be
given by just two couplings, just as Kz and KF
characterized the original problem via (2.8). Thus
we really must write

«q»KI, KF) Co(q»KI KF)+Po(q»KI KF)C(bq ~«F)t KI KF) (3.4)

C(0)=C(0)+p(0)C(1)
0 0 (3.5)

where the superscript labels the level of resolution.

where Kq and KF are the effective couplings
describing the system with the coarser resolution (or
equivalently a larger lattice constant), and the time
rescaling factor, b,(K), will depend on the tempera-
ture of the bath driving the dynamics (we discuss
this in detail below).

Why should one consider the establishment of
such a recursion relation an advancement? The
reason is that we can, as we indicate below, solve
such equations rather easily by direct iteration. Let
us write (3.4) schematically as

I

We can then iterate directly and thereby connect
C' ' to all of the various scales described by
C"',C' ', . . . , C'"' as follows:

C(0) C(0) +p(0)C(1) +p(Q)p(1)C(2)
Q 0 Q 0 0 0

and

+ +p(0)p(1), . p(8 —1)C(a)
0 0 0 (3.6)

C'"' C(b "q=B'"'t K'"' K'"')
where

(3.7)

B'"'=5(KF" ")b(KF" ') b,(K' ') (3 8)

A key point in our development then is the deter-
mination of the thermal recursion relation
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K'=K'(K), which controls the flows of the cou-
plings El and EF and the time rescaling factor
b, (KF). The thermal recursion relation we use (for a
spatial rescaling factor of b =2) is discussed in Ref.
42 and takes the form

0.9

0.8

0.7

2 (3.9) 0.6

n'=he . (3.10)

The explicit determination of 5= b, (K) follows from
an analysis of the equilibrium-averaged dynamic
structure factor. Since this is a rather important
and dehcate step, we discuss the analysis in Appen-
dix A leading to the result

2
X(K') I "(K)

(3.11)
X(K) I "(K') '

where v& is related to the projection of a single spin
onto a block-spin variable and is given explicitly by

where P =e tanhK. This recursion relation leads to
the correct exponential decay of correlation func-
tions at large distances in both the ordered and
disordered phases, ' its nontrivial fixed-point solu-
tion gives the exact transition temperature for this
problem,

u, = tanhK, = (2' —1),
and leads to the exact value for the thermal critical
index (v= 1).

There are two stages in the determination of the
time rescaling factor. The first stage involves show-

ing that the problem is dynamically self-similar.
That is, within the perturbation theory described in
Ref. 34 and in the next section, that the dynamics
for a system with twice the original lattice spacing is
of the same form as for the original problem except
that it has a renormalized flipping rate u' which is,
by definition

0.4
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0.2

O. l

0.2 0.4 0.6 0.8 I.O

U

FIG. 7. Time rescaling factor 6 vs u.

e(m, n) =QP[o,K)o; o,+„-+„-. . (3.14)

6=4y (3.1 5)

for low temperatures. It will turn out to be very im-
portant that 6 goes to zero as EF oo.

1.0
i

0.9

0.8

0

F =0.6

F =0.7

0.7

We plot 6 vs u=—tanhK in Fig. 7. In the high-
temperature limit 4vt~1 and we obtain b(0) =1 as
expected. In the low-temperature limit v& —+1,
x -y where y =e and I "'-y . Since y'=y
for large enough E, we obtain

1 (I+~p)(vt)'=—
2 (2—~o)

where

ao =tanh(2Ko )

(3.12)

(3.13)

0.6

0.4

and Kp =Ko(K) is the effective coupling in a cell of
four spins and is given in Ref. 34 [Eq. (2.60) and
Fig. I]. &s a first approximation Ko-2K. The
quantity P(K) in (3.11) is the magnetic susceptibility
and its determination as a function of E is discussed
in the next section. Finally the quantity I"(K) is
the equilibrium average of the flipping probability
and can be evaluated exactly, as explained in Refs.
35 and 42, in terms of the short-range correlation
functions e(1,0) and e(1, 1) which are defined by

0.2

O. t

0 2 4

g UF =p.3

~UF =0.4
I d, I, I

6 8 f0

n

FIG. 8. Factor relating iterated and initial times [see
(3.16) and (3.17)] as a function of iteration number for the
indicated values of u~.
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ow return to our iterated e uWe can now

C(, t) i b (36) dand follow the
der iteration. When we

dn ing to quenchesq

ever is that the effective te e fective time

t'"' =b, lK'" )t'"

=8„(Kr;)t

renormalizes, after a sufficient num

(3.16)

(3.17)

I.O

0.9

0.8

t „(t'"')

0.7

I0

l0"

lim t'"~=O.
n~ao

With the results develo d bpe a ove, we find

lim C(b "q, t~") K'"'r, "r. )=c(q= oo

and f =, as notor t =0, the system has not

(3.19)

of the quench, so
as not yet felt the effects

C(q=ae, t=o K =O,K =I s F

(3.18)

=C(q= co,Kr ——0) .

