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Finite-temperature properties of the planar ferromagnetic xxz chain
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We present analytic weak-coupling and numerical finite-chain results for the specific
heat, the longitudinal zero-field susceptibility, and the longitudinal dynamic form factor of
the planar ferromagnetic xxz chain at finite temperatures. It is shown that the "bound
state" probed by the dynamic form factor S (q, co) within the Hartree-Fock approximation
has to be interpreted as the first moment of S of the states lying above the continuum ap-
pearing in the isotropic xy model.

I. INTRODUCTION

One-dimensional interacting systems have attract-
ed the interest of many researchers because of their
relative simplicity, allowing in some cases even an
exact treatment of certain properties. A prominent
example is the anisotropic nearest-neighbor Heisen-
berg chain of spin —, (xyz chain), which was proven

to be an exactly integrable system. Starting with
Bethe' and culminating in the works of Baxter and
Johnson et al. , the whole low-lying energy spec-
trum of the xyz chain has been obtained in terms of
explicit formulas.

Based on these ideas and a pioneering paper of
Yang and Yang, Takahaski and Suzuki were then
able to obtain some thermodynamic properties of
the xyz chain exactly. These examples and their im-
plications towards the understanding of the physics
of many-particle systems make the xyz chain a can-
didate worth studying in its own right. But the re-
cent discoveries of a number of quasi-one-
dimensional magnetic compounds, believed to be
described by the spin- —, xyz-spin chain, have further
added to the efforts of understanding this model.
Exact results for the quantities needed to interpret
the experiments performed with these materials,
such as dynamic form factors (DFF), so far are
available only for a few special cases of the xyz
chain. Therefore one has to resort to approximate
methods to treat the general case.

In this paper we employ two such methods in an
attempt to understand S (q, c0) (the DFF associated
with out-of-plane spin fluctuations) and some static
properties of the planar ferromagnetic xxz chain at
finite temperatures. Firstly, after mapping the xxz
chain onto an assembly of interacting fermions, we
use the Hartree-Fock (HF) approximation first in-
troduced by Bulaevski to obtain analytic results ex-
pected to be valid for small uniaxial anisotropy.
Secondly, we present results obtained by a numerical

diagonalization of the Hamiltonian describing the
xxz chain, which in principle allows us to calculate
all the relevant properties of the system. However,
the exponential growth of computing time with sys-
tem size limited us to 12 spins at the most.

In Sec. II we introduce the model and describe the
approximation used to obtain the analytic results.
The internal energy, the specific heat, and the zero-
field longitudinal susceptibility are then obtained in
Sec. III; they are found to be in good agreement
with known exact and, in the case of the internal en-

ergy, our finite-chain results. Section IV is devoted
to the calculation of S (q, to), which is found to
probe a temperature-renormalized continuum and a
"bound state" whose energy dispersion is obtained
analytically at low temperatures. This dispersion
agrees very well with numerical finite-chain results,
provided that we interpret it as the first energy mo-
ment of S (q, co) of all states whose energy lies
above the continuum. The present work is a gen-
eralization of the results obtained by Schneider
et al. and Beck and Miiller of the T =0 dynamics
of the planar xxz chain to finite temperatures.

II. MODEL AND APPROXIMATION

Our model describes a one-dimensional array of
equally spaced spin- —, particles interacting only with
nearest neighbors through their spin components.
The magnitude of this exchange interaction is denot-
ed by J, and we shall introduce an exchange aniso-
tropy 5 in the z direction of the spins. 5 is assumed
to be small but positive, thus making the model
weakly ferromagnetic. The Hamiltonian can then be
written as

N

4 = —Jg(St"St"+,+SfSf+i+b,St'St'+, —hSt') .
I=1

%e also assume periodic boundary conditions, i.e.,
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SN+1 S1 (2.2)

This model can be mapped onto an assembly of
weakly interacting fermions, ' which has the follow-
ing Hamiltonian in momentum space:

