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Thermal corrections to overdamped soliton motion
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A singular perturbation theory is developed for evaluating the thermal effects on over-

damped soliton motion. I find that the mobility of an overdamped sine-Gordon kink in the
static limit is the same as given by Biittiker and Landauer and that the effect of an increase
in the temperature is to increase this mobility by the factor [1+(1.075. . . }I13EO+ ],
where Eo is the rest energy of a kink. I also evaluate the change in the shape of an over-

damped sine-Gordon kink caused by thermal fluctuations and find that the kink somewhat
flattens, increasing its width.

I. INTRODUCTION

Recently there has been controversy' concerning
the relative validity of two different methods ' for
calculating the current carried by a driven, heavily
damped sine-Gordon chain. In one case, a hierarchy
based on the Smolouchowski equation (SEH), is used
and in the other case, principles from a nucleation
theory (NT) are used. Neither method is exact and
each one uses different approximations' for obtain-
ing their results. So it would be of value to have an
exact analytic result against which these methods
could be compared. The presentation of such a re-
sult is the purpose of this paper, as well as to
demonstrate how singular perturbation theory can
be applied to soliton systems in a temperature bath.

The critical difference between these two methods
is best illustrated by their predicted values for the
mobility of a single kink. If we use the notation of
Buttiker and Landauer, then the overdamped equa-
tion of motion would be

yB, 8=tctl„'8 —U(8 }+F+m),
where y is Pe damping constant, tc is the torsion
constant, J Ud8 is the retarding potential (whence
—U is the torque), F is a spatially independent
externally applied torque, and g is a thermal random
torque. In Eq. (1), e is an expansion parameter
which we shall use later. For the overdamped sine-
Gordon case, U(8) = Vosin8, where Vo is the
strength of the retarding potential.

Let us now compare these theories. The NT takes
and uses the zero-temperature mobility, which at
zero torque is

1/2
7T K

I NT 4 V0

and then defines a current of j =27rpF(2no) where
n0 is the density of kinks. Although the SEH does
not directly predict a mobility, it does predict a
current. If we take its predicted value for the
current and define a mobility from p=j/2m. F2n0,
then the SEH mobility would be

i SEH (PEO)iMNT ~

where 13=(ktsT) ' and Eo is the energy of forma-
tion for a single kink. Thus the SEH value is singu-
lar as T—+0. Since the only current carriers are the
kinks and antikinks, the only way for the mobility
to increase proportional to PE0 as T~O is for the
kinks to move faster as T~O. At first this does not
seem reasonable, and as we shall see here, such a
behavior does not occur. However, let us also note
that this singular nature in the mobility is not
predicted by the SEH theory to exist all the way
down to T=O, but only down to some relatively
small value of T, which is inversely proportional to
y . But by choosing y to be sufficiently large, one
could make this critical value of T to be as small as
desired. So one point which I want to look at is
whether or not the mobility does behave as PEo for
T greater than some relatively small value. I do not
find such a behavior, but it must be mentioned that
supporting this singular nature are computer simula-
tions which give a best fit when one uses a factor of
(EoI3) r instead of Eop. However, the reliability of
these simulations has been questioned.

On the other hand, the zero-temperature value
used in the NT theory seems to be more reasonable,
since it has a constant value for the mobility as
T~O. However, neither method is exact, and both
methods depend on various approximations. '

The value of the mobility in the limit of T~O,
and for T small, is a quantity one ~ould expect
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could be calculated by a perturbation theory. What
is in question here is not the value at T=O, but
rather the value as T approaches zero from above.
So it is not sufficient to simply do the calculation at
T =0, which has been done in Ref. 4. Rather, one
must explicitly include the thermal fluctuations, per-
form the necessary averages, and then take the limit
of T~O. In doing this calculation, one simplifica-
tion occurs upon noting that in the limit of T~O,
the density of kinks vanishes exponentially, so that
kink-antikink and kink-kink collisions become less
and less frequent. Thus we may consider the kinks
to behave like free and noninteracting particles, and
we may ignore that small time which is spent in col-
lisions. So the problem can be reduced to consider-
ing a single simple kink moving under the influence
of an external torque and a temperature bath.

