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Structure and vibrational dynamics of the metallic glass Ca7oMg3o
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The atomic structure and the vibrational dynamics are investigated for a realistic model
of the metallic glass Ca7pMg3p. The calculation is based on a first-principles pseudopotential
treatment of the interatomic potentials and a cluster relaxation technique for the
determination of the equilibrium atomic structure and density. The recursion method has
been used to compute the vibrational spectra. For the first time, a quantitative comparison
between theory and experiment on the dynamical properties of a metallic glass is now

possible. The theory explains successfully the low-energy vibrational modes characteristic
of the amorphous state and the dispersion law for propagating collective modes.

I. INTRODUCTION

A thorough understanding of the atomic structure
and the vibrational dynamics on the basis of realistic
interatomic forces is a prerequisite to any under-
standing of the thermodynamic and the transport
properties of solids. The vibrational properties of
crystalline solids have been investigated extensively
using optical, x-ray, and neutron spectroscopy and
their theoretical description has been developed to a
point where ab initio calculations appear to be feasi-
ble for a relatively wide class of materials. '

For insulating amorphous solids, the wealth of ex-
perimental information offered by the various tech-
niques of optical spectroscopy has stimulated a ra-
pid progress in the theoretical understanding of their
dynamical properties as well. The situation is quite
different for amorphous metals: Optical techniques
are difficult to apply to metals and only until very
recently has the progress in the preparation tech-
niques allowed for the production of the relatively
large amount of material required in an inelastic
neutron scattering experiment. Progress in the
theoretical description has been hampered by the
fact that compared to insulating amorphous solids,
metallic glasses are characterized by a larger degree
of quantitati:ve disorder and consequently a more ac-
curate knowledge of the interatomic forces is neces-
sary. The state of the art in the physics of the
dynamical properties of metallic glasses, regarding
both theory ' and experiment, has been described
in recent reviews. The most important results may
be very briefly summarized as follows: (a) For
higher energies (Ace) 10 meV), the dynamical struc-
ture factor S(Q,co) and the frequency distribution

g (co) of the metallic glass are closely similar to those
of the polycrystalline samples obtained after cry-
stallization. This suggests that the vibrational prop-
erties are dominated by the short-range order in this
energy region and that the short-range order is simi-
lar in the glassy and the crystalline phases. (b) The
most prominent differences are found in the low-
energy region below about 10 meV where additional
intensity in S(Q,co) and g (co) is found in the glassy
phase which disappears upon crystallization. These
soft vibrational modes contribute to the characteris-
tic thermodynamic, elastic, and transport properties
of the metallic glass. (c) The frequency spectrum of
the glassy phase is broadened at the highest vibra-
tional energies as well, showing additional intensity
above the maximum frequency of the polycrystalline
phase. Very recent computer experiments suggest
that these high-energy excitations are due to local-
ized modes. (d) The Q dependence of the peak posi-
tions in the inelastic part of the dynamical structure
factor S (Q, co) show well-developed dispersion
bands: The energies decrease near the first and pos-
sibly also near the second peak in the static
structure factor. It has been shown that
these minima in the dispersion bands arise—in close
analogy to the polycrystalline case—from a
"diffuse —umklapp-scattering" process. 7

Dynamical structure factors and frequency spec-
tra have been measured for the metallic glasses
Cu46Zr54 (at room temperature), ' Mg7pZn3p,

'

and Ca7pMg3p (at T=6 K and at room tempera-
ture)' '; only the frequency spectrum has been
measured in Pd80Si2p. Theoretical investigations
using either the equations-of-motion method, '

the recursion technique, ' ' or the Mori formal-
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ism' have been presented for a number of model
systems and metallic glasses. The observed features
of the frequency spectra and dynamical structure
factors are generally reproduced quite well by even
the simplest model calculations. However, only for
Mg7pZn3p (Refs. 10—12 and 17) and for Cu-Zr (Refs.
8, 9, and 21) is a direct comparison between theory
and experiment possible. For the case of Cu-Zr it is
difficult to draw any conclusions box:ause theory and
experiment refer to different concentrations and it is
quite doubtful whether the modified Lennard-Jones
4-8 potentials used in the calculations are really a
good approximation to the interatomic forces.
From the point of view of the interatomic forces,
the simple-metal alloys Ca-Mg and Mg-Zn seem to
be the ideal systems to study: For the simple metals
and their alloys effective inter-atomic potentials
may be derived using pseudopotential theory and the
accuracy and reliability of these potentials has been
tested extensively by computations of the cohesive,
structural, dynamic, and thermodynamic properties
of the crystalline and liquid metals ' and al-
loys. Based on these pseudopotential derived
forces, a theoretical investigation of the atomic
structure ' and the dynamics' of the metallic
glass Mg7pZn3p has been performed. The calculated
structure can be compared with the result of a recent
elastic neutron scattering experiment and turns out
to be very realistic. The comparison of the q-
dependent frequency spectra computed using the
equations-of-motion method' ' ' ' with the result of
the inelastic neutron scattering experiments'
turns out to be much more difficult: In the long-
wavelength limit and for wave numbers close to the
first peak in the static structure factor (i.e., near the
minimum in the dispersion relation), the q
dependent frequency spectra calculated by von
Heirnendahl are nonzero for ~=0. If the spectra
are converted to the dynamical structure factor by
multiplying with the thermal occupation factor
[n (co)+1]lco (cf. Sec. IIID), the problematic result
of a one-phonon structure factor diverging at co=0
is obtained. The peaks in the q-dependent spectra
appear at most as weak shoulders in the dynamical
structure factor and a direct comparison with the
clearly resolved inelastic peaks in the measured
structure factor is only of limited value. A reinves-
tigation of the dynamical properties of amorphous
Mg7pZn3p using the methods described below is now
under way. A comparison of the results obtained
using the equations-of-motion and the recursion
techniques will be given in a forthcoming publica-
tion.

