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Subharmonic energy-gap structure in superconducting constrictions
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A Boltzmann-equation approach for the calculation of the I-V characteristics of super-

conducting constrictions is presented. This technique allows for the inclusion of normal

scattering as well as Andreev reflection processes in the constriction. The computed I-V
characteristics exhibit subharmonic gap structure which varies strongly with scattering

strength and temperature. For even small scattering strengths, the structure is found to per-

sist to T=0, and its temperature dependence agrees qualitatively with experimental observa-

tions. In the limit of zero scattering, the technique is shown to be equivalent to the trajecto-

ry technique of Klapwijk, Blonder, and Tinkham.

I. INTRODUCTION

While high-barrier tunneling devices have been
well understood for a long time, ' the understanding
of continuous metallic weak links has evolved more
slowly, due in part to the variety of experimental I
V characteristics which can be observed for the same
device geometry. Two properties of the I-V charac-
teristics which long lacked a satisfactory explanation
are the subharmonic gap structure (SGS) and the ex-
cess current. These are usually observed in metallic
weak links and very-low-barrier tunnel junctions,
but not in high-barrier tunnel junctions. Here, the
SGS refers to the series of peaks in the differential
resistance dV/dI observed at submultiples of the
gap voltage, (2b, /e)/n, where n =1,2, 3, . . . . The
excess current, on the other hand, refers to the ex-
perimental observation that at voltages well aboue
the gap, the current varies linearly with voltage but
extrapolates to a positive (rather than zero) value at
V=0. These phenomena have been studied experi-
mentally by many workers in point contacts, mi-
crobridges, and shorted tunnel junctions. ' Ar-
temenko, Volkov, and Zaitsev" have shown that the
excess current can be explained in terms of Andreev
reflection. Using the Bogoliubov equations,
Klapwijk, Blonder, and Tinkham' have recently
shown that the subharmonic gap structure can be
explained by.the same mechanism. In this paper, we
present a more complete version of this earlier work.

Earlier explanations for the SGS had been pro-
posed in terms of multiparticle tunneling' and self-

detection' of the Josephson radiation. Both of
these mechanisms present difficulties. Multiparticle
tunneling requires an n-particle tunneling process
which occurs with a probability proportional to

~

T
~

" where T is the tunneling matrix element.
Given typical values of

~

T ~, it is hard to reconcile
observations of structure up to n =12 with the
theoretical probability of the tunneling process; uery

low barriers would be required. The self-detection
mechanism requires a separate explanation for the
even and odd series in n, , while experimental obser-
vations do not show significant differences in either
the strength or the shape of the two series.

In their recent publication, Klapwijk, Blonder,
and Tinkham (KBT) proposed' that the SGS can be
explained in terms of multiple Andreev reflections'
at the superconducting-normal interfaces of an SNS
constriction, the thin-N region modeling the dissipa-
tive neck region across which the voltage is
developed. What makes this model particularly ap-
pealing is that it provides a single explanation for
both the even and odd series of the SGS, and, in
junctions with dissimilar superconductors, predicts
(for b,2&2b~) the existence of gap structure at
2b, &/2n, b,z, and (b,2+ 6,~), as observed experimental-
ly. Furthermore, the application of similar concepts
to the simpler SN constriction accounts rather well
for the observed I Vcharacteristics -of super-
conducting-normal point contacts' ' provided that
nonzero probability for normal scattering at the in-
terface is assumed. However, as a result of using the
idealized zero-scattering limit, the KBT model for
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the SNS contact yielded subgap structure which
disappears as the temperature is reduced to T =0.
As pointed out by KBT, it was expected that this
deficiency would be cured by inclusion of a nonzero
interfacial scattering probability, leading to a predic-
tion of subharmonic gap structure at al/ tempera-
tures. Unfortunately, the repeated branching within
the trajectory technique of KBT makes it awkward
to include normal scattering processes in that com-
putational technique, so this expectation was not ex-
plicitly confirmed by KBT.