However, for Kl ——0

C(q, Kr =O) =1,

(3.20)

(3.21)

and, returning to the shg e shorthand notation of (3.6) 7

»m C'"'=& .
Pl ~ oo

(3.22)
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n (3 6) h b
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' '
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few iterations.
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One immediate conse uen
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IV. RECURSION RELATION FOOR C(q, t)

The purpose of this section is to s
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e ormal aspects ofp s of developing an RG
o or treating this problem are

'1 '

developed there and ll f
r . e will not re eat th

f to equationse an will freely refer
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(4.1)

and

T[p
~

o;t= 00]=T[p
~
o;K~], (4.2)

where T[p
~

0.+ ] satisfies the eigenvalue equa-
teon 38y 44

m(t)=v)(t)m'(t') . (4.4)

The nearest-neighbor correlation function e(1,0;t),
defined by (2.10), can easily be shown, using (I.4.34),
to satisfy the zeroth-order recursion relation,

e(1,0;t)= + e'(1,0;t') .r(t)
2 2

(4.5)

Finally the structure factor, defined by (2.11), sat-
isifes the zeroth-order recursion relation

C(q, t}=1+2r(t)g,(g)+s(t)g2(q) —v, (t)f(q)

+vf(t)f(q)C'(2q, t') . (4.6)

In (4.4)—(4.6) r(t) and s(t} are the zeroth-order
nearest- and next-nearest-neighbor correlation func-
tions, (I.4.24), which are given explicitly in Appen-
dix B. We also have

4v', (t) =1+2r(t)+s(t), (4.7)

and

g&(q) = —,[cos(q c)+cos(q„c)],

g2( q ) =cos(q„c)cos(q~c ),
f(q)=1+2g, (q)+g, (q) .

(4 g)

(4.9}

(4.10)

Note that (4.6) is of the form given by (3.4) with ex-
plicit expressions for Co and Po.

In this paper we extend this calculation of Co and
Pp to first, order in the coupling between calls. We
have carried out this first-order calculation for two
reasons.

(i) The zeroth-order calculation is not a very
severe test of the assumption that P[p, t], defined by
(I.4.1), is "similar" to P[o,t] (alternatively, that the

D (K)T[p
~

O-,K]=Dp(K')T[p
~
cr;K], (4.3)

where D„is the renormalized SFO governing the
dynamics of the block spins [p). T[p

~

o;t] is con-
structed in an expansion treating the effective in-
teraction between cells as a small parameter.
This was carried out to zeroth order in I. The result
for T'[p ~cr;t] is given by (I.4.22). Following the
steps outlined below (I.4.10) one can then construct
zeroth-order recursion relations for various quanti-
ties. The recursion relation for the magnetization,
defined by (2.9), is

quantity 8 [p, t], defined by (I.4.9), is well behaved).
Also, it is not completely obvious that T[p

~
0;t),

when constructed to higher orders, will reduce to the
appropriate equilibrium forms for t =0 or oo. A
first-order calculation elucidates these points.

(ii) The zeroth-order recursion relations are per-
fectly adequate for the study of quenching in the
disordered phase (see I). The situation is different
for the case of quenching into the ordered phase.
We pointed out earlier ' that the zeroth-order
theory fails, in the equilibrium case, to give correct
results for C(q, T) for T & T„giving either zero or
infinity for the susceptibility and a negative correla-
tion length squared. In Ref. 45 we showed, for or-
dered systems, how one can treat this difficulty.
However, the symmetry-breaking mechanism intro-
duced in Ref. 45 is inappropriate to the present case
where one does not have true ordering. A result of
this paper is that this problem can be handled by
simply going to first order in perturbation theory.