The main purpose of the present paper is to use
the recursion technique ' for a calculation of the
vibrational properties of a glassy Ca70Mg30 alloy.

We begin by introducing the interatomic potentials
derived from the generalized pseudopotential theory.
The equilibrium density and the static atomic struc-
ture are calculated by a novel variant of the cluster-
relaxation technique. Based on the knowledge of the
interatomic forces and of the structure, we can cal-
culate the dynamical structure factor and the local
vibrational densities of state. The results are used to
investigate the dispersion law of collective short-
wavelength excitations, the origin of the characteris-
tic low-energy vibrations, the onset of localization in
high-frequency vibrations, and the interrelations be-
tween vibrational dynamics and the elastic and the

. thermodynamic properties of the metallic glass.

II. INTERATOMIC POTENTIALS
AND STATIC STRUCTURE

In any binary metallic alloy, the ground-state en-

ergy E may be written as the sum of s volume ener-

gy Ep( V) and of a pair energy E~( V) expressible as a
sum over central, volume-dependent pair interac-
tions V~p(R, V):

E( V) =Ep(V)+Ep( V),

Ez(V)= —, g g g V~p( ~R; —RJ ~, V) .
a, P=A, B i(a)+j(P) j(P)

(2)

The sum g,.
i ~

extends over all sites occupied by a
atoms. Ep( V) and the effective pair potentials may
be calculated within the framework of the general-
ized pseudopotential theory. They are given by

Ep( V) = EFF ( V) — g c,Z*' J F (q)dq
a A, B

4m.Z'Zp
c cp lim

'
[1 Fp(q)]-

aP=AB & ~09

and

V~p(R) = —f [1 Fp(q)]q sin(q—R)dq .4

(4)

The F p(q) are the normalized energy —wave-
number characteristics describing the indirect ion-
electron-ion interaction between the iona a and P
whose effective valence is Z~, Zp (concentrations
c~,cp). Combining this indirect interaction (which
is just the attraction of one ion to the screening
cloud of a second ion) with the Coulomb repulsion
gives the full effective interatomic potential V~p(R)
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[Eq. (4)]. EFE( V) stands for the "free-electron ener-
gy" which is composed essentially by the ground-
state energy of the electron gas plus the first-order
perturbation energy given by the diagonal matrix
element of the non-Coulombic part of the pseudopo-
tential. Note that while EFE( V) is a positive, repul-
sive quantity (the largest contribution being the ki-
netic energy of the valence electrons), Ep(V) is a
negative attractive potential, which makes up for the
biggest part of the binding energy. For the simple
case of local pseudopotentials Finnis has shown
that the non-Coulombic pseudopotential contribu-
tions to the first and third terms in Eq. (3) cancel
exactly and that Ep( V) reduces to

Ep( V) = Z(E s
—

&
QpB s )

c V~~(R =0) . (5)
a=A, B

Z is the average nominal valence of the alloy, and
E,s and B,s are the ground-state energy (per elec-
tron) and the bulk modulus of the electron gas. In
this equation we have introduced the explicit real
space form of the indirect (or band-structure) ion-
electron-ion interaction

Vas(R) = — —J F~&(q)q
' sin(qR)dq

R

in order to emphasize the fact that the second term
in Eqs. (3) and (5) is just one-half of the average
electrostatic interaction between an ion and its own
screening electron cloud. In summary, the ground-
state energy of the alloy is made up of an electron-
gas part, the intra-atomic (in the sense of the pseu-
doatom equal to the ion plus the screening charge)
ion —valence-electron interaction, and the interatom-
ic interaction described by V ~(R, V).

In spite of complicated many-body effects, the
volume energies and pair potentials calculated from
first-principles pseudopotentials can now be con-
sidered as quite accurate: Phonon frequencies calcu-
lated on this basis agree with experiment within a
few percent ' and detailed calculations have
shown that they are also very useful in predicting
phase changes in metals and alloys, and the
related changes in binding energy and density.
These calculations also demonstrate that the pair en-

ergy contributes at most 2—3% to the binding ener-

gy and that —as a consequence of the volume depen-
dence of the pair potentials —it is a decreasing
function of the volume. Since the electron-gas term
in Eq. (5) is again rather small we see that most of
the binding energy is in the electrostatic intra-
atomic interaction. Both the electron-gas and the

intra-atomic terms are strongly volume dependent,
but with a different sign: The dominant kinetic en-

ergy term tends to expand the system whereas the
intra-atomic interaction favors compression. The
resulting energy dependence of the volume energy
shows a slow increase with increasing volume.
Hence the zero-pressure condition at the equilibrium
density is met by a compensation between a positive
pressure from the pair interactions and a negative
pressure from the volume forces. The volume ener-

gy and the volume dependence of the pair interac-
tions also cause the well-known violation of the
Cauchy relations in metals and alloys.