In this paper, a Boltzmann equation approach
mentioned by KBT is presented which improves
their earlier trajectory technique by making calcula-
tions explicitly self-consistent and allowing for the
inclusion of scattering in the constriction in a com-
putationally simpler manner. As noted by KBT, in
the absence of scattering, this technique gives results
identical to those that they obtained by the trajecto-
ry method. As shown in Sec. III, the effect of nor-
mal scattering is to increase the strength of the
subharmonic gap structure and to preserve it even at
the lowest temperatures. This leads to the curious
conclusion that while the subharmonic gap structure
is a consequence of Andreev reflection processes, it is
the normal reflection processes which magnify the
structure and allow for its observation at low tem-

peratures. In addition to permitting inclusion of
scattering effects, this technique also allows the
direct calculation of the distribution function in the
constriction.

Below, we begin in Sec. II by describing the
Boltzmann-equation approach for an SNS junction
with scattering at both interfaces and its relationship
to the KBT approach. This is followed in Sec. III
with the results of solving the equations for the
nonequilibrium distribution functions and the I-V
characteristics as a function of temperature and bar-
rier strength. In Sec. IV we discuss our results and
their applications, and finally, in Sec. V, we present
our conclusions.

II. THE BOI.TZMANN-EQUATION APPROACH

We assume the model of Fig. 1 in which a thin,
fully normal metal extending from x =0 to L
separates two superconducting films of the same
material. At each SN interface we place a
5-function potential of strength V(x) =H5(x),
which simulates elastic scattering processes in the
constriction, as well as any discontinuity in material
parameters such as vF (see Ref. 17). The three-
dimensional contact is idealized as an insulating par-
tition in which a small orifice of radius a communi-
cates between the two superconducting banks. If the
orifice size is assumed to be smaller than the coher-

Hg(x) Ha(x)
h

x=Q x=L

FIG. 1. One-dimensional SNS model for the supercon-
ducting constriction with 5-function potentials at the SN
interfaces at x =0 and I., and V =0.

ence length, the gap rises on a scale comparable to a,
and the potential drop will also occur over the same
length scale. The mean free path l is also assumed
to be larger than a. Within this model, the quasi-
particles will gain energy on the scale of a, but will
be diluted in the large three-dimensional banks, al-
lowing us to describe the quasiparticles incident on
the interfaces as thermally distributed quasiparticles
with their distribution given by Fermi functions.
The total current will depend on a weighted average
of trajectories from all directions incident on the ori-
fice. For simplicity, we have ignored this latter
complication and have solved the Boltzmann equa-
tion within the one-dimensional model of Fig. 1.

All elastic scattering events are assumed to occur
at the SN interfaces, and no scattering events are as-
sumed to occur in the normal region. This assump-
tion will make the spatial dependence of the distri-
bution function trivial, reflecting only the accelera-
tion due to the applied voltage V. While the pres-
ence of the two 5 functions may cause much of the
potential drop to occur at the interfaces, we note
that the energy gain upon one traversal between the
two superconducting banks is eV, independent of the
spatial distribution of the potential.

We work in the context of the generalized semi-
conductor model of Blonder et al. ,

' and sum all
electron currents in the normal metal where elec-
trons and holes are well defined. (In the banks, the
quasiparticles are linear combinations of electrons
and holes. ) We separate the electrons into two sub-

populations, based on direction of motion, described
by two different nonequilibrium distribution func-
tions f (E,x) and f (E,x), neither of which is as-
sumed to be approximated by the equilibrium Fermi
function within the normal region. Since all ener-
gies are measured with respect to the local chemical
potential, electrons with energy E at x =0 have en-

ergy E+eV when they arrive at the other supercon-
ductor at x =L. Similarly, electrons starting with
energy E at x =L will arrive at x =0 with energy
E —eV. Thus we can write
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A(E)+B(E)+T(E)=1 (3)
I

f (E,L)=f (E —eV, O)

and describe the nonequilibrium distribution func-
tions at both boundaries of the normal region by the
pair of distribution functions f (E,O) together with
Eq. (1). Next we need to relate f (E) and f (E) to
the distribution functions in the superconducting re-
gions. This can be accomplished by boundary con-
ditions at the SN interfaces:

f (E,O) =A (E)[1 f ( ——E,O)]

+B(E)f (E,O)+T(E)fp(E), (2a)

f (E,L)=A (E)[l f ( —E,L)]—

+B(E)f (E,L)+T(E)fo(E) . (2b)