We must briefly discuss the first-order calculation
for the equilibrium case which has not been dis-
cussed elsewhere. The first step in this analysis is
the solution of the eigenvalue equation (4.3) with the
constraints

QT[p ~

o,K]=1 (4.11)

and

QP[o,K]T[p [
o",K

[
T[p'

f
O-,K]

=6„„P[p,K'] . (4.12)

These equations are solved using a perturbation
theory which treats effective coupling between
cells, a, as a small parameter. The determination
of the effective coupling ao in a cell was discussed in
Sec. III. The determination of the parameter az
essentially involves the requirement that the
thermal recursion relation for K' derived from the
perturbation-theory calculation agree with (3.9).

The next step, after constructing the renormalized
probability distribution P[p,K), the SFO, Dz(K'),
and mapping function T[p

~

o",K], is to construct to
first order the collective variable" associated with
the physical quantities of interest. These include the
collective variable associated with the total spin

tr; and the coa.rse-grained variable corresponding
to cr;,0.&, . Averaging over the appropriate proba-
bility distributions one obtains the first-order recur-
sion relations for the magnetization and (after
Fourier transform), the static structure factor.
These have the same form as at zeroth order (see I),
only the coefficients are different. A key point here
is that that the corrections in these coefficients to
the zeroth-order results are proportional to az
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TABLE I. The critical indices v, P, and y as given by
the zeroth- and first-order RG calculations and compared
with the exact results.

l60—

0 order
1 order
Exact

0.1199
0.1245
0.125

1.758
1.753
1.75 I20—

which is not a small parameter since it ranges be-
tween 0 and 1 for 0&K&1. However, az always
appears in these expansions for the recursion rela-
tions for observables in the form az (1 —ac). The ef-
fective expansion parameter is therefore not aR but
a~ (1—ac), which is small ( & 0.065) for all tempera-
tures.

As a check on these first-order results we have
calculated several static quantities. The zeroth-
order result for e(1, 1), the next-nearest-neighbor
correlation function, at T, is 0.6199, the first-order
result is 0.6279, and the exact result is 0.6366. The
critical exponents are listed in Table I. In all cases
there is improvement at first order.

In Fig. 10 we show the results for the magnetiza-
tion, in Fig. 11 we plot the susceptibility, and in
Fig. 12 we plot the static structure C(q, K) for u
=0.42 and 0.5. Analysis of these results shows that
at first order there is definite improvement over the

80—

40—
~X

„~X
X

Ql I i I & I i I & I & I

Q.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
0

FIG. 11. Equilibrium susceptibility vs u. The solid line

is the first-order result. The crosses correspond to the
zeroth-order result and the circles correspond to the series

results of Refs. 32 and 33.

zeroth-order result and that we have a very good
description of the equilibrium state.

The general procedure to be followed in the non-

equilibrium case is outlined in I below (I.4.10).
Since this is an extremely involved calculation, we

shall only indicate the main features here (additional
details are available upon request).

0.9—

0.8—

0.7—

0.6—I
05—

Q4—

28—

24

20

l6

l2

I
]

I
)

I
)

I
]

1
]

I
)

1

0.2—

Q. I—

« I i I i I i I s I i I

0.40 0.42 0.44 0.46 0.48 0.50 0.52 Q.54
U

FIG. 10. Equilibrium magnetization vs u. The solid
line is the first-order result and the open circles are the ex-

act results.

0 0.02 0.04 0.06 0.08 O. IO O. I2 O.I4

'«I~
FIG. 12. The equilibrium structure factor vs q„=q„at

the values of u indicated on the figure. Note that
u =0.42 is the value that we have chosen for uF in

presenting many of our nonequilibrium results.
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P[p, ,t]=R[p, t]P[p, , t] . (4.14)

We construct R [@,t] in perturbation theory and ob-
tain

R [p, t]= 1+E«(t)5E[p]+O(e ),
where 5E[IJ,] is the deviation of

1E[ ]= , XI tl,-+s
i,a

(4.15)

(4.16)

from its average over P[p, t]. We plot «(t) as a
function of time in Fig. 13 for ut ——0 and uF ——0.42.
We see that «(0) =«( oo ) =0, and «(t) is small at all
times. Thus, R =1 and the self-similarity assump-
tion appears to be well satisfied. We will return to
this point in Sec. VI.