The outcome of this discussion is that the conven-
tional cluster-relaxation concept for the calculation
of the equilibrium atomic structure (and, of course,
a calculation of the equilibrium structure implies a
calculation of the equilibrium density) must be
modified. %e begin with a density lower than the
supposed equilibrium density, create a suitable start-
ing structure, define appropriate boundary condi-
tions ensuring constant density, calculate the volume
energy and the pair potentials for that density, and
relax the starting structure at constant density. In
the next step the relaxed cluster is homogeneously
compressed, Ep( V) and the pair potentials are calcu-
lated for the new density, and the additional relaxa-
tion steps necessary to bring the atoms into their
equilibrium positions at the new density and under
the action of the modified potentials are executed.

At constant density the relaxation algorithm is
identical to the steepest-gradient technique (in the
configuration space of all atomic coordinates in the
cluster) described by von Heimendahl' ': The re-
laxation was started from a rhombic dodecahedron
containing 800 atoms which was cut out of the
center of Finney's dense random packing of hard
spheres model; periodic boundary conditions were
applied. The distribution of the two different kinds
of atoms over the available atomic positions was as-
sumed to be random. The distorting forces on all

atoms together form a multidimensional force
F(R+) = 7'P(R~), RN= IR,, . . . , R&I, P being the
configurational potential energy given by the pair
energy E~ [Eq. (2)]. Following the direction of
F(R~) by stepwise computation, each atom will
move continuously, leading to a unique minimum
R;„where the gradient VP(R ) vanishes. R;„
represents at least a local minimum on the hypersur-
face of constant potential energy in configuration
space. In calculating F(R ) interatomic interactions
over a radius of R,„=3.70Rp (where Rp is the ra-
dius of a mean atomic sphere) were taken into ac-
count. This corresponds to a cutoff for the intera-
tomic potentials at the node after the second peak in
the reduced radial distribution function. On the
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average each particle interacts with 54 neighbors.
For each density the volume energy, the pair ener-

gy, and the total energy are calculated for the com-
pletely relaxed cluster. The results are shown in Fig.
1 and display the expected behavior. Knowing the
total energy as a function of volume, we can calcu-
late the equilibrium density. The theoretical result
for the number density, n =0.0278 A, compares
very favorably with the experimental result
of n =0.0269 A, the difference being only
hn =3.3%. The computed density is very close to
that calculated for a hypothetical hexagonal close-
packed mixed crystal CaQ7QMgQ3Q n =0.0273 A ',
but lower than the average density n =0.0290 A

The technique introduced here provides a basis
for an ab initio calculation of the elastic and the
plastic properties of glassy alloys. Detailed results
for glassy Ca-Mg and Mg-Zn alloys are planned to
be presented elsewhere. ' In the present context our
interest is limited to the question of whether the
pseudopotential method allows for a correct predic-
tion of the equilibrium density. Our result demon-
strates that the prediction is very accurate indeed
and we turn now to a more detailed discussion of the
atomic structure.

A. Partial pair correlation functions

The partial pair correlation functions calculated
for the observed density together with the intera-
tomic potentials are shown in Figs. 2(a)—2(c). The

(eV)

-20.6

E~ -20.7

-208—

-04- (b)

a =(Zza —c„Z)/(ca Z),
Z=cq(Z~+Zza)+ca(zaa+Za„)

=cgZg+cBZB ~

(8)

we calculate a =0.15, suggesting a small tendency to
segregation. However, we must bear in mind that
since the size difference is about 20%, the Cowley
order parameter is not strictly applicable. The
Spaepen-Cargill short-range order parameter

results are remarkable in two respects: (i) There is a
one-to-one correspondence between the minima in
the interatomic potentials and the maxima in the
corresponding partial pair correlation functions.
This "constructive interference" ensures that the
configurational energy Ez

Ez ——2nn g c cp I g~a(R)V~p(R)R dR
a, P=A, B

(7)

is really a minimum for the observed structure and
contributes in lowering the energy of the amorphous
phase with respect to possible competing crystalline
phases. The importance of this effect for the glass-
forming ability has already been discussed. ' '3s (ii)
The pair correlation functions of the amorphous
phase are very similar to those of a supercooled
liquid alloy at room temperature determined by a
simple thermodynamic variational technique (see
Ref. 27 for details) —this shows that except for the
structure in the second peak, the atomic arrange-
ment is very liquidlike indeed.

From the partial correlation functions, the partial
coordination numbers have been calculated by the
method of Sadoc and Dixmier. The results, to-
gether with the mean interparticle distances are
summarized in Table I. The coordination numbers
may be used to estimate possible ordering. For the
Cowley short-range parameter,

Ep -0.5 rl&a Zaa /Z~a —l,——
z~a =caz~ za/z

(9)

-0.6—

-21.1 — (c)

-21.2-

n,
theor. expt,

I

35
I

40

(Zza is the A-B coordination number for a random
distribution of the atoms) is defined for general size
ratio. With the values quoted in Table I we get
ZzB ——3.63, ZzB ——3.66, which yields gzB ———0.007.
This shows that the tendency to segregation is ex-
tremely small indeed and that there is practically no
chemical short-range order in amorphous Ca70Mg3o.

n (A3)
FIG. 1. Volume dependence of (a) the volume energy

Eo, (b) the pair-interaction energy E~, and (c) the total en-

ergy E. The vertical arrows indicate the calculated and
the experimental values of the equilibrium atomic volume.

