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The one-sided model for a nearly planar solidification front advancing at steady velocity
is studied. The model neglects impurity diffusion in the solid; the interface is stabilized by
the imposition of a thermal gradient. The front, located at z, =z, (x,y), is described by the
coefficients ek of the Fourier expansion for z„and equations of motion ez ——f k (Ie) i are

derived in the approximation where the velocity v of the interface is small. The functions

f„are expressed as infinite polynomials in the (ej. Stationary solutions f-„=0are sought

with the help of a consistent truncation scheme. Truncations which involve keeping terms
of up to fifth order in e„are used. Stationary profiles for both one- and two-dimensional

fronts are obtained numerically, whose features are in reasonable agreement with experi-
mental observations. In particular, the one-dimensional solutions exhibit a relatively well-

developed cellular structure; this is in contrast with what happens in more conventional
analyses, where higher-order nonlinearities are not accounted for. The two-dimensional sta-
tionary interfaces are of various types, displaying twofold or sixfold symmetry. It appears
to be the first time that calculations of two-dimensional structures are reported.

I. INTRODUCTION

The various phenomena displayed by systems
driven far away from thermodynamic equilibrium
have often attracted the interest of physicists. At-
tention, however, has tended to focus mainly upon
reaction-diffusion problems, ' thermoconvective
systems such as Rayleigh-Benard ones, or those
involving the Couette- Taylor roll pattern.
Analysis of these problems has often proved too
complicated, thus justifying the recourse to simpli-
fied models, chemical ' or other. ' This relative
specialization tends to obscure the fact that the phe-
nomena themselves are extraordinarily widespread.
For instance, the general interrelation between non-
equilibrium growth mechanisms and form, as ob-
served in nature organic and inorganic, was recog-
nized long ago. ' In this work we report progress in
understanding a particular nonequilibrium crystal
growth problem, that of directional solidification,
which affords a beautiful and relatively simple ex-

ample of interaction linking growth and shape. ' In
spite of a long-standing interest in the varied forms
exhibited by snowflakes, ' ' it is only very recently
that theorists have begun serious efforts aimed at
understanding the so-called "morphological" aspects
of crystal growth.

It may at first appear mysterious why the surface
of a growing crystal should not remain macroscopi-
cally as flat as possible. This would seem to be the

inevitable effect of surface tension. As Mullins and
Sekerka have pointed out, ' however, a powerful
destabilizing mechanism exists. As we shall see, the
equations governing diffusion-controlled crystal
growth are closely related to the Laplace equation
of, say, electrostatics; just as the electric field is in-
creased at the tip of a lightning rod, thus diverting
electric currents toward it, the slightest bulge on a
growing crystal surface increases the diffusion-
driving gradient there, which leads to faster growth
and further perturbation of the initial interface. Ac-
tually, this effect is so strong as to render the
growth of a flat crystal face from supersaturated
solution always unstable, unless an additional stabi-
lizing force, such as a thermal gradient, is present.
The planar interface then appears to be stable, pro-
vided the dimensionless growth velocity, which
plays the role of the driving parameter, lies below
some threshold. Beyond the threshold, a variety of
stationary structures, all of which can be described
as "cellular, " are observed. ' The reader may get
some idea of their main characteristics by glancing
at Figs. l and 2; these figures exhibit some of the re-
sults of our calculations and they agree quite well
with known experimental facts. In a typical direc-
tional solidification experiment, a thin sample of
CBr4 contained between microscope slides moves at
a constant velocity —V, ( V, & Oj between a hot plate
and a cold plate located, respectively, at zo &0 and
—zo. In this way two fronts are created which ad-
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FIG. 1. Stationary one-dimensional cellular interface
structure, as calculated from truncated Eq. (28), with
p=10, v=1.15, and K0=0. 14. The liquid phase is on the
top of the picture. The dashed line denotes the solution
when Eq. (28) is truncated at order n =3 (see text). The
amplitude of the higher harmonics iKp is then not deter-
mined with good accuracy. The solid line illustrates the
fourth-order (n =4) solution, which compares rather well
with some experimental results (Refs. 26 and 37). (The
vertical and horizontal scales are the same. )

vance with respect to the sample: The solid melts at
one front and resolidifies at the other. Here we shall
consider only what happens at the solidification
front. For low enough V„ this front is planar; how-

ever, above a threshold velocity a one-dimensional

structure appears, characterized by sharp and regu-
larly spaced cusps pointing in the z &0 direction' '

(Fig. l). The spacing of the cusps is typically of the
order of 50 pm. Further away from threshold, the
structure becomes dendritic: Growth takes place in
a complicated, "treelike" fashion; we shall not at-
tempt here to analyze this regime.

Compared with other nonequilibrium pattern for-
mation problems, the structures seen in directional
solidification seem to present some interesting
features. First, as we have seen, in properly ar-
ranged experiments phenomena are essentially one
dimensional; at least they can be understood in a rel-
atively satisfactory way using a purely one-
dimensional analysis. This is a welcome simplifica-
tion for the theorist. Two-dimensional interfaces,
on the other hand, exhibit a wider variety of station-
ary states than, say, Rayleigh-Benard systems [see
Figs. 2(a) and 2(b)]. Finally, it is worth noting that
because the cellular spacing is typically so small, the
approximation that the system is infinite is certainly
a far less dangerous one in this context than it has
proved to be in other nonequilibrium systems. As
against all this, the strength of the instability
mechanism appears such that the structures seen are
never as simple as pure Rayleigh-Benard rolls, but

(a)
FIG. 2. Two-dimensional interface structures, computed as stationary solutions of Eq. (28), truncated to third order.