5= —l by Bulaevski and has since been used by
other authors' ' to calculate static and dynamic
properties of the isotropic Heisenberg antiferromag-
net. The structure factor S„s(~)associated with the
observables 3 and B is then given by

4 =C+Qcop&Qp+QVqpqp q ~

k

where the density pq is given by

pq =QQg+qQg =S ( I),z

k

(2.3)

(2.4)

2
Sgs(co) = ~ Imps(co) .

1 —e-~

III. STATIC QUANTITIES

(2.9)

and the kinetic energy cok and the interaction poten-
tial Vq are

The relevant Green's function is obtained by set-
ting A =ak and B=ak. We then get within the HF
approximation

cot, =J(h+ b —cosk),

Vq
———Jh cosp .

(2.5)
1 —2nt

2' co —co~ —X*(k)
(3.1)

It should be noted that only the z component of the
spin operator has a simple form in the correspond-
ing fermion picture since it just becomes the density
operator pq.

For 6=0, the interaction Vq vanishes, and this
case has been considered by Katsura et al. " and
Niemeyer' using well-known methods for calculat-
ing thermodynamic properties of noninteracting fer-
mions. This so-called xy model provides a good
starting point for a perturbation calculation in the
weakly interacting case

~

b
~

p&1, which in Refs. 8
and 9 was exploited to study the excitation spectrum
and the r=0 dynamics of (2.1). This was done by
using retarded Green's functions defined by

where nt, = (anat, ) is the occupation number distri-
bution and

X*(k)= gn —[1—cos(k —p)]
2JA

(3.2)

is the proper self-energy.
With regard to (2.9), we also have

1nk=
k+1

(3.3)

where Qt, ——co~+X*(k). Thus the self-energy both
determines and is determined by nk, which is a gen-
eral feature of the HF approximation for the one-
particle Green's function. By setting the magnetic
field h =0, a further condition on the distribution
function nk is given by

~1 k (3 4)

&& ([A(t),B(t')])(q), (2.7)

where A and B denote any two observables expressed
in fermion operators and the angular brackets
denote the canonical average. 6&z then obeys the
following equation of motion:

In order to decouple (2.8), one introduces the HF ap-
proximation, which was first applied to (2.1) for

which must be satisfied at any finite temperature.
Equation (3.4), together with (2.5) and (3.2), implies

Qt, ——JA(P, b, )cosk (3.5)

hence the single fermion energy suffers a fre-
quency-independent renormalization due to the in-
teraction in our fermion Hamiltonian (2.3), but the
functional dependence on the wave vector remains
the same as in the xy model.

By inserting (3.5) into (3.2),

2m' —1p (p, h) =1——f cosy[1+exp( —JApcosy)] dy .
0

(3.6)

This can easily be solved for high and low temperatures with the results (T=T/J)
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3(1—2b, /m. ) (3.7)

4T (3.8)

These results have already been derived in Ref. 7 for
the special case 5= —1.

We can now easily calculate the internal energy in
the HF approximation,

nT, T 1
3(1 2b/rr) —' (3.12)

T)0.25, the data for N=12 and N=11 came
within about 1% of the extrapolated value. The
temperature dependence of the internal energy is
thus reasonably described by a T behavior with
small corrections of higher order in T at low tem-
peratures. We can thus conclude that the specific
heat at low temperatures is given by

which yields

(3.9) +O(h, ) T.2A

3 3
(3.13}

UHF =
1 HATT+ p T((1

6(1—2b, /~) '

T))1
8T

(3.10)

(3.11)

Note that U no longer depends on 6 in the high-
temperature limit. Figure 1 shows a comparison of
(3.10) to data obtained from a numerical diagonali-
zation of finite rings of atoms for 6=0.2. Data
were obtained for various temperatures and for sys-
tem sizes N between 5 and 12. The extrapolation to
the thermodynamic limit was then carried out by
means of a method due originally to Van den Broeck
and Schwartz" (VBS method). The data for even

and odd N were extrapolated separately, and we
found agreement of the two final values of about
+0.1% for T)0.15. We also noted that for

This result agrees to first order in 5 with the exact
low-temperature specific heat,