B. Partial static structure factor
and composite interference functions

The partial static structure factors calculated for
the relaxed cluster are shown in Fig. 3. The results
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FIG. 2. Interatomic potentials V~p(R) and partial pair correlation functions g~p(R) for the metallic glass
Cao 7QMgo 3O. The histogram describes g p(R) for the glass at T =0 K as calculated by the cluster-relaxation technique, the
continuous line represents g ~(R) for a supercooled liquid alloy at room temperature as calculated using the Gibbs-
Bogoliubov thermodynamic variational technique.
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ZgJ.

d;1 (A)

9.49
3.82

3.63
3.52

8.47 3.36
3.52 3.22

12.74
3.74

display the same strong similarity with the static
structure factors of the supercooled liquid alloy that
has already been noted for the correlation functions.
A scattering experiment measures a composite struc-
ture factor S(k) given in terms of the partial struc-
ture factors S B(k) and the scattering form factors

f by

S(k)=[cAfASAA(k)+cB fBSBB(k)

+2cAcBfAfBSAB(k)]~(f ~

with (f )=cAfA+cBfB. Note that f is k depen-
dent in the case of x-ray scattering and constant for

3

TABLE I. Coordination numbers Z;~ and interparticle
distances dj in glassy Ca7pMg3p.

Ca-Ca Ca-Mg Mg-Ca Mg-Mg Average

neutron scattering. The neutron-weighted static
structure factor is shown in Fig. 4. A static struc-
ture factor has been determined in conjunction with
the inelastic neutron scattering experiment. ' ' Un-
fortunately the sample turned out to be contaminat-
ed with hydrogen and the incoherent scattering from
the hydrogen atoms made a proper normalization of
the measured intensity impossible. Only the posi-
tions of the first and second peak in S(k) could be
determined to be QB~=2. 13+0.03 A ' and

Q~2 ——3.67+0.04 A ', respectively. The experimen-

tal values are practically identical with the theoreti-
cal peak positions Q~& ——2. 12 A ' and Q, 2

—3.69
A ', suggesting that our structural model is very ac-
curate. It is hoped that future experiments will veri-

fy this assumption.

C. Local structural parameters

The calculated equilibrium structure, though
homogeneous on a "macroscopic" (if this denomina-
tion is allowed for an 800-atom cluster) scale, shows
of course local variations in packing density, topolo-

gy, and chemical order. It is highly desirable to find
a set of parameters which allows the characteriza-
tion of these local structural variations. A topologi-
cal characterization by means of a polyhedral analy-
ses, interstice correlation functions, or bond-
angle distributions proves to be very difficult.
Very recently, Egami and co-workers have shown
that the atomic-level stresses o.;III constitute a very
useful set of local structural parameters which may
be used to describe many physical phenomena can-
nected with changes in the local structural arrange-
ment.

In a system of interacting atoms the application
of a small uniform strain will result in a change in
energy. The energy change associated with the ith

SN(k)
4-

0
2-

0
0 1 2 . 3 4 5 6 7 8

k(g )

FIG. 3. Partial structure factors S p(k) for the metallic
glass Cap 7pMgp 3p (cf. Fig. 2).

00

FIG. 4. Neutron-weighted total structure factor for the
metallic glass Cap 7QMgQ 3p.
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or the average (von Mises) shear stress
1

( (
11 22)+( 11 33)

+( 22 33)2]1/2 (13)

For a system interacting by classical pair potentials
only, the expressions for the atomic-level stresses
have been given by Huang

Bv(z,j) z,,zp,

with R,J ——R; —RJ. In the case of an additional
volume force and volume-dependent pair interac-
tions we get a further contribution to the local hy-
drostatic pressure

BE (V) 1 Bv(R,",V)

BV +2n, , , BV

BEo( V) 1 BV(R;, V)

Bv(R,q, V)
+30;

BV

atom is given to first order by

AE; =0;g o; ~@~~, (11)
a,p

where 0; is the local atomic volume and e P is the
(a,P) component of the applied strain. The coeffi-
cients o; ~ define the local atomic-level stress tensor;
they may be calculated from the known interatomic
forces. The individual components of the stress ten-
sor depend explicitly on the change of the coordi-
nate system. Therefore, it is more useful to consider
only the variants of the stress sensors, e.g., the local
hydrostatic pressure

aa (12)

Distribution histograms of the atomic-level hydro-
static pressure p; and of the atomic-level shear stress
~; are shown in Figs. 5 and 6. The only point in the
calculation which is not really straightforward is the
assignment of the local atomic volume Q;. Any
prescription for calculating 0; is necessarily ambi-
guous to some degree. In the present calculation we
have simply replaced 0; by the average atomic
volume. This is at least consistent with our con-
struction of the interatomic potentials which starts
from the homogeneous electron gas of the mean
density.