The coefficients A (E), B(E), and T(E) describe An-
dreev reflection, normal reflection, and transmission
as described in Ref. 16. Here we take T(E) to be
the total transmission coefficient with and without
branch crossing; thus in the notation of Ref. 16,
T(E)=C(E)+D(E). Since the incoming popula-
tion is taken to be in equilibrium because of coming
from massive three-dimensional banks to an orifice
small compared with the mean free path, we can
simply use the Fermi function fo(E) in the terms
describing the input of particles by transmission.
The Andreev term is based on the fact that
1 f ( E) is—the p—robability that an incident hole
with energy Ewill A—ndreev reflect and emerge as
an electron with energy E. Since the conservation of
probability requires that

only two of the coefficients in Eq. (3) can be varied
independently. The coefficients A(E}, B(E), and
T(E) depend on the strength of the normalized bar-
rier Z =0/RUz, and thus the Boltzmann equation
approach will allow us to calculate explicitly the
more realistic case of finite scattering in the contact.
It is important to note that the effect of the density
of states in the superconductor is totally contained
within the coefficients A (E), B(E), and T(E), where
E is measured relative to the electrochemical poten-
tial on the superconducting side of the interface.

We can now use Eq. (1}to rewrite Eq. (2b) by re-
lating the distribution function at x =L to that at
x =0, leaving us with an equation at x =0:

f (E —e V, O) =A (E)[1 f ( —E —e V—,O)]

+B(E)f (E «,0)+—T(E)fo(E)

Since the current will be the same at all positions in
our one-dimensional model, it can be evaluated at
x =0. Thus we are left with only the problem of
evaluating f (E) at x =0, which allows us to drop
the spatial index. If we then change variables by
E—+E+eV, Eq. (4) is reduced to

f (E)=A (E+eV)[1 f ( E —2eV—)]—

+B(E+eV)f (E)+T(E+eV)fo(E+eV)

(5)

This equation can now be used to eliminate f from
Eq. (2a) leaving a single equation for the distribution
function f

f (E)=A(E)(1—IA( E+eV)[l f—(E 2eV)—]+B( E—+eV)f ( —E)+T( E+—eV)fo( E—+eV)j)—
+B(E)tA (E+eV)[1 f ( E —2eV—)]+B(E+—eV)f (E)+T(E+eV)fo(E+eV) j+T(E)fo(E)

(6)

This equation relates the distribution function of the
subpopulation f (E) to those at (E 2e V), —
( E —2eV), and —E together with—the external
eauilibrium source terms fo(E) fp(E+eV}, and
fo( E+eV). The d—iscrete system of equations
given by Eq. (6) is infinite, but in practice it can be
reduced to a finite set of equations since one expectsf to approach 0 and 1 for E ~&h and E && —b, .
Even when this truncation is made, the system
remains rather large at small voltages, limiting the
range of voltages for which a practical numerical
solution can be achieved. Similarly the system
grows as T approaches T, . We have solved Eq. (6)
by writing it in matrix form and solving it with a

I

Gauss-Seidel algorithm, using the Fermi function as
an initial guess. Once f (E) is obtained, Eq. (5) is
used to obtain f (E).

As noted earlier, in our one-dimensional model we
may calculate the current at any position; thus we
only need to take the difference between f (E) andf (E) and integrate over E:

I=MJ
=2N(0)eu+W f ff (E) f (E)]dE—

where W is the effective cross-sectional area. In the
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case of both sides of the interface being normal,
A =0, 8=Z /(1+Z ), and T= 1/(1+Z ) and we
can use Eqs. (5)—(7) to calculate the normal state
resistance for the SESmodel

I=
2

—V/RN
2N(0)e pFM

(g)
1+2Z

Unlike the NS case, ' which reduces exactly to the
tunnel junction I-V curve in the high-barrier limit,
here the I-V characteristics given by Eqs. (5)—(7) do
not so reduce in that limit. The reason is that here
we have modelled the constriction as having tao
separate 5-function potentials, one at each end of the
normal region, which corresponds to a novel SIXIS
structure without elastic scattering in the normal re-
gion. For a realistic description of a dirty micro-
bridge or the transition to the tunnel junction limit,
a more general distribution of scattering potentials
would be required.