However, this is still not as easy and straightfor-
ward as one might at first think it to be. For exam-

ple, the most obvious approach would be expanding,
e.g.,

8=(8)+58,
where the angular brackets indicate an ensemble
average and 50 is the deviation from the mean.
Each element in this ensemble is determined by
specifying the value of g(x, t) But thi.s is wrong.
Why this would be wrong may be seen by consider-
ing the motion in the position of a single kink, and

by comparing its mean motion with the motion for a
typical element from the ensemble. Owing to the
thermal fluctuations, the center of the kink will exe-
cute a random walk, and for almost any element
from the ensemble its position will move farther and
farther away, as t', from its mean position for the
mean motion. Thus whereas (8) will have a kink at
some mean position, for a typical element from the
ensemble, 0 could have the kink at a considerable
distance away (proportional to t'~ ), and thus 58,
which is the difference between these two, can no
longer be small even if the thermal fluctuations are
small. A perturbation expansion based on this type
of an expansion can only converge for t so small
that the position of the kink for almost any element
in the ensemble has not moved further than a dis-
tance on the order of its width.

The difficulty with the above expansion was that
50 was essentially the difference between two one-
link solutions with the kinks at two different posi-
tions. If we would take this difference after
translating the solutions until the two kinks more or
less coincide, then we could expect 50 to remain
small for all time. This is the idea in the following
singular perturbation expansion. Take

8=8p(x —xp(t) )+58(x, t),

where 8p will be a kink solution and xp(t) will be the
position of the kink. For a given element from the
ensemble, xp(t) can be uniquely determined, and
shall be so determined such that the 00 term in the
above expression will closely follow the actual kink,
as it is being bounced back and forth by the random
thermal fluctuations. As we shall see later, a pertur-
bation theory based on the above type of an expan-
sion will be convergent.

However, this will introduce several new features
into the treatment of this problem which do deserve
comment. First, one will note that we now have two
statistical variables, xp(t) and 58(x, t), instead of
8(x, t). Thus 58 must have exactly one less degree of
freedom than 0 has, and this will be achieved by re-
quiring 50 to be orthogonal to the Goldstone mode.
Further, this decomposition of 0 into a kink variable
xo and a continuum variable 50 will be seen to be a
very natural decomposition, and is simply another
reflection of the particlelike nature ' of the kink.

Another feature deserving comment is the defini-
tion of the ensemble averages. As an example, con-
sider the ensemble average of 8(x, t) when given by
the above expansion. The first term to be averaged
is 8p(x —xp(t}), requiring the average of a function
of a statistical variable, not just the average of a sta-
tistical variable. Furthermore, since xp(t) will un-

dergo a random walk, the ensemble average of
8p(x —xp(t) }will also be time dependent, complicat-
ing the physical interpretation considerably. The
source of this difficulty is again the act of trying to
average solutions with kinks at different positions.
The obvious way to bypass this is to define the en-

semble average relative to the kink. As an example
of what I mean by this, define X=x —xp(t), so that
8(x,t) =8p(X)+58. Now average the first term by
keeping 7 the same for every element from the en-
semble. Then it is clear that (8p(X)) =8p(X) since
8p(X) is only a function and is not a statistical vari-
able. All statistical variations have been swept into
50 by averaging relative to the center of the kink.
Also, I wish to point out that the transformation
from (x, t) coordinates into [X=x xp(t), r=t]—
coordinates is a canonical transformation provided
one appropriately defines the momentum. The
quantity 7 shall be referred to as the "comoving
coordinate. "

It is very easy to numerically evaluate ensemble
averages at constant X. As shall be seen shortly,
given a definite element from the ensemble, there is
a definite solution for xp(t}. So as one is numerical-
ly solving for 8(x, t), one could also numerically
solve for xp(t). Now by a simple translation one can
transform the function 8(x, t) into the function
8(X,r), and then average this latter function.

In the next section I shall apply this singular per-
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turbation expansion to a single kink in a tempera-
ture bath. The treatment shall be quite general, and
I shall not specialize to the sine-Gordon case until in
a-later section. First I shall expand the general solu-
tion out to second order in g (which will be first or-
der in temperature), and it shall be clear that the ex-
pansion could be continued indefinitely without sec-
ular terms appearing. Then in Sec. III, I shall dis-
cuss the ensemble averaging of various variables at
constant X, from which one could evaluate the
current.