The modes included in the analysis (see text) are indicated in Fig. 4. The solutions are represented as contour plots; the
solidification front should be pictured as advancing out of the page, with the letter 0 indicating a high, or warm point,
while L denotes a low, or cold point on the surface. (a) This solution can be described as a triangular array of "pits." (b)
In this configuration, the interface is covered by a hexagonal array of "grooves, " which meet at the lowest points. Solu-
tions (2a) and (2b) are both for v=1.105, p=10, and ~& ——(0.15,0). There is a third possible solution with the same
parameter values, i.e., one where the one-dimensional solution (such as shown in Fig. 1) is seen as the result of cutting an
array of infinite straight grooves extending perpendicularly to the page. Nothing is known at present as to the relative sta-
bility of these three solutions.
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result rather from the nonlinear interaction of a
large number of modes. As we shall see, this ap-
parently requires that the analysis of these effects
sometimes take account of terms of unusually high
order, even not very far from threshold; only then
do qualitatively satisfying patterns emerge from the
calculations.

In this paper we set up equations of motion for a
relatively realistic model of solidification; we show
how a cellular structure, exhibiting the nonlinearity
mentioned above, is obtained from the steady solu-
tion of the equations. In the one-dimensional case,
we do this with much attention to the precision of
the calculations; this leads us to consider the effect
of terms of fourth and even fifth order in the devia-
tions from flatness. The results mark a considerable
improvement over previous analyses. To our
knowledge, this is the first time that such a detailed
semiquantitative understanding of the cellular pat-
tern is obtained without the use of any ad hoc as-
sumption. In the two-dimensional case, we limit
ourselves to a simpler third-order analysis; our re-
sults already display, however, the basic features
seen in the experiments. As far as we know, no
calculation of two-dimensional interface structures
has been reported previously.

The remainder of this paper is organized as fol-
lows. In Sec. II we describe in detail the physical
system under consideration, and discuss the assump-
tions that lie behind the model we have adopted. In
Sec. III we outline the derivation of the fundamental
"equations of motion" for this model. Some of the
detailed calculations are postponed until Appendix
A, while the equations themselves are summarized
in Appendix B. Sections IV and V are devoted,
respectively, to a discussion of the one- and two-
dimensional stationary (numerical) solutions of the
equations. Finally, we present in Sec. VI some re-
marks and general conclusions.

II. THE MODEL

We shall use the "one-sided" model' ' for the
solidification of a binary mixture; in this model, dif-
fusion of the impurity is neglected on the solid side
of the interface. This is certainly an excellent ap-
proximation in the systems of interest. It should be
noted that the techniques we shall use do not pre-
clude the possibihty of relaxing this approximation;
but we do not expect that this would unravel quali-
tatively new phenomena. We shall also assume that
the temperature field is essentially as imposed from
the outside. This will be accurate provided the la-
tent heat of solidification, which is released at the
interface, is relatively small while the thermal dif-
fusivities are much larger than the chemical ones;

we can then write

a=DU' c+ V,
at 'az (2a)

where due respect has been paid to the fact that the
sample is moving in the z direction, as described in
the Introduction. We can rewrite Eq. (2a) as an
equation for the chemical potential p: One has ap-
proximately

Bp
P Peq ~

(C —
Ceq )

Bc
eq

(2b)

where the subscript eq refers to equilibrium values
on the liquid side of a flat interface at temperature
To (liquidus line): we shall take from now on

p q 0 We thus have

a ="=DV'p+V " .a
Bt Bz

(2c)

We now determine the boundary conditions that
must accompany this equation. Let us first note
that the establishment of a steady state clearly re-

quires that the concentration c„ far away from
the interface be the same on both sides. Since the
sample is initially solid, it is thus natural to fix To
as the temperature where, on the solidus line, the
concentration c,'q is equal to c . Now since the
miscibility gap c,q —c,'q=hCy0, our conventions,
together with (2b), imply that

p, „=A(c„—c, )

= —AEC(0 (3a)

where A =const=Bp/Bc. Hereafter, we assume a
normalization IJ~p/(Ab, C) such that

Pz (3b)

This gives the boundary condition at infinity. Equa-
tions (2c) and (3b) are linear, but this is not the case
of the boundary condition on the interface, which
we now consider. In doing so we assume that, at the
interface itself, "local equilibrium" prevails, i.e., ex-
cept for the presence of the impurity flux, the inter-
face behaves exactly as an equilibrium one. Several
phenomena may be responsible for departures from
this situation; they are mainly the following.

(a) "Attachment kinetics": If we regard the
"loosening" of impurity atoms, or alternatively, the

T(z) =To+Gz

with z =0 the conventional position of the solidifi-
cation front, to be determined later. The diffusion
of the impurity is controlled by a Fick equation;
with c the concentration, the equation reads
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"attachment" of solvent atoms at the surface, as a
chemical reaction, then the kinetics of this reaction
may in fact control the solid's growth. We shall
assume such reactions operate at their equilibrium
point.

(b) Surface diffusion: The diffusion of surface
atoms between sites on the surface may contribute
significantly ' to the redistribution of impurity. We
shall neglect surface diffusion.

Note that interface nonequilibrium is certainly a
major factor in several circumstances, such as the
fast growth (several m/s) which occurs in laser an-
nealing. In our context, local equilibrium implies
that, with the flat interface located at z =0, the
chemical potential there can be assumed to be JM, =0
on both sides; this may change due to deviation
from flatness —which gives rise to the well-known
Gibbs-Thomson curvature effect —and to tempera-
ture variations, which stem from the interface mov-
ing in the temperature field (1). Thus one has

p, = —dI —az,

where d and a are coefficients proportional, respec-
tively, to surface tension and to the temperature gra-
dient G (expressions for d and a in terms of thermo-
dynamic quantities are given in Ref. 18), z, is the in-
terface coordinate, while I is the mean curvature

Vz, (x,y)
I (x,y)= V

[I+(V,) )'

Note that in (4), we have neglected the anisotropy of
surface tension. This amounts to the assumption
that the interface is microscopically very rough. "
Even so, because of the form of (5), the differential
problem to be solved, i.e., (2c) together with (3b) and
(4) imposed on z„ is strongly nonlinear. This non-

linearity will ultimately show up in the equations of
motion for the interface, which we now derive.