It is instructive at this point to consider the rela-
tionship of the Boltzmann-equation approach to the
earlier trajectory technique of KBT. In the absence

I

+A (E)A (E eV—)f (E 2—eV)

+T(E)fp(E) . (9)

Similarly, by using (5) to eliminate f from (2a),

f (E)=A (E+eV)T(E+2eV)fp(E+2eV)

+A (E+eV)A (E+2eV)f (E+2eV)

+T(E+eV)fp(E+eV) (10)

Equations (9) and (10) represent the Boltzmann
equation for the case of zero scattering and both dis-
tribution functions can be obtained iteratively since
the two equations are now decoupled. In fact, the
iteration corresponds to following the trajectory of
an incoming electron through the two reflections
needed for its reappearance as an electron. The gen-
eral solution to Eq. (9) has the form

of scattering, 8 (E)=0 and Eq. (6) can be written as

f (E)=A (E)T(E e—V)fp(E —eV)

f (E)=T(E)fp(E)+A (E)T(E eV)fp(E e—V)+A (E—)A (E eV)T(E —2eV)fp(—E —2eV)

+A (E)A (E —eV)A (E 2eV)T(E —3eV)fp(E —3eV)+—
Similarly, for f (E), Eq. (10) has the solution:

f (E)=T(E+eV)fp(E+eV)+A (E+eV)T(E+2eV)fp(E+2eV)

+A (E+eV)A (E+2eV)T(E+3eV)fp(E+ 3eV)+ (12)

We can now use Eq. (7) to calculate the current. Since we integrate over all energies and since A (E)~0 for
E »0 and E « —6, we can shift the origin of the energy in terms in (11) and (12) which contain Andreev re-
flection coefficients. In addition T(E)= 1 —A (E), and the current can be written as

I=2N(0)ev~& J dE[[f (Ep)(1 —Ap)(1+A &+A &A 2+ ' ' )]
—[fp(E —eV)(1 —A ] )( 1+Ap+ApA ] + '

) J (13)

where A„=A (E+neV) In this f.orm Eq. (13) is exactly the same equation found by KBT using their different
technique.

III. DISTRIBUTION FUNCTIONS
AND I- V CHARACTERISTICS

One of the advantages of the Boltzmann-equation
approach is that it allows for the direct calculation
of the distribution functions in the constriction and
thus gives some insight into their origin. Figure 2
shows the distribution functions for the two sub-
populations f (E) and f (E) for the case of no
scattering (Z =0), T/T, =0.95, and bias voltage
eV=E. For energies outside the gap region, both

distribution functions are smooth, while in the gap
region, f (E) and f (E) consist of a sawtooth pat-
tern with a periodicity of eV. It is this pattern
which gives rise to the subharmonic gap structure as
the bias voltage sweeps each discontinuity through
the gap edge.

To understand the origin and periodicity of the
structure in f (E) and f (E) it is useful to consid-
er a schematic diagram such as that shown in Fig. 3,
in addition to quantitative plots such as Fig. 2.
Consider electrons incident from the left within the
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—= 0.95T
Tc1—

Z=0 —=0T
Tc

Z=O)

fg(E,Z)

0

FIG. 2. Distribution functions f (E) and f (E) in

the absence of scattering for T/T, =0.95 and eV=b, .
The equilibrium Fermi function fe(E) is shown (dotted
line) for comparison.

FIG. 4. Comparison of the distribution functions at
T=0 for no scattering (Z =0, dashed lines) and finite
scattering (Z=0.55, solid lines) for eV=E. For Z=1
{not shown, to avoid confusion), f (E) and f (E) are
still nearer each other, but retain sharp structure.

band of energies between —6 and b, eV, wher—e-
we indicate occupation numbers horizontally by a
heavily shaded region. After one Andreev reflection
indicated by the dashed trajectories, the band of
electrons reappears as holes traveling to the left

f~ f~ f~ f~
~ ~ Note: eV =h,

~ ~

: C;:;.,

~ ~,';~ O~
0

I

L
b,

Holes —:::.'