2cos '( —b, ) T
3( 1 g2)1/2

(3.14)

obtained by Takahaski.
By applying a field h&0, Eq. (3.4) changes to

1m= gnk —
2

k

(3.15)

where I is the magnetization of the system. The re-
normalized single-particle energy is then given by

Qk ——J(26m —A cosk)+h . (3.16)

From Eqs. (3.3), (3.15), and (3.16},we can calculate
the zero-field magnetic susceptibility in the z direc-
tion,

am 1 Jo
Bh „2J1 —AJ

(3.17)

-0.25 2PJ sr e PP cosk

Jo —— dk
p (1+ePpcosk)2

which yields

(3.18)

-0.5
I I I I I I II I I I

0 0.02 0.04 0.06 0.08 0.1
(T/3)

FIG. 1. Internal energy U vs (T/J) . Solid line denotes

VBS extrapolated curve. (Ref. 15). Bashed line denotes
theoretical values from (3.10). Vertical dashed lines at
(T/J) =0.015 and 0.057 include range where theory
agrees well with numerical data. The symbols are results

from the finite-chain calculations (o, N = 5; $, N =6;
N=7; 4, N=8; +, N=9; 0, N=10; x N=11' 5
N =12).

2

1+ 2 T, T((1
~—4~ 6(1 26/rr)—

1 T))1,
4T

(3.19)
(3.20)

JX,= a(a —p)sing

obtained by Yang and Yang. '

(3.21)

at T=O, this result agrees to O(b, ) with the exact
zero-field susceptibility
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IV. ZERO-FIELD LONGITUDINAL DFF
S (q, ~i

The longitudinal DFF is defined by

S (q, co)=—ge "i (A, iS'(q) iA, ') )'
Z

A, A

obtain S (q, co) by setting A =p(q) and 8=A in the
the definition of the Green's function (2.7), where
the density is defined in terms of the fermion opera-
tors in (2.4). Besides some minor modifications, the
calculation proceeds as in the T=0 case, which is
well documented in Ref. 14, and we shall only state
the final result,

Z=ge
X~(co—cok+cok ) ~ (4.1)

(4.2)

ro(q, ~}6 (q, co)= 2' 1+bf (q, co)I p(q, co)
' (4.4)

S'(q) = ge'q'Sf,
N

(4.3)

and A, is the eigenstate to the energy ~~ of the Ham-
iltonian (2.1). This quantity measures the out-of-
phase spin fluctuations in the z direction. We can

where I 0 is the noninteracting density Green's func-
tion with renormalized single-particle energies and

f (q, co) is an effective interaction obtained by sum-
ming over all exchange ladders and subsequently do-
ing a random-phase approximation. Owing to the
fact that Vq -cosq is separable, we can obtain an an-
alytic expression for f{q,co),

f (q, co) = co2 2J'A (1—+8)cos q(1 —cosq)
JA ( 1+8)(1—cosq)

2' m'/28= I= — (nk+q/2 nk q/2—)sink dk .
2A sin(q/2)

'

Defining I p
——I p+ i I"p', we obtain

~n dk
0(q ~)=—

(nk+q/2 nk q/2)—co+2JA sin(q/2)sink
'

0, co & 2JA sin(q/2)

I 0(q, co) = ' ko+q/2 nko q/2—
kp =arcsln

I [2JA sin(q/2)] —co I
'/ 2JA sin(q/2)

(4 &)

(4.6)

(4.7)

{4.8)

At finite temperatures, the integrals in (4.6) and (4.7)
can no longer be evaluated analytically because of
the Fermi distribution nk. We have thus done them
numerically, taking special care of the removable
singularity occurring in the integrand of (4.7) at
k =ko. Invoking (2.9), (4.4), and (4.8), we see that
the resonance structure of S (q, co) is given by the
following:

(i) A continuum bounded by

—2JA sin(q/2) &co &2JA sin(q/2) =core(q, T),

thermally excited states at finite temperatures.
(ii) From (4.7) it can easily be seen that

lim I i)(q, co) = —oo,
Nrc+

(4.10)

which, together with (4.5), implies for b &0 that
there must be a zero of the denominator in (4.4) for
an energy close to, but above, the continuum men-
tioned in (i). This implies that there must be a
bound-state resonance at co~ (q, T) & core(q, T), which
can be obtained by solving the equation

(4.9) 1+Af (q, co)I 0(q, co) =0 (4.11)

so that, contrary to the T =0 case, the continuum
now extends over all positive energies below conc,
negative energies also being included because of the

I

for co.