D+2p+ P Q'
Bz

(2c')

This so-called "quasistationary approximation" has
been discussed previously in the literature. "' We
shall later state the condition under which it is valid;
in practice, the condition is usually satisfied.

Even (2c'), however, is not easy to solve when the
interface is not flat. The difficulty of the question
may appear to the reader if we note that, although
the problem of solving a partial differential equation
with boundary conditions imposed on a slightly de-
formed contour (6) is certainly a generic one in
mathematical physics, a simple and systematic
method of solution has been published only in
1973. The idea is, basically, to write successive dif-
ferential problems for the partial derivatives
B"p/Be- . . Be-, and solve these to zeroth orderk

1
14„»

in the ek's. The partial derivatives then generate

the Taylor expansion for p. In order to illustrate the
principle of the solution, let us consider for simplici-
ty only one mode e k

——e. Let us concentrate on the
variation of p with e; if we denote Bp/Be—:p„we
have, from (2c'):

dient of p, and hence the growth rate
ACv n= j n, where n is the exterior unit normal
to the interface. From v n we derive an expression
for i-„. Note that we take AC to be independent of
temperature and curvature; lifting this restriction
can have important effects, which we shall discuss
in Sec. VI. Clearly, the major step in the above pro-
gram consists in solving Eq. (2c); before proceeding,
we shall introduce an important additional approxi-
mation. Let us stress that the approximation is not
essential in principle and that the techniques we
shall use allow for its removal, but this is at the
price of even more lengthy calculations. To keep
these within limit, we shall assume' that the inter-
face moves rather slowly, so that Eq. (2c) can effec-
tively be written

III. EQUATIONS OF MOTION

We now write the equation of the interface as

zs ( x ) =g E ~~ E'~~e

k

with k = ( k„,k» ) a general wave vector, and
x =(x,y) the coordinates in the plane orthogonal to
z. Our goal is to find the equations of motion
e

k f ( {e I ). The proce——dure we must follow is sim-

ple but extremely tedious. Assuming some values
for the E&'s we (a) solve (2c) together with (3b) and

(4); (b) find, from the solution p, the impurity flux
away from the interface, j, proportional to the gra-

6z, =5ee'"''

so that

(8)

B6'
'—:(p, ),=(p,,), +(V,p, ),e'" "

where (p, ), denotes the partial derivative p, evaluat-
ed on the surface. We can thus write the boundary

D+2p + V Q'
Bz

In finding the boundary condition to be associated
with (7), we must not forget that varying e by 6e
leads to a motion of the interface
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condition for (7):

(p, ), =(p, ),—(V,p),e'" " (10)

'
Bz

with boundary condition

B2

BZ2

in which (p, ), can be computed explicitly from (4).
It would not seem that we have accomplished much,
since p appears in (10) and is itself unknown.
Furthermore, if we could not solve the original
problem for p, the new one appears just as difficult.
The point, however, is that we want to solve (7) with
(10) only to zeroth order in e. In particular, the
domain to be considered is that formed of the liquid
phase bounded by the unperturbed, or flat interface,
and the function p required in (10) is just the solu-
tion when e=O, which is easy to find. When p, is

thus determined everywhere, we may proceed and
write

Again, the first term on the right-hand side of (12),
(p, )„, is "easily" computed from Eq. (4), while

knowledge of p to first order in E is enough to ob-
tain the V,p, and B p/Bz terms to zeroth order.
We can thus establish successively all the derivatives
(Bp/Be), , (B p/Be ), , etc., and this allows us to
write

Bp 1 BIMp=p l e=0+ E+ 2
& + '

BEB = 2B'
(13)

thus completing the solution. It is easy to see that
the generalization to more than one ok is straight-

forward. Note that the technique is very general,
and it is only the length of the calculations which
has prevented us from considering, say, the full
time-dependent equation (2c), or the effect of dif-
fusion in the solid.

We now display some of the explicit computa-
tions. We shall need the expression of the mean cur-
vature I as a function of the E's:

I-=I —Ze ZkkE
2nn I

k k' n=0 K ]p ~ ~ ~ p K

J
J

g k" (K;—k")e
q „eg

II

(14)

and the solution of Eqs. (2c'), (3b), (4), and (5) when

E=O, which is
Bp(x,y, z)

BE k a=0, k =0
= —(dk +a —qo)e' " ' "e

p"'= —1+e "' (15) (17)

with q0
——V, /D. We describe here the calculation up

to second order in E, while a discussion of higher-
order terms appears in Appendix A. Of course, in

writing the solution as a series in E, one hopes that
some "low"-order approximation will afford a good
precision; this question will be examined in Sec. IV.

where q(k) =qo/2+(qo/4+k )'~ . Finally, the
first-order contribution to p is

p = —g e (dk +a —qo)e' " ' "e ~'"" (lg)
k

k

A. First order B. Second order

e~k ——0, z=0
= —e'" "(dk +a —qo)

We have from (15), V,p(z =0)= —qo, while from
(4), (p, )„calculated for e=O, is ( —dk —a)e'" ';
thus from Eq. (10),

We note first that, from (4) and (14), one has

(p, ), ~ =0; thus Eq. (12) yields
kl k2

;~,.-. a ap ~, -. a ap,

k2 kl

and (7) yields

'(k, +k ) B P—e
BZ2

(19)
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which must be evaluted to zeroth order in e and at
z =0. From p' ' [Eq. (15}] and p"' [Eq. (18)] we
find