Q-eV

I~j':;~ +a
-eV

.«e ~ ~~
,' I -6,—eV

Electrons

FIG. 3. Semiconductorlike picture showing the origin
of the structure in the distribution function and its period-
icity. The (schematic) distribution functions for electrons
going in specific directions are shown heavily shaded
while the complementary hole distributions are lightly
shaded. The dashed lines trace representative trajectories
through successive Andreev reflections. In making this
figure, we have neglected scattering and also Andreev re-
flection outside the gap. The diagram represents the case
eV =A-kT, i.e., T/T, -0.9.

(represented by the lightly shaded area), which in
turn Andreev reflect into electrons. The distribution
function of these electrons corresponds to the initial
distribution function shifted by 2eV, the energy ac-
quired by transversing the normal region twice. The
intervening bands of electrons, of width eV, are
filled by considering the electrons resulting from
Andreev reflection of holes incident from the right,
yielding the basic periodicity in e V. Note that in the
figure we have for simplicity taken the special case
e V =5, assumed Z =0, and ignored Andreev reflec-
tion probabilities outside the gaps. If in construct-
ing Fig. 3 we had not assumed a case for which
Z =0, then not all of the incoming elect'rons in the
appropriate energy band would be able to go
through the first interface, nor would the transmit-
ted fraction be completely reflected as holes at the
second interface. The subharmonic gap structure
originates from these bands iri the distribution func-
tions, as further reflections increase transfer to the
opposite side, and the condition V =26/ne corre-
sponds to maximum electron transfer with given
number of reflections.

Figure 4 shows the dramatic effect at T=O in-
cluding a finite scattering probability. For no
scattering (Z =0), both f (E) and f (E) are essen-
tially displaced Fermi (step) functions for T =0 ex-
cept for structure for E & b, in f (E) and
E & —(b, +e V) in f (E) related to the finite An-
dreev reflection probability above the gap. The ef-
fect of including a finite normal scattering probabil-
ity (in this case, Z =0.55) at T =0 is to change the
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FIG. 7. Differential resistance dV/dI vs eV/5 as a
function of temperature in presence of scattering: (a)
Z =O. S5 and (b) Z =1.

FIG. 5. Differential resistance dV/dI vs eV/5 at
T =0 as a function of barrier strength.

n=1

1 dv

RN dI

T/Tc

0.99

0.90

0,67

0.5

distribution functions to thermal-like functions for
T,ff eV/kz, but with sharp structure with periodi-
city eV, as was shown in Fig. 2 for an actual tem-
perature near T, . Thus inclusion of normal scatter-
ing sharpens the structure in f (E) and, as shown
below, in the I-V characteristics even at the lowest
temperatures. [We have found it difficult to com-
pute f (E) for Z & 1, as the structure in the distri-
bution functions becomes so sharp that the numeri-
cal inversion of the system of equations given by Eq.
(6) requires an increasingly larger number of itera-

tions for convergence as Z is increased. ]
Figure 5 shows the differential resistance dV/dI

vs eV for T=0 as the barrier strength is changed
from Z =0 to Z =1. The effect is quite dramatic,
not only in sharpening the peaks at the gap and its
subharmonics, but also in changing their overall
shape. As noted earlier, for low voltages the system
of equations given by Eq. (6) grows rapidly, making
calculations in this regime extremely time consum-
ing. Figures 6 and 7 show the differential resistance
versus eV as a function of temperature for three
values of the barrier strength Z =0, 0.55, and 1.0.
The particular value Z =0.55 was chosen since in
the SX constriction it was found to correspond
closely to the excess current calculation of Artemen-
ko, Volkov, and Zaitsev" for a dirty microconstric-
tion. The value Z=1 corresponds to the case in
which half of the incident electrons are scattered at
each interface. In contrast to the case with no
scattering (Z =0), the structure is present at all tem-
peratures. The shape changes significantly as the
temperature is lowered, with the changes being most
dramatic for the 2b, peak.

0.5—
0. 1

0.5— Z=O

0.5
0

I 1

2
eV/h(T)

FIG. 6. Differential resistance dV/dI vs eV/5 as a
function of temperature in absence of scattering (Z =0).