The derivation of the recursion relation for
C(q, t) to first order requires finding the first-order
contribution to the coarse-grained variable

~, [p, t] corresponding to m[cr]=o;.,o~, [see
(I.4.7)] and then Fourier transforming. We then ob-
tain the recursion relation for C(q, t) by averaging

~[q,tj„t]with respect to P[p, t].
Performing all of these operations we obtain the

main theoretical result of this paper, i.e., the first-
order recursion relation for C(q, t) can be written as

After constructing T[p
~

o-, t) to first order we ob-
tain the probability distribution P[p, t] governing
the block spins. We would obtain complete self-
similarity if P[p, t] is equal to

P[p, t]=e " P[p,Kt] . (4.13)

They are not identical and we can analyze the differ-
ence by defining a quantity R [p, t] via

C(q, t) = Co(q, t)+Poo(q, t)C'(2q, t')

+«(t)PoI ( q, t)H'(2q, t'), (4.17)

which is of the form (3.4) except for a small cou-
pling to the quantity H(q, t), which is the Fourier
transform of H;, 1, =.(o;,oj, 5E[o]). This cou-
pling is proportional, however, to the small quantity
«(t), and, although it is not negligible (because the
energy fluctuations can be large) it does not have a
crucial effect on the results. One simply solves
(4.17) together with the easily derived zeroth-order
recursion relation for H(q, t). The explicit expres-
sions for Ppp Pp] and Cp to first order are very
lengthy, not very illuminating, and will not be repro-
duced here.

At t —+0 and taboo the recursion relation for
C(q, t), (4.17), properly reduces to the static recur-
sion relation at K =El and E =Ez, respectively.
Thus we have derived the RG equation connecting
the structure factors defined with different degrees
of resolution and the equations are [except for the
small coupling to H(q, t)] of the form proposed in
the last section.

V. RESULTS
In this section we analyze the results which follow

from the recursion relations derived in the last sec-
tion.

A. Scaling

As shown in Fig. 1, for sufficiently long times,
C(q, t) is a very sharply peaked function near q =0.
This means that in the recursion relation (4.17) we
can, since C(q, t) is very large, ignore the contribu-
tions from Cp and H and set q =0 and t = oo in Ppp
to obtain

0.028—

0.024

I
t

I
f

I
[

I

C(q, t) =Poo(0, oo )C'(2q, t') .

It is easy to show that

Poo(0 ~ ) =Po,F

(5.1)

(5.2)

0.020

0.016-
K(t)

O.OI2-

0.008

0.004

I l I I I I I I I I I

0 0.2 0.4 0.6 0.8 l.0 t.2 f.4

af

enters the recursion relation for the magnetization
corresponding to the equilibrium final state:

m (KF ) = , QPo Fm (KF)— (5.3)

Inserting this ansatz into (5.1) and using (5.3) we ob-
tain

with corrections of 0 (e ). This suggests that the
peak contribution, CF(q, t), satisfies at long times
and small q, a scaling equation of the form

mF(KF )
C, (q, t)=, f(q/q„(t)) . (5.4)

q„'(t)

FIG. 13. Coupling «(t) [see (4.15)] vs at at uF ——0.42.
f(q/q (t))=, f(2q/q'(t')),

q (t) [q'(t')]' (5.5)
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which is satisfied if

qN(ht, KI',KF) =2q (t,KI,KF) . (5.6)

Such scaling relations are particularly useful if one
is near a fixed point. If KI ——KI ——0 and KF

c, then

q~(b (K, }t)=2q~(t),

which has the simple power-law solution,

q =q, t

with

ln2

Ink(K, )

(5.7)

(5.8)

(5.9)

Thus, as expected, we find dynamic scaling in this
regime: Characteristic times in the problem enter as

(q~), where z is the dynamic critical index given by
the usual expression

—Inb(K, )

ln2
(5.10)

If, on the other hand, we quench to TF~0, we have
the solution

B. The nearest-neighbor correlation function

The nonequilibrium nearest-neighbor correlation
function e(1,0;t), defined by (2.10), which is' the
short-range order parameter for this problem, enters
into the recursion relation for C(q, t) as part of the
first-order correction. We can then consistently
evaluate it at zeroth order where it obeys the recur-
sion relation (4.5). We display the results for the
iterated solution of (4.5) in Fig. 14 where we plot
e(1,0:t) as a function of time for various final tem-
peratures. As expected this quantity grows initially
more rapidly for deeper quenches. This is not as
clear in the case of the lower-temperature quenches.
In the inset we see that indeed, initially e(1,0;t)
grows more quickly after a quench to uF ——0.6 than
for the quench to uF ——0.5. However, there is a
crossover after a relatively short time. This corre-
sponds physically to the situation where initially the
system responds rapidly to set up a local equilibri-
um. The low-temperature quench, being further
from equilibrium, will initially elicit a more
vigorous response. After local order is achieved, one
expects the lower-temperature system to respond

qo/(lny ')
qw=

lnat
7 (5.1 1)

with qo temperature independent and y =e
Thus, we find a logarithmic decay of qw at very long
times.