8 Bp =(dk +a —qo) +q(k) e'eo ik. x

Bz BE k 2
(20)

and

3 p = —Co
s=o, e=o

The solution of Eq. (11) thus yields

(21)

}M' '= ——, ge'"'" ge-„e-„z Iqo+[dk +a qo]—q(ki)
k k

+[d(k —k, ) +a —qo]q( i
k —ki i )Ie (22)

i.e., the second-order contribution to p.
The procedure should now be clear to the reader; the details of the calculation at orders three to five appear

in Appendix A. Once the computations have been carried out to this point, it is relatively easy to write the
general solution, which reads

'4 +g ei k ~ x —q(k)zS(k )

k

(23)

S(k)= g
kl, . . . , k„

k =k
J

' ' ' ek rn(k), . . . , kn}
n

(24a}

with the r's defined recursively as

r&(k)= —(dk +a —qo)

and

n —1

( —1)"+'r„(k(, . . . , k„)=qo+ g ( —1)'

(24b)

J) ( &Ji

+d mod(n, 2)( —1)'"+" (n —2)!!

n&2 (24c)

i, =+eke'"'"+ V,
k

(25)

To do this, we com~ute the impurity flux

j = DV5c= DAC V—p [where w—e have taken

In Eq. (24c), mod(n, 2) means n mod2 while the sum
is over all permutations of the kJ that do not

leave the summand trivially invariant, e.g., j2+ j3 is
not allowed but j2+ j& is.

We must now, as outlined previously, evaluate the
growth rate

t

into account the normalization (3)], and evaluate it
on the interface z =z, . Finally, we substitute the
surface flux thus obtained into the equation for the
conservation of matter at the interface. This last
equation can be seen to be

az. . az.
Jsz+Jsx

~
+Jsy

~
=~CZs

Bx Bg
(26}

We may now identify the coefficients of e' " ' " on
both sides of Eq. (26) in order to get an expression
for ek. We find
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00

D k
~ ~ ~

k k
1 n

k ]p ~ ~ ~ p k

n —m

&& q" +' g k;
i=1

n —m n —m

+mq ' gk; k„.gk;
i=1 i=1

(27}

co& pK — +v —1 —K
2

PK
(29)

(where the approximation p »1 has been made —see
below). This particular structure is familiar from
other studies of solidification. It is easy to see
from Eq. (29) that the reduced velocity v plays the
role of a driving parameter in our problem; that is,
there exists a v,„such that, for v&v, „,co„&OV~,
while for v& v,„=O(1), one has a range of wave
vectors [K~,lc2] such that for s& &s &sz, co„&0 and
the system is thus linearly unstable —see Fig. 3. Of
course, the difficult question concerns the effect of
the nonlinear terms: We shall consider this problem
in Secs. IV and V. Before doing so, let us comment
further on Eqs. (28). We remember that it has been
derived under the quasistationary assumption [Eq.
(2c')]. We may now state under what circumstances
the underlying approximation will be valid. We see
from (82) that a disturbance of interface shape with
wave number ~ relaxes on a time scale on the order
of (pK} ', on the other hand, the diffusion field in
front of the solidification region has a characteristic

Details of the derivation appear in Appendix A.
Equations (27) are the equations of motion which we
have to study. They can be put in nondimensional
form by introducing a. =k(d/a)'~, v= V, /aD, and

p = (ad ) ', rescaling e-„=a 'e k, and using

e D ' as the unit of time; we then obtain

e-„=f([eI;v,p;s )

For easy reference, the detailed expressions for f are
given in Appendix 8, together with a complete sum-

mary of the notation. Several comments are in or-
der about Eqs. (28) and the parameters that enter in
them. We note first the form of the linear contribu-
tions to these equations. From Eq. (82) (see Appen-
dix 8) we see that the linear approximation is of the
form i„=co„e„+ . with

0.05 0 0 0.45

FIG. 3. Linear stability coefficient co„[Eqs. (B2) and

{29)] vs the wave number s, for v=1. 15, p=10. Note
that one mode and several harmonics (up to the third)

may become simultaneously unstable at such a distance
from the threshold (v„=1.097, defined as that value of v
for which the first instability occurs).

time scale 1/Dk2 which, in our units, becomes
(pl~) . Thus we shall be justified in using a station-
ary form of the diffusion equation, provided p~ &&1.
If we assume that ~ remains close to the initially un-

stable K=p ' we finally obtain the condition
p' »1. The parameter p is typically of the order
of 10 and the quasistationary approximation is
therefore quite acceptable. As a final and very im-
portant remark, we note that Eqs. (28) does not
derive from a potential; that is, we cannot write
E = BV/Be'-„—, where V = V( [e];v,p;Pc) would be

the equivalent of a "free energy" for the problem at
hand. While existence of such a function affords (in
principle) relatively simple answers to questions re-
lated to uniqueness of stationary states, dynamics,
etc., its absence leaves us with a much more compli-
cated task. At any rate, however, a hypothetical
function V would not have helped much in locating
the actual stationary solutions of Eqs. (28), which
we now proceed to determine.
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IV. ONE-DIMENSIONAL STATIONARY
SOLUTIONS