We solved (4.11) analytically at low temperatures
and obtained

cos(q, T)=2J sin(q/2) D[1+2b, sin(q/2)]+ [[1+25 sin (q/2)] —8D[1+cos (q/2)]b, I T, (4.12)
3D

D= 1—2A

77
(4.13)
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The corresponding weight of the bound state is
given by

S (q, cog)

1.94
I I I I

X

~ .
( )

2hz. 1+cos (q/2) -2
D sin q/2)

(4.14)

I—

—'l.90—
3

4

these results being valid for q not too small; see the
Appendix for details of this calculation.

Figure 2 shows plots of S (q, to) at various tem-
peratures and 5=0.2 at q =~/2. The question that
now arises is, naturally, what is the significance of
the bound state obtained in the HF approximation
to S (q, ~) at finite temperatures'? To answer this
question, we have looked at numerical finite-chain
results of S (q, tu), obtained direct from (4.1) after
diagonalizing the Hamiltonian (2.1) in the
(2s+I) -dimensional Hilbert space belonging to a
system of N spins of magnitude s. Details of this
procedure can be found in Refs. 17 and 18.

Obviously, because of the finite size of the system
under consideration, there are only discrete lying
contributions to S (q, co) in (q, tu) space, situated on
the lines q =2~1/N (0&1&N 1). If we—now de-
fine the finite-size bound-state frequency co&(q, T) to
be

f ( T~coS (q, co)dc@

Cup(q~ T)= aof S (q, cu)de
Tc(&' T)

(4.15)

we obtain good agreement with the HF value (4.12).
This is shown in Figs. 3 and 4, where co&(q, T) [Eq.
(4.12)] is plotted against T, starting with the exact
known value at T=O, together with cos(q, T) [Eq.
(4.15)] for N=10, 12 for various values of b„and
q=~. Figures 5 and 6 show the same plot of

1.86
0 0.02

I I I
I'

, I I I I

0.04 0.06 0.08 0.'I

(T/3)

FIG. 3. Bound-state energies co~(m, T) vs (T/J) as ob-
tained from Eq. (4.12), (straight line), and from finite-
chain results by the method explained in the text
(x,N=10;4,%=12) for 6=0.1. 0, exact T=O value.
Vertical dashed lines see Fig. 1.

q=@/2 for N=12. Clearly, for reduced tempera-
tures between 0.12 and 0.25, the curves co&(q, T) are
almost straight lines, and their slope, corresponding
to the magnitude of the T shift of the bound state,
agrees very well with (4.12). The deviations from a
straight line for temperatures less than 0.12 have to
be attributed to a finite-size effect, because they de-
pend very sensitively on X, but not on the anisotro-

py 6, as can be seen from Figs. 3 and 4. We can
thus conclude that in the low-temperature limit, the
HF approximation contracts nearly all the contribu-
tions to S~ which lie above the continuum (4.9) into
a bound state whose position is just the first energy
moment of S (q, co) with respect to the states lying
above core(q, T). The contributions from higher-
lying excitations, not obtained within the HF theory,
seem to cause only small corrections within the tem-
perature range considered.

3 T/3
~ 0.5—

I I I

T/3 ="jy
I I I

0 I

—2 0 2 0 2

FIG. 2. S (m/4, m)J according to the HF calculation at
temperatures indicated. The broad resonance is due to the
continuum [Eq. (4.9)], while the sharp line denotes the
bound state [Eqs. (4.12) and (4.14)]. The histograms were
obtained from finite-chain (X =12) calculations by sum-

ming over all contributions within energy intervals
he@/J =0.3.