The above results are valid for any value of the
applied torque F, but not so high such that kinks
will be spontaneously generated. However, their
evaluation will require the knowledge of certain
eigenstates as a function of F. These are not known
in a closed form even for the sine-Gordon case. So
in order that one may obtain analytic results, I will
also treat the small-F case, expanding the above re-
sults in a regular perturbation expansion in F. Ex-
plicit results will be given for first order in F, and
numerical values will be obtained for the terminal
velocity of a kink for the sine-Gordon model and for
the change in the shape of a kink when there is a
nonzero temperature.

as

II. SINGULAR PERTURBATION
EXPANSION

As discussed in the Introduction, I shall expand 8

8(x, t) =8p(X)+ «&(X,r)+ ~'8&(X,r)+

where e is the expansion parameter, ~=t, and 7 is
the comoving coordinate

X=X —f V(t)dt . (3)

I shall also similarly expand the instantaneous velo-
city

and so on. In the above, the operator L is

L, = —~a,' —),a,+ U, (8,) .

The operator L as well as Eq. (5) have been dis-
cussed in Ref. 1 for the sine-Gordon case. However,
I am treating a more general case, so I must say a
few words about the general properties of U and L.

I shall assume that Eq. (5) has a well-behaved
solution corresponding to a single kink. By this I
mean that 8p approaches the constant values of 8+„
as P~+ 00, determined by U(8+„)=F. Also, 8+„
and 8 „are to differ by an amount appropriate for
a kink (or antikink) solution. Also a unique value of
vo is assumed to exist. Naturally, each of these
parameters 0+„and Up are understood to be func-
tions of the applied torque F.

One important feature of this zeroth-order solu-
tion is obtained upon differentiating (5) with respect
to X. One finds

L No, x) =0

from whence it follows that the operator L has a
zero eigenvalue, the Goldstone mode. I shall assume
that there is only one such zero eigenvalue, and that
all other eigenvalues have a positive real part. This
assumption is made since a negative real part for the
eigenvalue would correspond to an instability, as one
could see from the left-hand side of Eq. (6). One ex-

ample of such an instability is when the applied
torque F is so large that kinks (or antikinks, depend-

ing on the sign of Q are spontaneously generated.
(At this value of F, the continuous spectrum of L
has just started to extend into negative real values. )

I shall also assume that Ua(8) approaches the sin-

gle value of Kg as+~+(x and as+~ —~. g has
the dimensions of inverse length ', and will indicate
the kink's width.

The continuous eigenstates of L are defined to be
those solutions that approach the plane wave e'~ as
g —++ Op, giving the continuous eigenvalues of L to
be complex. These eigenvalues are

V =Vp+6V &(t) +E' V2(t)+ (4)

where Up is to be a constant, although the higher or-
ders may be time dependent as indicated. Then in-
serting these equations into Eq. (1), expanding in
powers of e gives in zeroth order

A,I =Kl —l rUpl +K'g

which is obtained from the eigenvalue problem

Lfl ~l Pl ~

(10)

«o,xx mo—8o,x+ U—(8o)=F
in first order

r8l, ,+L8l =ml8o, x+0,
in second order

(5)

(6)

by evaluating it at 7=+Do. Since this problem is
non-Hermitian, I must use the adjoint states to de-

fine an inner product. The adjoint problem is

Ol ~II I

where

2
r~2, +L2 r 1~1,x+r 2~0,x U881 (7) I."= ~a,'+),ax+ U, (8,) . (13)
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I choose the Pt and Pt states to be normalized so
that

&0i IA &=5(i —l'» (14)

where I shall now use the parentheses to indicate the
inner product

(u IU)—= t u(X)U(X)dX. (15)

By prior assumption both L and L" have one and
only one bound state of zero eigenvalue, where

Lfb ——0,
LAy 0

(16)

(17)

(18)

(19)

These functions may be chosen to be normalized
such that

(24)

which will uniquely determine f&I up to an initial
condition. By prior assumption, the real part of A, l
is positive. Thus the homogeneous solution of (24)
will exponentially vanish, and if the initial condi-
tions were imposed at a very long time ago in the
past, one has

(25)

Now (21), (22), and (25) give the first-order solution.
The second-order solution follows similarly from

Eq. (7). As before, I take

H2(X, r) =f f„(r)QI(X)dl (26)

and obtain

I shall also assume that these eigenstates are com-
plete. ' Then by (14), (18), and (19), the closure rela-
tion must be

and

&4b
I

Uea I
Hl & &4b I Hu&2E (27)

5(X X') =Pb(X—')gb(X)+ f PI (X')P((X)dl,

(20)

where in (20) we have also assumed that the range of
the continuous parameter l may be chosen to be ex-
actly the same as is in the Schrodinger case. With
the above, we may proceed to solve Eqs. (6) and (7)
for the first- and second-order corrections due to the
thermal fluctuations g.