In some sense the atoms corresponding to the ex-
treme ends of the p-distribution histogram (those
with the most compressive and the most tensile
stresses) and the atoms with the largest shear
stresses may be considered as being located in the
defect regions of the amorphous structure. In the
following we shall show that the atomic-level
stresses are also closely related to site-dependent
variations in the local vibrational density of states.
A detailed discussion of atomic-level stresses, site-
symmetry coefficients, and defects in realistic
models of simple-metal glasses, however, will be re-
ferred to a planned publication.

III. VIBRATIONAL DYNAMICS

In the harmonic approximation, the Hamiltonian
of our system of vibrating atoms is given by

Ptp J
H g+,—g gP u(„u,„,

ip. i ip jv

where the p;„and u;z are the p-Cartesian com-
ponents of the momentum and the displacement
vectors of the ith atom with the equilibrium position
R; and the mass M;. The force-constant matrix
p(„',) is given in terms of the interatomic potentials
by

Bu,„auj„ g Vap( IRk+uk —Ri —ui
l

V)
a,p=A, B k(a)&l(p) l(p)

As in the relaxation calculations, only interatomic
interactions up to a maximum distance of
Rm,„=3.7RO have been taken into account. Note
that since only atomic rearrangements at constant
volume are considered, the density dependence of
the interatomic potentials does not show up explicit-
ly in the dynamical problem.

The vibrational density of state projected onto an
arbitrary state f (the vibrational spectrum of state
g) is defined through

g~(co)= — Im(f
l

(co D+i5) '
l g), co—&0

(19)
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1

so-

40-

of producing the smoothest spectrum possible. This
is important since we want to avoid any spurious
structure in the spectra which might result from our
using a finite cluster and periodic boundary condi-
tions. Normally we calculate the continued fraction
coefficients up to %=15, but the influence of the
exact higher-order coefficients will be discussed
briefly.

20-

(Pl&

B. Local density of states

If we define
~ P) as the p-polarized vibrational

state of the ith atom, i.e., the
o

-3 -2
I I

-1 0

p; {eV/ A3)

I

x10-2

FIG. 5. Distribution histogram of the atomic-level hy-
drostatic pressures p; for amorphous Cap 7pMgp 3p.

(P
~

(co D+i5) '—
~
g) =t~,

t, =(c0 +i5 a) ——
~
b,

~
t2),

t„=(c0 +i5 a„——
~
b„~ t„+,),

(20)

(21a)

(21b)

where D stands for the real-space dynamical matrix
D(&jv)=(MPH&) ' 4(&J ) The resolvent (c0 D-
+i5) in Eq. (19) is very conveniently calculated us-

ing the recursion technique of Heine et al. in the
form of a continued-fraction expansion:

~
P) with uj„=l, j,v=i, p

tcjv 0, Jv/i, p
(22)

the spectrum computed from Eq. (19) is the local
density of states (LDOS) of the p-polarized vibra-
tional state of the ith atom. The LDOS on the ith
atom is calculated by averaging over the possible
polarizations —in our case we determined the LDOS
by averaging over three polarization vectors in the
directions of the coordinate axes used to describe
our cluster. If, as we mentioned in the Introduction,
the total vibrational density of state (TDOS) of
amorphous state is smooth and has no particular
distinguishing features, Figs. 7 and 8 show that this
is not so for the LDOS. The shape and the center of
gravity of the LDOS varies quite strongly from one

where a„and b„are the (n, n) and (n, n + 1) elements
of the tridiagonalized dynamical matrix. Ter-
minating the continued fraction expansion after X
sets of continued fraction coefficients (a„,b„) gives a
discrete spectrum of X sharp spectral lines. Any
analytical continuation of the continued fraction re-
sults in replacing the discrete spectrum by a smooth,
continuous one. In this work we use the termination
routine developed by Nex which has the advantage

g; (u)

(arb. ur) )

5- Mg p.= 0.009
I

70 -1 2 3 3-Ca p.=0.012
I

50— 2- Ca p =-0.006
I

—(PI)

30- 4- Mg p =-0.022
I

I

1 2

(eV/A3)

I

3x1O

FIG. 6. Distribution histogram of the atomic-level

average shear stresses (von Mises's shear stresses) ~; for
amorphous CaQ 7QMgQ 3Q.

1 - Ca p; =-0.028

(eV/ A3 )

100 20 30
(meV )

FIG. 7. Local vibrational densities of states at several
atomic sites with different atomic-level pressures p; as in-

dicated.
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.g( (w)

(arb. un. }

shear stresses on the LDOS -is by far smaller.
Atoms with quite large ~; but p; close to zero show a
LDOS which is hardly different from that of an
atom in a well-relaxed region (p; -r; -0).

4-Ca &=0.018
I

3-Ca &=0.009
I

2-Ca ~~=0,006

0 10 20 30
%n (meV}

1 —Mg &;=0.002
(eV/A3)

40

FIG. 8. Local vibrational densities of state at several
atomic sites with p;-0 and different atomic-level shear
stresses ~;.

atomic site to another. The results assembled in Fig.
7 demonstrate that the strongest influence on the
LDOS comes from the atomic-level hydrostatic
pressure: For atoms under tensile stresses, the
LDOS is shifted to lower frequencies, whereas for
atoms under compressive stresses the higher fre-
quencies have a larger weight. If the atom under
compressive stress is of the lighter species, sharp
peaks in the LDOS develop at the upper edge of the
spectrum. They are strongly reminiscent of crystal-
line impurity modes induced by light interstitial
atoms. In order to check whether the high-
frequency modes centered at compressive defects are
really localized modes, a study of the wave functions
of the vibrational states and a calculation of the par-
ticipation ratio ' will be performed.