'l.85 ~'
&t

I I

0 0.02

FIG. 4. Same

I
','I I I

0.04 0.06 0.08
(T/3)

as in Fig. 3, for 6=0.2.

I

0.1
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1.55
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3

0.02
q 0.04

(T/3)
0.06

The comparison of the spectral weight of S (q, ~)
at the bound-state frequency cps(q, T), given by
(4.10) and the corresponding numerical quantity

S~(co~(q, T))= S (q, co)des, (4.16)
~rc

shows that, although there is a T dependence
within the temperature range 0. 12& T &0.25, there
is no longer a quantitative agreement of Eqs. (4.6)
and (4.14). Unfortunately, we were not able to use
the VBS method to extrapolate (4.15) because
reasonable agreement of theory and numerical data
only sets in for N & 8. Moreover, we find a different
scaling behavior for odd and even N/2, which is not
surprising in view of the fact that we are considering
a two-particle excitation.

V. CONCLUSIONS

In this work we have analyzed finite-temperature
static and dynamic properties of the planar fer-

FIG. 5. Bound-state energies coq(~/2, T) vs (T/J) as
obtained from Eq. (4.12) (straight line), and from finite-
chain results by the method explained in the text
(A, N =12) for 6=0.1.

romagnetic Heisenberg chain with the use of the fer-
mion representation. The fermion interaction was
treated with the HF approximation, and low- and
high-temperature expansions have been obtained
analytically. We have found the following.

(i) The internal energy U(T) agrees well with nu-
merical finite-chain results, and the specific heat Cz
and the longitudinal zero-field susceptibility are ob-
tained exactly to leading order in A.

(ii) The longitudinal DFF probes a continuum and
a bound state, the position of which is in good
agreement with the finite-chain results at low-
temperatures, provided that we interpret the finite-
chain bound-state position as the expectation value
of energy co with respect to S (q, co) for
coE[corc, oo]. We can thus conclude that the HF
approximation gives an accurate description of the
first moment of the OFF with respect to the higher
excited states above the continuum.

(iii) Besides the specific heat, all these quantities
show a T dependence at low temperatures, which is
a consequence of the fermion description of the sys-
tem. The same low-temperature behavior has been
obtained in the planar case by using Bethe-ansatz
thermodynamics. '

(iv) Recently, some papers' ' have been pub-
lished dealing with the finite-temperature excitations
of the xyz chain. It is not evident to us how to relate
the exact results obtained in these works to the ap-
proach we have used here. Our information about
the "finite-temperature excitation spectrum" has
been obtained by approximating a dynamic form
factor, which is an observable quantity. Since the
energy spectrum of a Hamiltonian does not depend
on temperature, it is not clear to us how one has to
interpret the excitations obtained in Refs. 19 and 20.
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APPENDIX

We want to approximate

n/2
l o(q, co) =—J f~(x)g~' (x)dx,

1 1

CO —Q) z.g SIX CO +CO z.cS111X

(A 1)

(A2)

(A3)

0

FIG. 6. Same as in Fig. 5, for b, =0.2.

I I I I I I I I I I

0.02 0.04 0.06 0.08 0.'I

(T/0)
f~(x)=

—1

exp[ JA P cos(x +q /2) ]+ 1
(A4)

At low temperatures and q not too small, we can
write
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—sin(q /2)r,'(q, co, T) =f f(t)g q (t)dt,
cos(q/2)

(AS)

Translating the integration by q/2 and substituting
t =cosx, we obtain

'tr~Tcsin(q/2) [co +coT, cos (q/2)]

[co —coTccos (q/2)]
where

e JAI3t+ 1
f(t)= (A6)

XT'+0(T') . (A7)

which changes rapidly only around t =0.
By applying now the we11-known Sommerfield ex-

pansion to second order, (Al) becomes

Together with (4.5), the solution cos(q, T) to Eq.
(4.11) in leading order of co& —coTc then leads to
(4.12).
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