IV. APPLICATIONS AND DISCUSSION

While it was our original goal to provide a model
which would allow quantitative comparison with ex-
perimental results, such comparison is difficult
when dealing with real junctions. We believe that
our model contains the essential physical processes
leading to the subharmonic gap structure, namely,
Andreev and normal reflection processes. The main
approximation made has been the neglect of ac
Josephson effect oscillations. While this could be
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included by keeping track of phase dependent effects
in calculating the transmission and reflection coeffi-
cients, the additional complexity would make expli-
cit calculation of the I-V curves a formidable under-

taking.
Most detailed measurements of the subharmonic

gap structure have been made in superconducting
microbridges, which typically do not satisfy the
main assumptions of our model (a &l,a &g). As
shown by Octavio et al. , heating effects can signifi-
cantly affect not only the shape but also the position
of the subharmonic peaks, an effect which can be re-
duced significantly in high-resistance well-cooled
microbridges. Such heating effects and also the ef-
fects of charge imbalance in the banks discussed by
Peshkin and Buhrman' have not been included in
our model. Furthermore, the I-V characteristics of
most microbridges become hysteretic for low re-
duced temperatures, so that it is difficult to make
comparisons with the whole range of variations
predicted by our model.

Within the Boltzmann approach presented, it is
possible to relax our assumption of a step-edge
change in the gap. As pointed out by Blonder
et al. ,

' for example, if the gap rises slowly with dis-
tance, the Andreev reflection coefficient in the ab-
sence of normal scattering jumps from one below
the gap to essentially zero above the gap. This
discontinuous jump in Andreev reflection probabili-

ty would be expected to sharpen the structure in the
distribution functions and hence of the subharmonic

gap structure. We do not show the results of such

calculations, however, since for Z&0 they depend in
detail on the spatial dependence of the gap and on
the distribution of normal scattering centers.

While quantitative comparison is difficult, one
can however compare the qualitative features
predicted by our model with experimental results.
At low temperatures, nonhysteretic data for the
subharmonic gap structure are available only for
point contact structures. Our model predicts that,
depending on the amount of scattering, the 2h peak
can be larger or smaller than the n =2 peak, a
behavior found in Nb-Nb point contacts by Soeren-
sen et al. ' Furthermore, their data also exhibited
the sharp drop in d V/dI between b, /e and 2b, /e ex-
hibited by our calculations.

In addition, our model predicts differences in the
overall shape of the different peaks, which has also
been observed experimentally. The overall tem-
perature dependence near T, is also in qualitative
agreement with those experimental results which
show both the size and widths of the subharmonic
peaks as the temperature is reduced. [Note that the
voltage scale in Figs. 6 and 7 is normalized to b,(T),

which is temperature dependent; thus the widths of
the peaks change in actual voltage units. ]

As conceived, the model treats the superconduct-
ing constriction as an SNS device with all scattering
assumed to occur at the SN interfaces. While this
should be a reasonable approximation for metallic-
like weak links, where the scattering is relatively
weak, the model does not exhibit a proper crossover
to tunnel-like behavior at high barrier strengths as it
does for the single SN interface. Accordingly, we
have restricted our computations to relatively weak
scattering (Z ( 1).

V. CONCLUSIONS

In this paper, we have presented an improved ver-
sion of the KBT trajectory calculation' which first
demonstrated that multiple Andreev reflections
could provide a natural explanation for the subhar-
monic energy gap structure observed in the I-V
curves of metallic weak links. This new version
proceeds by solving the Boltzmann equation for the
electron populations in the quasinormal constriction,
taking account of normal as well as Andreev reflec-
tions at the interfaces with the superconducting
banks, in addition to electrons transmitted to and
from the banks. In the absence of normal scattering
(reflection) processes, our results exactly reproduce
the results of KBT, but in the presence of normal
scattering, new features appear. In particular, the
subharmonic gap structure is found to persist to
T =0, whereas it was found to fade out for T && T,
in the absence of scattering. In addition, there are
more subtle differences in the sharpness and shape
of the structure.

Although the range of types of SGS observed ex-

perimentally is almost endless, making a detailed
comparison of doubtful significance, there is a
reasonable degree of qualitative agreement between
our predictions and the data. Moreover, it should be
noted that our idealized model ignores not only the
Josephson effect, but also all nonequilibrium effects
in the banks, such as heating and charge imbalance,
which are undoubtedly important in many practical
geometries. Accordingly, we have not attempted
any detailed fits to published data, but new data,
taken under conditions chosen to minimize none-
quilibrium effects, could provide a valuable compar-
ison with our predictions.
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