Very recently Gompf has performed a very in-
teresting experimental study of the influence of an-
nealing on the vibrational spectrum of sputtered
amorphous Fe-Zr alloys. He showed that the spec-
trum of the as-prepared alloys is strongly broadened
compared to the crystalline reference spectrum; on
annealing the additional low- and high-frequency
excitations disappear progressively. On the other
hand, Srolovitz et a/. have proposed a local micro-
scopic mechanism of structural relaxation upon an-
nealing which may be described essentially as a
"recombination" of tensile and compressive defects.
This model, combined with the present results on
the LDOS appears to give an appealing explanation
of Gompf's results.

The influence of the variation of the atomic-level

B. Total density of states

The total vibrational spectrum may be computed
in three different ways: (i) by defining

~ P) as

~
i/j}=,

& g exp(iP;&),
1

(3N)'
(23)

where the P;z are a set of random numbers,
0&/;&&2m, and N is the number of atoms in the
cluster, (ii) by averaging over a suitable set of
LDOS's, and (iii} by an incoherent sampling over the
dynamical structure factor (in this case it is usual to
speak of a generalized DOS, cf. Sec. III E).

The TDOS calculated according to Eqs. (19) and
(23} for 12, 20, 30, and 40 recursion levels is shown
in Fig. 9. It is shown that the inclusion of higher-
order recursion coefficients does not alter the width
and the general shape of the TDOS, but merely in-
troduces spurious peaks into the spectrum. That
these peaks are spurious is demonstrated by the fact
that they appear just at the "Brillouin-zone boun-
dary frequencies" of the Brillouin zone correspond-
ing to the periodicity volume of the 800-atom clus-
ter. These frequencies are easily determined from
the dispersion relations to be discussed below.
Hence it is reasonable to restrict the calculation of
the recursion coefficients to a rather small number.

If method (ii) is to be used to compute the TDOS,
one must take care to select a set of atomic sites
whose average hydrostatic atomic-level stress (p ) is
close to zero. Any other choice would not be
representative and would result in a distorted
TDOS. Figure 10 demonstrates that the TDOS's
calculated by the different methods agree very well.

For our case of amorphous Ca70Mg30, comparison
with experiment is complicated by the fact that the
sample on which the inelastic neutron scattering ex-
periment has been performed was contaminated by a
few percent of hydrogen. Since hydrogen mainly
contributes to the spectra in the region of the elastic
peak and at energies above 30 or 40 meV, the results
are still very instructive at energies below this criti-
cal level, the only difficulty lying in the fact that the
spectra could not be properly normalized because
the exact amount of the contribution stemming
from H vibrations is unknown. Therefore, before
comparing theory and experiment, the height of the
main peak in the TDOS was matched (Fig. 11). If
this is done the agreement is very good indeed, espe-
cially for low frequencies, whereas the upper edge of
the frequency band seems to be slightly too high.
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FIG. 9. Total vibrational density of states calculated with statistically distributed initial phases [Eq. (23)] and different
numbers of recursion levels (—)& —,Ã = 12; —+—,N =20; —0 —,X=30; —0—,N =40).
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10 20 30

In crystals g(ro) cero for the lowest frequencies.
Although the extreme-low-energy regime (the elastic
part of the spectrum) is not accessible to experiment
with a conventional neutron source, Suck et al. have
argued on the basis of their experiments on amor-
phous Cu-Zr, Mg-Zn, and Ca-Mg alloys that this
law is not obeyed in metallic glasses. Instead they

4 3
showed that g(co) ~r0~, with P- —,——,. An investi-

gation of this question goes to the limits of the ap-
plicability of the recursion method. Because the cal-
culation is based on a small number of recursion lev-
els only, there is a certain danger that the low-co
behavior of g (co) reflects the details of the termina-
tion procedure rather than an intrinsic property of
the system. The double-logarithmic plot shown in
Fig. 12 however, shows good agreement between
theory and experiment down to the lowest energies
investigated experimentally. In the energy range
%co=4—8 meV both theory and experiment point to
a co behavior of the TDOS.

FIG. 10. Total vibrational density of states calculated
with 15 recursion levels and (i) statistically distributed
phases (full line), (ii) by averaging over 20 local densities
of sites satisfying (p; )-0 (dashed line), and (iii) general-

ized density of states calculated by the incoherent sam-

pling technique over the dynamical structure factor [Eq.
(31)] (dot-dashed line).