For wave numbers outside the peak region we ex-

pect that the system is equilibrating for long times
and we can write

0.9— UF =0.5

~UF -0.6
r'r'

r'rr

o.4 ///'
/

0.6

UF = 0.5
0.8

0.7

I~0 &

[
I

[
I

[

i
[

i

[
&

[

os---
x 0.5

C(q, t)=CF(q, t)+C(q, KF) .

Since we have the sum rules:

C q, KF ——1 —m KF
(2m. )'

d2
C q, t =1,

(2m )'

we easily identify, making use of (5.4),

d2d q 1

(2') q (t)

(5.12',

(5.13)

(5.14)

(5.15)

0.6

0.5

0.4

0.5

0.2

0. 1

o ".2O i).40
at

x 0.4

x 0.3

x 0.2

x 0.1

lim
~ f(q/q~(t)) =(2n. ) 6(q),

~q (t}

and we arrive at the expected result,

lim C( q, t) ™(KF)5( q ) +C ( q, KF ) .
t~ oo

(5.16)

(5.17)

For increasing time q ~0, f ( oo ) =0 and the in-

tegral (5.15) remains finite. Together these proper-
ties define a Dirac 5 function,

0 2 4 6
[ i I

8 l0 l2 [4

at
FIG. 14. Nearest-neighbor correlation function (short-

range order parameter) vs at at the indicated values of uF.
The crosses, labeled by uF, indicate the corresponding fi-
nal equilibrium values for e(1,0;t). The open circles indi-

cate the early time values of e(1,0;t) for uF ——0.6, which
are shown more clearly in the inset.



6824 GENE F. MAZENKO AND ORIOL T. VALLS

more slowly since the domains will be more rigid at
the lower temperature. It is useful to recall, here
and in the rest of this section, the remark made
below (2.7) in regard to the physical meaning of the
expressions "early times" and "late times" as used
here.

C. Analysis of C(q, t)

0.9—

0.8—

0.7—

Goussion
—-- Lorentzion

~ at= IQQ

1000
o IQ QQQ

IQQ 000
+ I 000 000

The bulk of this section is devoted to the analysis
of the solution of the recursion relation (4.17) for
C( q, t). The only significant difference in numeri-

cally implementing the iterative solution of (4.51)
and in our previous work ' is that C(q, t) couples
to H(q, t). If, however, we introduce a vector, with
components C(qt) ,and H ( q, t), we can rewrite our
recursion relation in the standard form and continue
as before. As explained in Sec. III, if uzgu„ the
time eventually iterates to zero and the iterated
C(qt) f, lows to one.

The parameters characterizing C(q, t) are at, ui,
uF, and q. We have chosen to present results only
for the subspace q„=qz and uI ——0. While there are
certain anisotropic effects in q space which may be
studied, we have found them to be qualitatively less
interesting and general than the results we present.
The case of quenches for ul &0 is qualitatively the
same as for ul ——0 except if ul begins to enter the
critical region. Quenches from within the critical
region will be discussed elsewhere.

In Fig. 4 we show C(q, t) for fixed q„=0.02m. and

uF ——0.42 as a function of time. We see that the
structure pulse found when quenching within the
disordered phase ' also occurs here. C(q, t) rises
rather rapidly to a maximum value and then begins
to decay rather slowly to its final equilibrium value.
While this pulse structure is similar to that observed
in the disordered case, it is complicated by a set of
rather weak oscillation s for intermediate times.
This seems to indicate that there are really a series
of pulses occurring when we quench into the un-

stable region. We see further evidence for this
below.

We plot C(q, t) versus wave number in Fig. 1

for various times and uz ——0.42. The main features
are the growth of the central peak, . corresponding to
domain formation, and the equilibration of large
wave numbers. Inspection of these curves shows
that there is some shape change in the central peak
as time evolves. These changes of shape appear to
be associated with the movement of pulses from
high to low wave number as time evolves 9 (as in the
shoulder for the case ar = 100).