In a singular perturbation expansion as I am do-
ing here, one may (arbitrarily) demand that the fluc-
tuations in 8 always remain orthogonal to the
bound-state component. This then determines v to
all orders. To illustrate this, we take

H)(X,r) =f QI(X)fU(r)dl, (21)

and explicitly omit the A. =O bound-state com-
ponent. Next insert (21) into (6), and take the inner
product of the result with pb One then. finds

(22)

(23)

which uniquely determines v~. We remark that due
to (9) and (17), and the assumption of only one A, =O
bound state, Hox and gb must be proportional. Thus
due to (18), the term N = (pb I Ho&) in (22) must be
nonzero.

Next, from (6) and (21), upon taking the inner
product with Pi, one obtains

f2t= f «' Ui&NI IHm&

(28)

where the first set of large parentheses in (28) is un-

derstood to be evaluated at ~'.
It should also be clear by now that this type of ex-

pansion could be continued indefinitely, without sec-
ular terms appearing. This is guaranteed when the
real part of A,t is always positive. Now that we have
a method for expanding the general solution, let us
turn our attention to ensemble averages.

III. SECOND-ORDER ENSEMBLE
AVERAGES

The solution in the preceding section is for a
specific forcing term, g(x, t), from the ensemble. In
general, we do not know which specific forcing term
from the ensemble is driving the system, so we aver-
age over all elements in the ensemble to determine
typical or average values. As is standard, I take'

(g(x, t) ),„=0,

(g(x, t)g(x', t') ),„= 5(x —x')5(t t'), —

where now the angular brackets with the subscripts
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( px,.) &.„=o (29)

"av" indicate an ensemble average and p = ( kl) T)
Because the correlation time for the driving term is
taken to be zero, one finds upon transforming into
comoving coordinates that

designate the order in F, e.g. ,

g g(o)+g( )F+g( )F2+. . . (34)

I shall also assume that in the absence of any torque,
the kink's velocity is zero, whence Uo

' ——O=U2 ', etc.
Then when Eq. (S) is expanded, we find

and

(g(x, T)((x',r) &,.„= 5(x x'}—5(r 1)—.
(30)

—a8()~z+ U(8() ) =0

L 0() =yuo Oo~ + 1(0) (1) (1) (0)

8o =mo 80z+mo 80m ,—U—()()(80»(0) (2) (1) (1) (2) (0) (1) 2

(35)

(36a)

Thus statistically speaking, the driving term in
comoving coordinates is exactly the same as it is in
laboratory coordinates (x, t}. I should emphasize
that this is true only as long as the correlation time
remains zero.

As a consequence of (29), all first-order averages
vanish. For the second-order averages, only the two
quantities (v)81&,„and (81&„are required, as can
be seen from Eqs. (27} and (28}. Each of these may
be readily evaluated by using (21), (22), (25), and
(30), which give

where

L( '= —)~(}z+U()(8() ') .

As before, Eq. (36a) yields

(36b)

(37)

(3&)

(39)

(U181& f dI Sl(X)( t)b tl Pl &

y Q —oo

(81&.,=—f dtgl(X) f dt'(tl (X)
2

(31)

(32)

We note that due to closure, Eq. (20), the above ex-
pression for (U181 &,„reduces to

where the superscript zeros refer to the appropriate
zero-torque quantities. One will note that the super-
scripts A have been deleted from Pk

' and Pb
' since

1.' ' is now self-adjoint. Also, we may now nor-
malize b

' and 1()b
' so that p'b

' ——1()b ', whence
(P'b '

~

(t(b '& =1. The list of the remaining important
first order in F quantities follows:

(U, 8, &„= l)ts(X}(db l(41 & Pb(X)'j . —

(33)

(0)
y(1) f dk

"
( y(0)

~

I (1)y(0)
&

00

Thus one only needs to know the bound state in or-
der to evaluate this ensemble average.