C. %'ave-number —dependent spectra

A wave-number —dependent vibrational spectrum
is defined by the DOS projected onto a plane wave
with wave vector k and polarization e; i.e., the ini-
tial state f is defined by the following displacement
pattern

~
P) =N '~ ge„exp(ik R;), (24)

gpss)

(meV )

0,04

where the e& are the Cartesian components of a po-
larization vector. Equation (24) defines the total (or
density-fluctuation) spectrum Szz(k, co) via Eq. (19).

g ('hw)
(meV")

0.02 0.1—

00 3010 20
'hw (meV)

FIG. 11. Total vibrational density of states of amor-

phous Ca70Mg30. full line, theoretical TDOS; dashed line,
generalized DOS; experiment, triangles. The experimen-
tal TDOS cannot be normalized because of incoherent
scattering contributions from hydrogen impurities.
Therefore, the peak height has been matched.

I

10
Wn (meV)

I

100

FIG. 12. Double logarithmic plot of the low-energy

part of the vibrational density of state (cf. text).
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S(k,co)= — —[n(co)+1] g e e P Im(ga ~(co D—+i5) '~fa),
a,P=~,a QMaMp

with

(26)

g e' "e„k„
+a l(a),p

(27)

as in Eq. (24). Thus we find that the dynamical structure factor may be expressed in terms of the wave-

number —dependent spectra for longitudinal excitations as

Rm n(co)+1 2 - fafp —w(k) —wp(k)Sk,a) = k ~ Sap kcoe e
N 2co op „sQMaMp

k [cz(bz bzbz—)S~~(k,co)+cp(bs baba—)Sap(k, m)+babsSnn(k, m)],Ann(co. )+1 2

2' (28)

where
—w~(k) M )/a=e pa u (29)

1

n(co)+ z
Wa(k) = f gaa(co) dco.c M cxcx (30)

Sc,c,(k, )

S~~jk,u)
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(arb. un. )

~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~
~ ~

~ ~
~ ~ ~

0 ' ~

~ ~ ~ ~ ~ ~
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SNgk, w)
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(arb. un. )

l/ 1.53
1.28

1.02
0.77
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0.26

0 10 20
(me V)

30 &0

FIG. 14. Wave-number —dependent vibrational spectra
for transverse excitations in amorphous Cap 7QMgQ 3p.

For any isotropic solid, the Debye-Wailer factor for
the atoms of species a may be calculated from the
partial DOS via

Equation (28) has the advantage of expressing the
dynamical structure factor in terms of diagonal ma-
trix elements of the resolvent only.

In Fig. 15 the calculated dynamical structure fac-
tor is compared with experiment for T=6 K. Note
that theory and experiment do not always refer to
the same k values —S(k,co) can be calculated only
for wave numbers compatible with the periodic
boundary conditions. The calculation reproduces
the observed dynamical structure factors surprising-
ly well. In making the comparison we have to keep
in mind that (i) the experimental results have not
been corrected for multiple scattering and (ii) in
principle the theoretical results should be folded
with the resolution function of the spectrometer.
Note, however, that the termination of the recursion
sequence at a finite level introduces a finite resolu-
tion in the calculation result as well.

1. Temperature dependence of the normal vibrations

The experimental investigation of the dynamical
structure factors of amorphous Mg7+n3Q and

Ca7QMg3Q at T=6 and 273 K has demonstrated a
strong temperature dependence of the vibrational
modes, especially at low excitation energies (below
—10 meV). The low-energy intensity is strongly
enhanced and in some cases, the inelastic peak
merges in the quasielastic peak. From the experi-
ment alone, it is impossible to decide whether the
observed changes reflect just the temperature-
dependent variations of the Bose-occupation factor
and of the Debye-Wailer factor or whether they in-
dicate anharmonic frequency shifts. In Fig. 16 we
show the temperature dependence at the example of
a few selected constant-k scans. It follows that the
temperature dependence is perfectly reproduced by a
harmonic calculation —there is no particular soften-
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ing of the low-energy excitations with raising tem-
perature.

2. Dispersion lato ofpropagating
collective excitations

It is clearly visible that the peak position in
S(k,ro) shifts to very small frequericies if k is near a
peak in the static structure factor. However, it is

very difficult to derive a dispersion law quantitative-

ly. The most direct way would be to use the first
and second moments of the dynamical structure fac-
tor as a measure for the peak position and the width
of the spectrum —unfortunately, this method cannot
be applied to the experimental spectra, since the con-
tribution from the hydrogen vibrations cannot be
subtracted. The dispersion law plotted in Fig. 17
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FIG. 16. Temperature dependence of the dynamical structure factor for a few selected constant-k scans. Full line,
theory (T=6 K); dashed line, theory (T =273 K); closed circles, experiment (T=6 K); open circles, experiment (T =273
K).
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Ca-Mg alloys bMs/bc, is 1.8—1.6 (depending on k
and T via the Debye-Wailer factor). This means
that the incoherent sampling technique overesti-
mates the Mg contribution to the DOS. g'(co) has
been calculated using Eqs. (28) and (31) [as has been
done in the experiment, we have set e =1 in Eq.
(31)] and agrees reasonably well with g(co) (Fig. 10).
This justifies the use of this technique for estimating
g(t0). In principle, it is the theoretical g (t0) that
should be compared with experiment.