While our analytical development at the beginning
of this section indicated that we have scaling at suf-
ficiently long times and small wave numbers, we
need to investigate the validity of scaling for finite

0.6—
f(x)

0.5—

0.4—

03—

0.2—

O. I—

I i I i I l I i I ( I

0.4 0.8 l.2 l.6 2.0
X

FICJ. 15. We plot f(x)=C(q, t)/C(O, t} vs x =q„/q
at the times indicated by the labels. The solid and dashed
lines are Gaussian and Lorentzian fits (see text).

times and small wave numbers. In Fig. 15 we plot
values of C(q, t)/C(0, t) vs q/q (t), where q (t) is
the halfwidth at half maximum, for a number of
times and for uF ——0.42. For comparison we have
also plotted Gaussian and Lorentzian fits to C(q, t).
We have found that at many times (such as at =10
and 10 ) the shape is well represented by a Gaussian,
while for other times (such as at =10 and 10 )

there is a change in shape which seems to represent
a fluctuation about a Gaussian. The Lorentzian
shape gives a poor fit for all times. We draw the
conclusion that the shape of Cz(q, t), as a function
of q, is roughly Gaussian.

In Sec. I we introduced the notion of an effective
magnetization ME(t). We define this quantity more
carefully here. First we must settle on a precise def-
inition of Cz ( q, r). One cannot define C~ ( q, t )

=C(q, t) C(q, KF) be—cause this quantity has (ex-
cept for long times) significant weight away from

q =0 and its integral over all q [given (5.13) and
(5.14)] is trivially m (KF) and independent of time.
A useful definition of Cz(q, t) restricts it to small
wave numbers. We define

C~(q, t) = e(Aq~(t) —q)[C(q, t) —C(q, KF)],
(5.18)

where the step function restricts the magnitude of
the wave number to magnitudes less than Aq . We
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have chosen A=2. 5 although the particular choice
should not be very important. We then define

d2
ME'(t) =f,C~(q, t) . (5.19)

(2m )

We plot Mz(t) versus time in Fig. 2 for u~ ——0.42.
We see that ME(t) is given accurately by
0.0091 ln(at) for at between 1 and 100. For longer
times ME(t) begins to saturate. There is some evi-
dence for the pulses mentioned above near at =10
and 10".

If we return to the result that Cz(q, t) is roughly
Gaussian, we can write

MG(t)
fG(q~q. » (5.20)

q~(t)

where fG is normalized ' as in (5.15) and given by

fG(x) =2m(ln2)e (5.21)

If we set q =0 in (5.20), we obtain the relationship

C(0, t)q'(t)
MG(t) =

2+ ln2
(5.22)

10 I I I' I I I I I
(

I I I I I I 11( I I I I I I I

In Fig. 2 the dots give MG(t) for the case uF ——0.42.
The difference between MG(t) and ME(t) measures
non-Gaussian corrections.

In Fig. 16 we plot C(O, t) for several temperatures
as a function of time. For early times C(O, t) grows
approximately with the power-law dependence
(at)" for all three temperatures. In keeping with
our discussion of e(1,0;t), we . see that for short
times the peak height for the lower temperature is
larger than for the higher temperature. Eventually,
as we explained before, we expect to obtain a cross-
over as it becomes progressively more difficult for
the more ordered system to evolve.

Jn Fig. 3 we show q versus time for intermediate
times and three final temperatures (corresponding to
the final temperatures investigated in Ref. 20). We

TABLE II. Values of the parameters characterizing

q /m for intermediate times at three final temperatures.

QF

0.4181
0.42
0.425

62.7
61
43.6

to

0.323
0.183

—0.182

8

7—

5—

q„xlO
W

obtain excellent root-mean-square fits for the time
region 0.45 &at &1.3 to the form q /m

=P '(t —to) ', where P and to are given in Table
II. As expected to decreases with decreasing tern-
perature. This corresponds to the fact that the local
degrees of freedom, before there is any local con-
straining order, react more quickly to a deeper
quench to set up a local equilibrium. Once this
rather rapid equilibrium is established one has essen-
tially a random distribution of domains. The deeper
the quench the more difficult it will be for a domain
to grow at the expense of its neighbors. There is,
therefore, a crossover between the response of the lo-
cal degrees of freedom at short times and the
response of domains at longer times.

The long-time behavior of q vs w =log~o(at) is
plotted in Fig. 17 at u~ ——0.42. This figure shows
the freezing behavior, mentioned previously, for
large m. We see, for example, that q does not
change appreciably for m between 12 and 20. Even-
tually as time increases the freeze ends and q again
decreases until another freeze develops. We see in
Fig. 17 that our results can be reasonably well fitted,
allowing for the freeze, by the scaling result given by

at
&

10 100 1000
Cm

FIG. 16. Growth of C =C(0, t) with time, at the la-

beled temperatures.