The usefulness of a series such as that giving f in

Eqs. (28) rests on the fact that the series can be trun-
cated in some consistent fashion and still yield a rel-
atively accurate solution of the problem under con-
sideration. In this section, we use a truncation
scheme which seems to provide a good approxima-
tion when the stationary solutions of Eqs. (28) are
sought. As we shall see, accuracy may require us to
keep terms of high order as well as a large number
of modes; under these circumstances, one may
wonder whether a series expansion is the best pro-
cedure to start with. This question may be answered
immediately by saying that expanding in this way is
the only thing we know how to do. One may be
tempted to argue that physical arguments could
presumably be adduced in order to describe what
happens, say, in the cusps of the cellular interface;
this information could then be used somehow in or-
der to simplify the calculations. We believe such a
line of reasoning is bound to fail, the fundamental
problem being that we are dealing with an equation
(2c) which is elliptic No s.atisfactory approxima-
tion to the solution may be found by considering
what happens only in a small neighborhood such as
the vicinity of a cusp; rather, it is the whole, global,
pattern which must be considered. However, it is
very unlikely that "physical" arguments will go
beyond spatially local balance considerations, etc.,
and physical reasoning thus appears essentially use-
less. It is worth noting also that, while some experi-
rnents do exhibit very sharp cusps indeed, this is
far from always being the case. Thus reliance on
the existence of well-defined "mathematical" cusps
may be dangerous. We may remark, in this context,
that Langer's analysis' of the infinite velocity cusp
involves, precisely because of the infinite velocity
condition, a mutilation of Eq. (2c ), which renders it
effectively first order. Since the transition back to
large but finite velocity is thus singular, one may
wonder whether the infinite velocity analysis is
relevant to the actual physics. Finally, it must be
emphasized that direct numerical solution of the dif-
fusion equation is difficult and has not led to sig-
nificant results. All this seems to bring us back to
our series expansion, which we now try and use in
order to gain information about the stationary con-
figuration of the interface. The results described
below have all been obtained numerically.

The structure of the equations, and more specifi-
cally the fact that the wave number ~ is "conserved"
(i.e., the equation for e„ involves only monomials of

1

the form e„e„. e„, such that g, , ~;=a.) allows

us to devise an approximation scheme in the follow-
ing way. Let us assume that a static one-
dimensional solution of Eqs. (28) consists in the su-
perposition of a fundamental frequency ~p and of its
harmonics; assume furthermore that harmonics 1 to
m have an amplitude which is of the order of a [a
quantity much smaller than (piro)

' so that Eq. (B2)
makes sense (see below)]. Then, it is easy to see that
the stationary values of harmonics m+1 to 2m
must in general be of order a, harmonics 2m +1 to
3m will have amplitudes of O(a ), etc. We are
therefore consistent to 0 (a ") if we expand formally
all equations to this order (taking the above argu-
ment into account), while including n X m modes in
the analysis. Of course, the correctness of this
scheme must be checked a posteriori on the solution

(e„&. . . , e „„)thus determined In .princip/e, if the

expansion is to be useful at all, we expect that, not
too far from threshold, the solution will improve
when we increase n and m, at least up to a certain
point.

Close to threshold, numerical calculations show
that a stationary solution exists for ~p anywhere in
the range co, g0; the solution is almost sinusoidal

0

and is already well approximated with m =2,n =3.
Note that the wave numbers Kp for which co„&0 are

0

of the correct order of magnitude -50 pm '. Re-
sults of this type have been reported previously by
Langer for his "symrnetre" model. Langer also
observed that, when increasing v well past threshold,
the range of ap over which a stationary solution can
be found ceases to coincide with the range co, & 0; it

0

seems to us, however, that caution is required here,
as we shall try to show below. In addition, Langer
discussed the cellular interface relatively far from
threshold, where we expect a significant contribu-
tion from the harmonics to arise. When doing this,
one must try to estimate the precision of the solu-
tion. This is difficult to do directly, ' we shall outline
later the procedure we have adopted here.

Let us, for definiteness, take the values p=100,
v=1.15. This is the case illustrated in Figs. 1 and 3;
when p=100, the threshold is at v=1.097. We see
that for v=1.15 (Fig. 3), a given mode and up to
two harmonics may become linearly unstable: We
may thus say that we are quite far from threshold
already. Let us now consider the question of the ex-
istence of a stationary solution with a given funda-
mental wave number Kp. For example, limiting our-
selves to a third-order approximation (n =3), we
have searched numerically for solutions at Kp=0. 1

(fairly close to the border of instability). Taking
m =2, that is, assuming that the fundamental and
its second harmonic are of the same order, we find
no stationary solution. However, with m =3, more
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modes being thus included in the analysis, we obtain
numerically a very reasonable solution, whose ap-
pearance still matches quite well with the plots ex-
hibited by Langer. Clearly, this phenomenon is a
warning that one should be very careful and not
jump hastily to conclusions about the existence or
inexistence of solutions at a particular ~o, as well as
about the appearance of "branches" of solutions in a
~o-amplitude diagram: these conclusions might be
spurious and a mere result of the approximations in-
volved. The influence of n—the order of
approximation —on all this is not systematic: In-
creasing n may restore a solution or, alternatively,
destroy what was apparently a solution. It is clear
that we are dealing here with an expansion which, as
was to be expected, is rather badly behaved. In what
follows, we shall consider only values of ~o for
which there exists a stationary solution for
several —if not all—values of m and n that we have
tested; we shall later on have something to say about
the general location of these ~o's. Assuming such a
case, we can then get rather easily a rough idea of
the precision of the putative solution by observing
the "spread" as the parameters m and n are varied.
Unfortunately, simple theoretical or semitheoretical
estimates for an upper bound of the error are too
large to be of practical use. It is of interest, howev-
er, to derive a "lower" bound for the error, which, as
we shall see, has the advantage to give us a clear
limit as to how far the expansion can possibly be
pushed in a favorable case. We therefore estimate
the order of magnitude of those terms in the equa-
tions of motion which we are neglecting when using
a given value of m and n From .Eq. (B2) it is not
difficult to see that, if e„ is O(a), then contributions

0

of order n to f;„,((e)) [with 1m +1&i &(1+1)m]
grow at least like (pro)" 'a". This we can take as a
rough indication of the minimal error 5f;„on thelKp

value of f;„when working to order n (barring ac-
/ Kp

cidental cancellations). Now since e;„=O(a'+'),
0

one can write 0=f;„,=co;„,e;„,+O(co;„,a'+')+5f;...
where co„ is given by (29); it is thus certainly reason-
able to expect co;„,5e;„,=5f;„,and therefore, the rel-

ative error 5e;„,/e;„, y(p~~)" ' ', assuming that

co;„=0 (pKp) (presumably, our formula remains

valid as an estimate even when ~;„ is &&p~o, as is
0

the case when i~o is close to the edge of the band of
unstable states). Clearly, we thus have to take
l ~n —1, which limits the number of useful modes,
the m modes of order a" being almost certainly
meaningless, and check that p~yz is not too close to
1.