E. Elastic and thermodynamic properties

FIG. 17. Dispersion law for propagating collective ex-
citations. The circle indicates the peak in the theoretical
S(k,co), the bars show the width at half-maximum, and
the crosses give the peaks in the observed spectrum (cf.
text).

has been derived from the peaks of a smooth inter-
polation of the measured curves. Compared to the
experimental dispersion curves, the theoretical result
is shifted to slightly higher frequencies. At larger k
values the dispersion is stronger than found in the
experiment and the second minimum accurs at
higher wave numbers. The minima in the dispersion
law at the wave numbers of the peaks in the static
structure factor have been explained as arising from
a "diffuse umklapp scattering" —in complete analo-

gy to the polycrystalline case.

1
g'(to) ~

n(t0)+ I k',„—k';„

X f, 'e~'"'S( k~ )dkk.
min

(31)

Equation (31) refers to the one-component case. For
polyatomic materials, the contributions of the indi-
vidual components to S(k,co) are weighted by the
factors ba as defined by Eq. (29). This means that
the incoherent sampling technique measures only a
generalized phonon DOS in which the partial contri-
butions are weighted accarding to their neutron
scattering amplitudes and masses. In the case of

3. Generalized frequency spectrum

Experimentally, the vibrational DOS is deter-
mined using a technique which in principle sam-
ples the coherent one-electron scattering cross sec-
tion over a large region of wave-number space to
average out the coherence effects inherent in each
individual spectrum. In terms of the dynamical
structure factor S(k,to), this generalized DOS is
given by

The longitudinal and transverse velocities of
sound may be estimated from the slope of the long-
wavelength limit of the dispersion relations with the
result VI ——4.67& 10 cm s ' and VT ——2.34&(10
cm s '. The isothermal bulk modulus BT of an iso-
tropic solid is given by BT p(VL ————, Vr), where p
is the density. For amorphous Ca7Mg3 we get
BT ——2.29)&10"dyncm . This is only 1.3% lower
than BT averaged over the pure crystalline metals,
BT——2.32 X 10" dyn cm [the theoretical bulk
moduli for the pure metals are BT——3.40&10"
dyncm (Mg) and Br 1.85X——10" dyncm (Ca),
in good agreement with the experimental values
of BT——3.69 X 10 dyn cm (Mg) and BT
= 1.69 X 10"dyn cm (Ca)].

On the other hand, the elastic Debye temperature
is given in terms of the sound velocities by

~L fi 9n
Sg) —— —— 2~

kg kg 4w

1/3 ' —1 /3
1 2

V3 V3

(32)

and is calculated to be 8ti ——234 K. This is 17%%uo

lower than the average 8~ ——282 K calculated from
8ti for the pure metals [8& (Ca)=234 K, 8n
(Mg) =390 K (theory); 8& (Ca) =219 K, 8n
(Mg)=396 K (theory)]. Both results together sug-
gest that the longitudinal elastic mades are compar-
able in the glass and in the crystalline mixture,
whereas the transverse elastic mades are somewhat
softer in the glassy phase.

The high-temperature value 8&(oo) of the ther-
modynamic Debye temperature can be calculated
from the second frequency moment of the TDOS,
Sn(oo)=k~ (5(c0 )/3)' with the result
8n(oo )=270 K.

The same difference between 8n(0) and 8n(~)
has also been found in the 8n(T) curves calculated
from the experimental frequency spectra of Cu-Zr
and Mg-Zn glasses and again suggests that the
characteristic softening of phonan modes in the
amorphous phase affects primarily the long-
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wavelength transverse modes. However, via the dif-
fuse umklapp mechanism, this affects also the
dispersion of short-wavelength modes near

g 7,55

IV. CONCLUSIONS

We have presented a theoretical investigation of
the atomic structure and the vibrational dynamics of
the metallic glass Ca7QMg3Q The results of this
study have been compared with an earlier inelastic
neutron scattering experiment.

The results demonstrate that the microscopic
theory of amorphous alloys has now been developed
to a point where a quantitative comparison with ex-
periment is possible. The main results may be
characterized as follows:

(a) The experiment had shown that the vibrational
TDOS of the metallic glass is essentially a
broadened version of the TDOS of the correspond-
ing polycrystalline alloy. The present theoretical in-
vestigation of the TDOS together with the LDOS
and its dependence on the local structural parame-
ters demonstrates that the additional low- and high-
energy modes characteristic of the amorphous state
are correlated with the existence of "defect" regions
in the glasses and that they are probably of a local-
ized character.

(b) The dispersion law for propagating collective
excitations in glasses may be explained in terms of a
diffuse umklapp scattering —the main peak in the
static structure factors acts as a "smeared-out
reciprocal-lattice point. "

(c) The longitudinal long-wavelength phonons
have comparable energies in the glass and in the po-

lycrystal, whereas the transverse modes appear to be
considerably softened. Via the diffuse-umklapp-
scattering mechanism, ' the soft long-wavelength
transverse phonons are coupled to short-wavelength
collective excitations with k —Q~.

(d) The reasons for the softening of transverse
propagating modes is not immediately clear from
the recursion calculation —which, of course, has
much of the character of a computer experiment. In
this connection, the study of the elastic and plastic
properties of metallic glasses via a homogeneous-
deformation computer experiment ' ' are more
instructive. They suggest that the absence of crys-
talline symmetry allows for a more effective relaxa-
tion of shear strains by internal displacement which
are forbidden in the polycrystal. A detailed study of
this question is planned to be presented elsewhere. '
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