The evaluation of (32) is more difficult. One
could use the analytic properties of the eigenfunc-
tions to eliminate one of the l integrals by distorting
the contour into the upper half-plane. But then the
remaining l integral will contain a square-root radi-

cal, which prevents a closed-form evaluation.
Nevertheless, this would be a convenient form for
numerical evaluation since it involves a single l in-

tegral and not a double integral.
However, the emphasis here is not on numerical

evaluation, but on analytic results. So next I shall
take the F~O limit and demonstrate how to proceed
in this limit.

IV. WEAK TORQUE LIMIT

(0)

(()
' '= —f

X(')= f u „,(y„'"~a,l(„"'&(y,"'~1&,

q(1) q(0)(y(0)
~

L (1)y(0)
&

~k
(0)

+ f di (o) (o)

(4Oa)

(40b)

(41)

Now I shall proceed to expand the previous re-
sults for F small. I shall introduce superscripts to )( (yo

~
(I (1) g( ))y(0)

& (42 }
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~A(() ~b &~(0) ~LA(1)~(0)&
Ak

&v, O, &,"„)= (
(1) A (1))

(p) 4 4b (45b)

(0)

++f "l (0) (0)
k ~l

X &y(0)
~

(LA(I) )„(1))y(0)&

(42b)

etc. Expansion of &O) &,„ is not so simple, but there
are some tricks for reducing the complexity. For ex-
ample, the inner product &PI

'
~ PI '& can be simpli-

fied. Since L' ' is self-adjoint, it follows that the ad-
joint eigenfunctions must be some linear combina-
tion of the L ' ' eigenfunctions. Thus

where in (42), H indicates the Cauchy principal
value and

y(0) y(0) +b y(0)

Then it follows that

(46)

P 0 ~X+ U880(1) (&) (1)

LA(1) + ( )g +U g( )

= —l~0 k .(1) ~ (&)

(43a)

(43b)

(44)

& v, O, &,"„'=0, (45a)

I

Using these results, one may expand &v)O1&,„and
& O, &,„ in a power series of F. First from (33),

&(t)p
~

'((I & =ul&(I'+l)+b)f)(I —I') . (47)

Thus when f~ is even in l, but otherwise arbitrary,
we find

f di y(0)f &y(0)
~

y(0)
& f y(0) (48)

With the use of these results an expansion of (32)
then yields

&O) &av = f di (p) Pl 01
P

g(&)
&O2&(l) f dl, , 2p,' 'p,'"—,, b Q'o) ~)( )(0

(49)

g(0), (,(0),I,(0)

4~ dii ) +) &) &y(0)
~

(LA(1) g(1))y(0)&
(g(0) g(0))() (0) g(0))

Now from (27), an expansion of & vq &,„yields

&(0)

&4b [ Uee&O ».",'+-,' &6'"
I

~eeeOo'"&O'&.",'& y&(tb
'

I
—()x&

(50a)

+-,' &y(b"
~

Uee&O', &.",) & . (50b)

There are two more relationships which can give further simplifications. The first one arises upon differen-
tiating (36a), whence one finds

(0) (&) (&) (0) (&) (0)
(0)L Oox+UeeO0 (I)b ='Ro dx0b

and thus

&y( )
~L ( )y( )& 2~( )&y( )

~

g y(o)& g(o)&y(o)
~

g O( )& (Sla)

&
y(0)

~

L (1)y(0)
&

g(0)
&

y(0)
~

g O(1)
&

The other is a similar identity which can simplify the calculations involved in evaluating & v2 &„. This is

g(0) g(0)
~b'"ee~'k '~P" = "2~(0)' (~kx~P' 4'x'~'k")+ „(())dx[~-Ue .' 4" .'P')~P'4"- ' -.~k'x-A-'x'l

(51b)

(52)
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Proceeding any further would be best done with a
model. In the next section I shall evaluate (vz),"„'
and (Oq ),'„' for the sine-Gordon model.

where z (z() 'is the greater (lesser) of z =re and
z'=gX'. Then

V. RESULTS FOR THE SINE-GORDON
MODEL

For this model one takes

2 —sech z
(g )(o) g(z z)

4~re

g,")=—' f dz'g(z, z') .
00

(62a)

(62b)

U =Kg sin8, (53)

and upon solving for the zeroth-order solution one
obtains

In the following calculations, certain integrals will
frequently occur. These and their values are