Minimum error estimates obtained in this way
check nicely with the spread of amplitude values

that one gets when varying n and m, at least in the
favorable cases which we consider here. Thus when
taking xp ——0. 14 (v= l. 15, p = 100) we find
a=3.510, and therefore, p~yz=0. 5; with n =3
this yields a maximum precision, for the largest am-
plitudes, of +25%, while n =4 gives +13%. The
variations of e, with n are quite consistent with the

Ko

above lower bounds; in the absence of a meaningful
upper bound for the error, these variations are of
course the ultimate test of the quality of our approx-
imation. In order for the whole hierarchy of orders
of magnitude to hold, however, it becomes neces-
sary, when increasing n, to increase also m, as the
higher harmonics tend to grow in importance; this
makes for very lengthy calculations when v gets far
from threshold, and n =5, say: Thus fifth-order
calculations have been carried out only relatively
close to threshold, where the results of an n =5
computation simply confirm the validity of the
n =3 or 4 approximations. As an example of nu-
merical results further from threshold, the solution
when n =4, -m =3 is, for the case described previ-
ously (see Figs. 1 and 3): e~ ——0.39 X 10
e& ———0.80& 10, e& ——0.25)& 10, e4 ———0. 15
y10, eg ——0.15F10, E'6= —0.81)&10
E7 —0.3)& 10, e8 ———0.5)& 10, and e9 ——0.7
)&10, while p~yz=0. 54. In Fig. 1, the n =3,
m =3 solution is also represented; when these results
are compared with experiment, ' the improvement
brought about by the inclusion of high-order terms
is quite apparent. Certainly, the effect of those
terms goes in the right direction. The striking quali-
tative change is brought about by the much larger
amplitudes of the higher harmonics, which are now
determined with better precision. Unfortunately,
with n =5, consistency of the expansion could not
be ensured without a prohibitively large number of
modes being needed. This was manifested, in partic-
ular, by the appearance of numerous spurious solu-
tions. These can be detected as such because none is
sign alternating: this seems to be the hallmark of
the well-behaved solutions (see above). It is clear
that our results are only a first step in the study of
an extraordinarily complicated nonlinear situation;
further analysis of the structure of the equations of
motion may prove helpful, although the author
must confess that he does not know at present how
to proceed with such an analysis. Maybe some
asymptotic information at large n could be extracted
from the series, but their complicated form will
render this extremely difficult.

We have mentioned before that a relatively well-

defined solution exists only in a certain range of vo',

two interesting questions then arise: (1) what are the
limits of this range, and (2) what —if anything—
determines the actual ~o observed, which seems quite
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sharply defined experimentally. As for question (1),
we shall limit ourselves to two general considera-
tions. Firstly, the numerical problems we were al-
luding to (sensitivity to m and n, etc.)—which may
or may not be indicative of actual physical
phenomena —arise mainly close to the small-~p limit
of the linear instability range; what happens physi-
cally is that when Kp is small, the harmonics tend to
be themselves more unstable; the system is then ap-
parently unable to "quench" these sufficiently. If
we attempt a numerical solution with

(e„,eq„,e3„,e4„), say, we may thus end up with a

stationary solution like (O,ez„,O, e4„), i.e., the funda-

mental has become 2Kp. Interestingly, the "well-
behaved" solutions with the lowest possible ~p are
also those which seem to have the more developed
cusps. Thus the numerical instability at low Kp ap-
pears to be connected with the physical phenomena
of cusp "sharpening. " This conclusion agrees also
with the general trend we have observed, that in-
creasing m may often "reveal" a stationary solution
at a value of ~p where none was found previously.
The second general remark one may make is that the
range of well-behaved solutions extends further, at
large ~p, than the linear stability curve would sug-
gest. This is in agreement with observations first
made by Langer. Behavior close to the large ~p
limit is generally much smoother and stable than at
the other end.

X

K, K
X

FIG. 4. Fourier modes included in our analysis of
two-dimensional solidification patterns (see text and Fig.
2). Symmetry leaves us with three independent ampli-
tudes, for ~& ——{ic,0), for v2 ——(2~,0), and for
Ir3 =—(3s,~31'). The amplitude for the so——(0,0) mode is

zero within our approximations.

As for the second question —what determines
lro—we can see three possibilities ', (a) ao is not ac-
tually determined —this possibility cannot be ruled
out completely; (b) a.o is ultimately fixed by the high
n and m terms of Eqs. (28)—this, however, is going
to be extremely hard to establish, if our experience is
any indication; and (c) the key to selection lies not in
the stationary solutions themselves but in the
dynamics of the system of equations (28). In a
planned future publication' ' we shall present the
results of dynamic simulations of Eqs. (28); suffice
it to say here that, when a Gaussian white-noise
source is added to the right-hand side of Eqs. (28),
the system exhibits a definite tendency to settle in a
well-determined Kp state. It is fascinating —and
somewhat puzzling —to note that this "selected'* Kp

state seems to lie close to the low Kp limit of well-

behaved stationary solutions, in other words, the
selected vp is one of those associated with the shar-

pest possible cusps. At the present stage of our in-

vestigation, we can only present this observation as a
possible —and tantalizing —clue. Let us note finally
that in our Fig. (1), we have chosen the value of Ko

very close to what appears to be the selected ~p in
that case.