I I I I I I I I 1 I I I I I I I I I I I

4 8 I2 l6 20
W

FIG. 17. Halfwidth at half maximum as a function of
m =loglo(at). The dots are the results from the solution
of (4.17) and the solid line is a fit to the long-time scaling
result (5.11) with qo/m =0.0346 ln(y ').
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(5.11) with qo/n. =0.0346 in(y ').
We plot in Fig. 5 the structure factor versus the

final temperature for a series of times and for fixed

q =q~=0.03m. For short times we see that there is
a single peak at a value of TF below T, . This is in
agreement with the calculation in I where, for short
times, no peak appears in the disordered region.
Going to longer times (at =10) we see that the sin-

gle peak splits into two peaks. The high-
temperature peak clearly corresponds to that dis-
cussed in I. The second peak is associated with the
development of the central peak in the "ordered"
phase. Thus for at =10 and uF ——0.45 the large cen-
tral peak encompasses q =0.03m, while for
uF & 0.60 the peak is considerably smaller in intensi-
ty. Notice that the high-temperature peak is still lo-
cated at a temperature below T, . For et =1000 we
see that the high-temperature peak has moved to a
value greater than T, . Notice that for a quench to
very high temperature, C(q, t) has already equili-
brated.

In characterizing the low-temperature peak we
can define a "temperature" u~(t) such that for
uF (u~(t) the Fourier component of the structure
factor under discussion has essentially equilibrated,
while for uF) u~(t) the component is still part of
the central peak. We define u& as the smaller value
of uF corresponding to the half maximum of the
low-temperature peak. The approximate values of
uz are listed in Table III. We see that as time
progresses the more shallow quenches equilibrate
earlier. The transition between being in or out of
equilibrium is very narrow as a function of uF.
While there is the development of structure in the
low-temperature peak, it is not clear how seriously
we should take the details of this structure.

VI. DISCUSSION

In this paper we have shown how the simple,
physical ideas about self-similarity discussed in Sec.

0.425
0.431
0.436
0.438
0.443
0.448
0.46'

10
100
1000
104

10'
10
1010

TABLE III. For couplings u )u~, at the times listed,
the Fourier component q =q~=0. 03m has equilibrated,
while for u & u~ the same Fourier component is still part
of the central peak.

up(t)

III can be translated into a working mathematical
formalism which, for the model under considera-
tion, allows the evaluation of the structure factor of
the system in the case of a deep temperature quench.
Thus, we have been able to study the growth of or-
der in the system. We believe that our results,
presented in the preceding section, give a good
description of the main physical features of the
problem. We now discuss some possible improve-
ments, which emerge rather naturally out of the
present calculation, as well as some possible exten-
sions and generalizations.

Note first, while it is true that some parts of the
present calculation are quite complicated, that this is
primarily due to our present need to evaluate the re-
cursion relations to first order. This is a technical,
not a fundamental, point which may well be over-
come in the future. Conceptually the method is
quite simple. The new fundamental insight is the
careful study of the time rescaling factor b, (K) (Ap-
pendix A) which leads to the parameter flows found
in Sec. III. It is the qualitative behavior of these
flows that is really at the heart of the matter.

A second point, which at first sight appears
technical but which has physical ramifications, is
the treatment of the quantity R[@,t], defined by
(4.14), which is reflected in the quantity H(q, t) ap-
pearing in the recursion relation for C(q, t), (4.17).
An alternative approach, which we believe is feasible
and which avoids these complications, is to assume
that after renormalization the new final coupling EF
is time dependent in such a manner that R [p, t]= l.
We expect, however, that this time dependence will
be relatively weak. The occurrence of a time-
dependent EF should, however, not be too surprising
since this is just what one would have if finite
quench rates were inc.uded. We will discuss this in-
teresting situation elsewhere.