0()
' ——4tan '(se'), (54) f - ..g""-0

COShz
(63a)

g(Q) 2$ g
p,x coshz

'

sinhz
sin 0p ———2$

cosh z

(ssa)

(55b)

where s =+1 for a kink, —1 for an antikink, and
z =gg. Thus f , g(z,z')

dz
cosh z

, g(z, z')
cosh'z'

1 —ln(2 coshz }

3K' coshz

2+ sech z ——,ln(2 coshz)

10K' coshz

(63b)

(63c)

COSOp =1—(p)

cosh2z
'

Ue()(8o )=ay 2s(p) 2 s1nhz

cOSh2z
'

and the eigenfunctions are
1/2

sechz,

(p) e' (k +i)}tanhz)

(k2+~2)]1/2

(p) (p) e'"z(k i ri tanh—z)
k k [2(kz P)])/P

where

(P) &(112+k 2)

(55c)

(55d)

(56a)

(56b)

(56c)

(57)

dz I Z
, a, g(z, z )=

coshz 2K/ coshzdz', sinhz 28,g (z,z') =
z (3+sech z),-~ cosh z 4K'g cosh z

(63d)

(63e)

, z'sinhz'

cosh z'

5+6z tanhz —8 ln(2 coshz)

24K' coshz

For evaluating (vz).,„ from (50), it is now simply a
matter of evaluating the various matrix elements in
(51). I find

1/2

and bk=0 [see Eq. (49)]. From (23), (38), and the
above, we find

(pA(1)
i

U (g2)(pl) 1r
(

18
1 2

i~
)

4 Kr]

N(o) 2s (2')'
(1) $%

Vp 4'
It becomes convenient to define the function

(58)

(59)

(y(o)
i

U g( )(g )( ))
1/2

( —, ——ln2)
4Pari

(64a)

(64b)

g(z, z'}=f dk (p) (t)'k '(X')(t)'k '(X), (60)
1/2

&0»"
I
~x(v((}1)"')=

16P)(.y1}
(64c}

which for the sine-Gordon model is

l —2z l 2z
—,e '+ —,e ' —/z —z'/

g (z,z'}=
4K' coshz coshz'

(61)

The last matrix element in (50b) is the worst to cal-
culate. This I shall do in sections. With the use of
the identity (52), all gradient terms integrate to zero,
leaving
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( (0)
~

( 2&(1)
&

J' dI (y(0)
~

(I (1) g(1))q(0)
&~(0) ~ g 0

+ 2
dI dli (y(0)

~

(I A(1) g(1))y(0)
&

p~(0) ~ ~ ) (0)+ g(0)

(65)

where

(1——„ln2 —I )
8pa11

This is then evaluated to be

&((b'
I Uee&(9) »-

' 1/2

(66)

This is as one would expect in that the thermal fluc-
tuations allow the damped kinks to move faster.

As a final calculation, I shall determine the
change in the shape of a kink due to temperature
fluctuations. For this calculation, I shall take the
F =0 limit. From (26), (28), (45), and (49), one
determines that

dU 1J=2m 1—
sinh (m.v) (1+v )'~

=0.149 409 4. . . , (67)
which evaluates to

XB,g(z,z'),

( 02 &,"„'= —'
J dz'(2 sechz' ——,

' sech'z')

(68)

with the numerical value being obtained from a
Hewlett-Packard HP41CV calculator, using the sim-
ple trapezoid rule. Setting all of the above together
gives the very simple value

1r(1+ —,J)
'( v2 &a~ = —s

32Py1rr)

( 82 &,'„'= (sechz)
4pag

&([z ——,tanhz(l+ —,sech z)] .

Thus to this order

0=4 tan '(se*)+ (82&,'„'+.

(70)

(71)

Thus to this order, the average velocity of a kink or
an antikink shall be

and the effect of an increase in the temperature is to
flatten out the kink, thus increasing its width.

1

s~I 1+ 2J
+

p
+'' + (69)
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'0For some problems such as the (() model, there may be
additional bound states between the A, b

——0 mode and
the continuum. For those cases, all the following equa-
tions could be appropriately modified. However, since
this would only complicate the presentation without
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adding to the understanding, I shall assume these
bound states to be absent. One could account for these
additional bound states by applying the general rule of

replacing all integrals over l by an integral plus a sum
over the additional bound states.