V. TWO-DIMENSIONAL STATIONARY
SOLUTIONS

We now turn our attention to the nature of the
two-dimensional stationary solutions. Here, we shall
not dwell on matters of precision and large distances
from threshold; rather, we shall limit ourselves to
what happens fairly close to the critical velocity,
when a third-order approximation with very few
modes included is all that is needed to get a qualita-
tive idea of the appearance of the interface. Part of
our results for such a regime are summarized in Fig.
2. We have chosen p = 100 again, and v= 1.105; the
modes that enter in our calculations are represented
in ir space in Fig. 4. The first type of solution (not
represented in the figure) is of course that where the
only modes with nonzero amplitudes are x& and
~2—these solutions are basically identical to our
one-dimensional ones, but now extending as
"stripes" in the y direction. Such patterns of recti-
linear "grooves" are seen experimentally. The oth-
er interesting patterns that are observed all exhibit
an approximate sixfold symmetry; it is thus con-
venient to choose fundamental modes with the same
hexagonal degeneracy. Basically, there are four in-

dependent modes, lro ——(0,0), a i ——(0.15,0),
a2 ——(0.30,0), and a3 ——(0.225, 0.13). We assume that
e„=O(a), while e„and e„=O(a ), and expand to

0 (a ). In fact, it turns out that within this approxi-
mation, e„=0. We find two basic types of station-

0
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ary sixfold-symmetric patterns; they are represented
in Figs. 2(a) and 2(b) as contour plots of the surface.
One type of pattern corresponds to a triangular "lat-
tice" of "pits"; the other is best described as a
honeycomb lattice of grooves. The H in Fig. 2(b)
corresponds to the "higher" point on the interface
(the hottest one), while the L coincides with the

meeting point of three grooves. It is gratifying that
these two interface configurations have both been
observed in metallurgical systems. It is to our
knowledge, the first time that they are analyzed
theoretically. Many fascinating questions remain to
be studied now that we begin to understand the basic
patterns. Foremost is the problem of the relative
stability of the three pattern types, stripes, pits, and
honeycomb; for instance, do boundary conditions in-
fluence this relative stability? What is the effect of
noise'? How does wave number selection enter here,
etc.? Dimensional dependence in far from equilibri-
um systems is a problem of considerable interest
about which we do not yet know much. We hope
the results we have presented in this section may
open the way for more work along that direction.

VI. REMARKS AND CONCLUSIONS

It is unfortunate —but apparently true —that the
only way in which the difficult problem of direc-
tional solidification can be studied theoretically is
through the solution of the basic equations. This in
itself is not an easy task, as may be seen from the
length of the calculations involved. Yet it must be
stressed that we have used what is probably the most
convenient method ever devised to deal with the
differential problem at hand. This, however, only
allowed us to establish the (autonomous) equations
of motion of the system; their stationary solutions
are themselves difficult to extract, and a way to sys-
tematically evaluate the errors involved is clearly
missing. The situation is thus far from being corn-
pletely satisfactory. In spite of these drawbacks, the
expansion technique used in this paper is still the
only practicable approach, and our results demon-
strate, we believe, its great interest. When pushed to
orders four or five, the expansion yields one-
dimensional interface profiles that agree fairly well,

in their overall features, with what is seen experi-
mentally, while even an expansion to third order is
sufficient to reproduce the general aspect of two-
dimensional solidification fronts. There are presum-
ably various different ways than the one described
here, which would allow us to obtain other useful in-
formation out of the equations of motion (28); we
hope to come back to this question in the future.

As explained in Secs. IV and V, an outstanding
problem is the question of wave-number selection,
which occurs here in the same way it shows up in
other nonequilibrium systems. In a planned future
publication, ' ' we shall study this in more detail:
we have carried out dynamical simulations of the
one-dimensional solidification front, and these cal-
culations strongly suggest that, when subjected to
Gaussian white noise, the interface selects a particu-
lar wave number out of the range of available states.

A final word of caution should indicate to the.
reader the sort of complication that may arise when
analyzing this type of problem. We have assumed
throughout that AC, the difference in impurity con-
centration on the two sides of the interface, is in-
dependent of the temperature. Although this may
appear as a rather innocuous approximation, it is
worth noting that reinstating a temperature-
dependent miscibility gap AC leads to results that
are drastically different from those described here.
We have checked the equations of motion up to
third-order terms in this case, and have been unable
to find any stationary solutions for a wide range of
parameter values. This result is actually in agree-
ment with Ref. 20, where no static solutions satisfy-
ing the quasistationary approximation —assumed
here —were found close to threshold. We should
thus be warned that in such a strongly nonlinear sit-
uation as the one we have tried to analyzt;, part of
the truth may be no truth at all.
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APPENDIX A

In this appendix, we describe some of the details in the explicit calculation of the third- to fifth-order terms
of the series (23) for p, . We also derive (27) from (23).