As we pointed out, one of our results in the last
section is probably not realistic. This is the freezing
and unfreezing feature occurring for very long
times. We believe that this effect can be understood
if we recognize that in our calculation we have kept
track of only the slowest local mode g,'" under re-
normalization. This mode is associated with the lo-
cal Ising block spin. For many purposes this picture
seems adequate. We believe it properly describes the
slowest processes in the system and the buildup of
local order. However, we do not believe that this
picture leads to a convenient description of the fluc-
tuations in the system at low temperatures. This is
reflected in the difficulties associated with the
zeroth-order calculation of the equilibrium suscepti-
bility [see the discussion below (4.10)], which are not
found when calculating the magnetization. The
problem is that the low-temperature fluctuations in
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the system are associated with domain walls and it is
difficult to treat the motion of domain walls within
the rigid block-spin picture. Indeed, after several
coarse-graining iterations, the block-spin dynamics,
flipping of domains, becomes so slow that it is al-
most impossible for them to flip on reasonable time
scales, and they freeze. There are, however, other
degrees of freedom which will, as things slow down
under progressive renormalization, become impor-
tant on the time scales of interest. The obvious can-
didates in this case are vacancies (or lines of vacan-
cies forming domain walls). In carrying out a renor-
malization including vacancies we must introduce
an additional set of variables to monitor vacancies
which will have their own associated relaxation rate.
We expect this relaxation rate to be faster than that
associated with domain flipping at low temperatures
and to represent the important long-time thermaliz-
ing agents. From a physical point of view this
means that we obtain a more accurate representation
of the self-similarity in the problem if we allow for
the occurrence of vacancies in our coarse graining.
Inclusion of vacancies into our formalism is not dif-
ficult and is currently under investigation.

We believe that the present work opens up the
possibility of studying the growth of order in a num-
ber of different models. The problem of spinodal
decomposition is the most obvious candidate since it
can be studied by means of a kinetic Ising model
with a conserved order parameter. We are currently
addressing this and related questions.
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APPENDIX A: THE TIME-
RENORMALIZATION FACTOR

As discussed below (3.10) the time rescaling factor
6(IC) must be obtained from the recursion relation
for the equilibrium dynamic structure factor C( q, z).
At long wavelengths and low frequencies, this recur-

sion relation is given by (4.13a) of Ref. 35 as fol-
lows:

4v)
C(0,0)= C'(0, 0)+0(e) . (Al)

Upon writing

C( q, z) =C( q, E)/[z +iaP( q, z)],
where P is the associated memory function, we ob-
tain the result

4 2 I'$(0,0)
XP'(0, 0)

(A2)

where X=C(O,E) is the susceptibility. The memory
function P can be written as the sum

(A3)

where

I"= 1 —2a(E)e(1,0)+a~(K)e(1, 1), (A4)

and the formal definition of I ' ' is given by (3.4) in
Ref. 53. We know several things, however, about
I' '. First

(A5)

for all temperatures, next

I (d)

I (s)
= —,u +O(u') (A6)

for high temperatures, and finally

I (d)

I (s)
-0(y')

which we used in Ref. 34. It was inappropriately
used in Ref. 45 where we should have used (3.11).

for low temperatures (y =e ). It seems very
reasonable to neglect 1"'"' as a first approximation.
An immediate consequence of this result is that one
obtains a dynamic critical index z given by its con-
ventional value z =@=1.76. As we pointed out else-
where this should be a good approximation over
most of the critical region except for temperatures
Uery close to T, . A recent neutron scattering experi-
ment has confirmed this result. Substitution of
/=I"X ' into (A2) leads to the result (3.11) for h.

Note, for T& T„wecan, to a good approxima-
tion, use the zeroth-order recursion relation
+=4vfg' in (A3) and obtain
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APPENDIX B: SINGLE-CELL AVERAGES

There are three independent zeroth-order time-
dependent averages, namely,

These averages are easily calculated by expanding
Pp[o', t] in terms of the eigenfunctions " of D (KF)
as follows:

r(t) = g'o, rJ, +1Pp[o,t], (8 l) P11 g——e p,' '(o,KF)Pp[o, KF]
I

s ( t ) = g Cr~ o ~ +2P p [0') t], (82) x g 1','"(rr', KF)Pp[o, K, ] . (84)

U(t) g oaaz+1%a+2oa 1PQ[o'~t] (83)
Only the even, uniform eigenfunctions contribute to
the averages, and thus one obtains the results

EI F~ v2r(t)=rF+ —g e ' rt rF+—l (st —sF)
2I =+

s(t)=sF+ —, g e ' [ lv 2(rt—rF)+(s—r sF)]—

(85a)

(Bsb)

EI,F~
v — -4'U(t)= sF+ g e ' [ apF+2r—t —ap Fsi+lv 2(st ap Fri)]——e '(4rFrt 2sFsi —s—F st), —

I=+

&t,F =2 v2a p Fl-,
~=no I;t,

where rt, rF, St, and SF are the corresponding equilibrium values for r(t) ands(t).

(85c)

(85d)

(85e)

The temperature here refers to that of a "bath" in which
the system is immersed and with which it is initially in
thermal equilibrium.
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