In order to evaluate the third-order terms of (24), we need to know 8' '—=8 (p, )/Be& Bek Bek i, 0,
' from

1 2 3

(4) and (14),

8 =de ' ' ' (ki+k2+k3) [ki(k2 k3)+kq(ki k3)+k3(ki kq)] (A1)
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where from now on we drop the vector signs. The derivative which corresponds to the correct boundary condi-
tion for the problem DV p«, + V,Bp,«IBz is, however, EIz'3 ——8 p/Bek Bek Bek, ~, 0, 0, that is

ikix i (ki+k )x 2 . 3
g(3) g(3) e ~ ~P e ~ ~ P (ki+k +k ) ~ P
~123= + —e

2 Be Be i3z 2 Be gz2 Bz'
z=0, e=O

(A2)

where [l,m, n] =[1,2, 3] and the sum is over permutations. Remembering (24b) and taking into account the
form of the solution at lower orders, we have

EI23 —e jdk3 [kz(k k1)+k1(k kz)+k (k1 kz)]+q0+q (k1 )r1(k1 )+q (kz)r1(kz)+q (k3)r1(k3 )

—q(kz+k3)[q0+r1(kz)q(kz)+r1(k3)q(k3)]
—q (k1+kz)[qo+r1(k1)q(k1)+r1(kz)q (kz)]

—q (k1+k3) [q0+r1(k1)q(k1)+r1(k3)q (k3)] ]

=r3 (k1,kz, k3 )e '~ (A3)

with q (k) defined after Eq. (17), r; in Eqs. (24b) and (24c), and k =k, +kz+ k3. Finally, the third-order con-
tribution to p is

1M
=

6 g e g ek1ek Ekk 'k r3(k„kz, k —k1 —kz) (A4)
k kik2

obtained by solving the equation for p«, with boundary conditions given by (A3). We proceed to fourth order
by noting that 3' '=0, and thus

kix ~3 ~
i( i+ m p

ae, Be Be Bz 4 ae, ae, qz

i (ki+k +k 3 4e " 0 Bp '(k+k+k+k ) () p+ —e
~ek Bz' Bz

P

evaluated at z =0, e=0, where again [l,m, n,p I
= [1,2, 3,4) and we sum over permutations; carrying out the

derivatives yields

~1234 e [ q0 q (kl ) 1(kl ) q (k2)rl(k2) q (k3)"1(k3) 'q (k4)r1(k4)

+q (kl+k2)r2(klk2)+'q (kl +k3)r2(klk3)+q (kl +k4)"2(klk4)+q (kz+k4) 2(kzk4)

+q (kz+k3)rz(kzk3)+q (k3+k4)rz(k3k4)

+q (k1+kz+k3)r3(k1kzk3)+q (k1+kz+k4)r3(k1kzk4)

+ q(k, +k, +k4)r, (k, k, k4)+ q(kz+k, +k4)r3(kzk3k4)]

= r4(k1kzk3k4)e' (A6)

which provides us with the boundary conditions that are to supplement the differential equation for p. .., .
Thus

1

X X ek ek ek ek —k —k k "4(klk2k3 k k—l k2 k3)
k k[,k2, k3

(A7)

We shall not exhibit this much detail in computing the fifth-order contributions; the interesting new term
comes from 8' ', which is nonzero. 8' ' is given essentially as the fifth derivative of the fifth-order term in the
sum (14). A straightforward but tedious calculation shows this to be

~(5) i(ki+k2+k3+k4+k5)x= —3de
I 1((23)(45)) I

(k, +kz+k3+k4+k3) k1kz k3k4 k3 (A8)
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where the sum is over permutations in which elements or group of elements within parentheses are identified.
(Thus 12345 and 14532 count as one permutation. ) It is now "easy" to find r„which is given by (24) with
n = 5. We thus see that formula (24) correctly embodies the pattern which develops in the calculation of the
solution, p(x,y, z) [Eq. (23)]. Once this has been obtained, we must evaluate the growth rates, i.e., ik T. hese
are the Fourier coefficients of z, —V, =pike (where V, is the imposed velocity). Using Pick's equation
giving the flux j = Db—C VIM, the balance condition at the interface, Eq. (26), becomes

r)p s r)p ~ 1 ik x

ax ax ay ay D „
&ke +qo '

the components of the gradient can be deduced from the solution Eq. (23), while

az. az.
lkEk8

(A9)

Substituting into (A9) yields

+qo ——ge' o(k)q(k) —g k' (k —k')ek ka(k')
k'

I.

+ g qo+ o„(k)+go(k')[q" +'(k')o.„(k—k')0 n
k'

—q" (k') g k ' (k "—k ')ek„k,o„(k —k")] (Aloa)

with

0'q(k)= g Ek)
' ' '

Ek
( —1)"

k1p ~ ~ ~ y k

(n & 0 and sum over g k; =k), while

oo

&(k)= y t
y ek ek rg(kl k )

n=1 ' ki, . . . , kn

(A10b)

Identifying the coefficients of e' in (A10a) yields directly the equations of motion (27). In Appendix B, we
exhibit these equations in nondimensional form.

APPENDIX 8

For easy reference, we display in this short appendix the equations of motion (28), in dimensionless variables.
With the coordinate z, of the interface given by

z, =pe-„e'" " (Bl)

we write a =k(d/n)'~, v= V, /aD, and p=(ad) '; take furthermore ek~a 'e„and tata D ', then

dE„ +( ( —1)" " '
( —1)

n! Om! n —m!
K]p ~ ~ ~ & Kn

K. =K
l

X [Q + (S„~)+mp Q '(S„~)Ir„S„~], (B2)

where 8 ~(x) =v —1 —a,R„are defined recursively:
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n —1

R„(tr,, . . . , tr„)=(—1)"+' v"+ g ( —1)'
i=1 J]p ~ ~ ~ p J

J)( '' &Jl.

Q" '(Sj' )Rt(ttj, . . . , trj )

+mod(n, 2)( —1)'"+' [(n —2)!!]p" g (&)

and

n l

Q(tt)=z/2+(P/4+p K ), S„=g tt;, Sj.= g Kj, g„(&)=sn g&j ((&) '&g ) ' ' ' (&g &j ))
i=1 1=1

the last sum being on all permutations of 1,2, . . . , n, except for interchanges of elements of groups of elements
between parentheses.
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