
PHYSICAL REVIEW B VOLUME 27, NUMBER 11 1 JUNE 1983

Electronic structure, superconductivity, and magnetism in the C 15 compounds
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We have calculated the self-consistent paramagnetic electronic structure of cubic Laves-

phase ZrV2, ZrFe2, and ZrCo2, using the augmented-plane-wave method and the local-

density-theory form of exchange-correlation potential. Using the mean-field Stoner theory,

we have determined the spin susceptibilities and magnetic moments of these compounds.
We find that ZrV2 remains paramagnetic but with large Stoner enhancement, while the sys-

tem Zr(Fel „Co„)2 is ferromagnetic for 0&x &0.5, in agreement with experiment. Howev-

er, the Stoner theory yields an average magnetic moment which is generally much too small.

The electron-phonon interaction has been calculated and, using estimates of the phononic

properties from specific-heat measurements, we compare the theoretical estimates of the su-

perconducting transition temperature with experiment. For ZrVq, we have found that it is

crucial to account for the drop in density of states at the Fermi energy due to the structural

phase transition in this material (cubic to rhombohedral at T —100 K). Estimates of this

drop (-30%) have been obtained by analyzing the temperature-dependent spin susceptibili-

ty above and below T .

I. INTRODUCTION

There has been a great deal of experimental in-.

terest in the cubic Laves (C15) structure intermetal-
lic compounds due to the wide range of electrical,
magnetic, and alloying properties exhibited by many
of them. In this paper we present the results of a
theoretical investigation of the electronic structure
of the C15 compounds ZrVz, ZrCo2, and ZrFez us-

ing the self-consistent augmented-plane-wave
(APW) method. We use these results to study
magnetism and superconductivity in these materials

In 1968, Kai et al. ' found that ZrFe2 is a typical
ferromagnet, with a Curie temperature of 630 K and
a magnetization of 88 emu/g, thought to originate
totally from the Fe atoms, with Zr not possessing
any moment. This interpretation was consistent
with the fact that the separation of Fe atoms in
ZrFeq is nearly identical to that in the metallic state
of elemental Fe. On the other hand, ZrCo2 is a Pau-
li paramagnet, although the pseudobinary system
Zr(Fel „Co„)2 is found to become magnetic for
x &0.5 '

The C15 compound ZrV2 is a superconductor
with transition temperature T, -8 K. It has also
been found that this material undergoes a cubic-to-
rhombohedral structural phase transition at a tem-
perature T~ —100 K. Furthermore, it is known that
ZrV2 has anomalously temperature-dependent prop-

erties such as the magnetic susceptibility ' as well

as soft-mode behavior" ' reminiscent of some of
the high-T„high —density-of-states A 15 com-
pounds is, i6 The pseudobinary system

(Zr„Hf1 „)Vq shows an interesting correlation be-

tween T, and T~, viz. , the maximum T, corre-
sponds to the minimum T . ZrV2 is also a good
enough hydrogen-storage material to have generated
a great deal of technological interest. ' The
hydrogen-storage behavior of ZrCo2 on the other
hand is quite poor by comparison. '

The remainder of the paper is organized into six
more sections. The APW band-structure methodol-

ogy used in this work is discussed in Sec. II. In Sec.
III we discuss the paramagnetic energy bands and
densities of states of these materials, calling atten-
tion to various aspects of the bonding that can be
determined from the APW calculation. A Stoner
model is used to discuss the magnetic properties of
the Zr(Fe| „Co„)z pseudobinary system as well as
the temperature-dependent Pauli susceptibility of
ZrV2 in Sec. IV. In Sec. V we calculate the
electron-phonon interaction in these compounds
and, using approximate values for the phononic
properties, we estimate the electron-phonon mass-
enhancement factor A, as well as T, . In Sec. VI we

give a brief discussion of the electronic specific-heat
coefficient y and in Sec. VII we present our con-
clusions.
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TABLE I. Lattice constants a and MT sphere radii Rz
and R~ used in the band-structure calculations for the
ABz compounds. All values are in atomic units.

ZrVz

14.063
3.045
2.486

ZrFez

13.360
2.983
2.362

ZrCoz

13.147
2.846
2.324

II. BAND-STRUCTURE METHODOLOGY

The C15 (Oi, space group) structure Laves-phase
compounds we are considering are of the form AB2
with two formula units per fcc unit cell. By choos-
ing an origin midway between the two 2 atoms, one
obtains real structure factors so that the C15 struc-
ture may be included in standard APW computer
codes, suitably modified to take into account the
nonsymmorphic nature of the space group. Maxi-
mal nonoverlapping muffin-tin (MT) spheres may be
constructed by having the spheres bisect the
nearest-neighbor A-3 and B-B distances so that
Rz ——(W31'8)a and Rs =(v 2//8)a, where a is the cu-
bic lattice constant. In this way, 71% of the unit-
cell volume may be included in the MT's. Table I
gives the values of a, Rq, and Rz used in the present
calculations.

Our paramagnetic band-structure calculations fol-
low the symmetrized APW method as discussed by
Mattheiss, Wood, and Switendick, modified to in-
clude self-consistency and relativistic effects. The
latter includes the mass-velocity and Darwin correc-
tions following the method of Koelling and Har-
mon, and neglects the much smaller (in this case)
spin-orbit coupling. No corrections to the standard
APW MT approximation were included in these cal-
culations. Owing to the close packing in this struc-
ture these corrections are expected to be small. The
local-density form of the exchange-correlation po-
tential as given by Hedin and Lundqvist was used
in all of our calculations.

The soft-core approximation was used for all of
the core states not treated as bands. In this method
the core wave functions and resulting charge density
are calculated atomiclike in each self-consistent (SC)
cycle using the current crystal potential as input into
the relativistic Hartree-Fock-Slater atomic structure
code of Liberman, Cromer, and Waber (LCW). '
This code is fully relativistic and includes spin-orbit
coupling. The core configurations used were [Ar]
for V, Fe and Co, and [Kr] for Zr.

To begin the SC cycles, starting MT charge densi-
ties were generated by overlapping atomic spherical
charge densities from five neighboring shells of
atoms. These densities were obtained using the
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FIG. 1. Energy bands and DOS's for ZrVz.

LCW code with valence configurations 3d 4s,
3d 4s, 3d 4s, and 4d 5s for V, Fe, Co, and Zr,
respectively. From the MT charge densities the
starting Coulomb and exchange-correlation poten-
tials were formed using standard techniques.

In the SC procedure, APW eigenvalues and eigen-
functions are calculated for the valence conduction
states on a k-space mesh, states are filled up to the
Fermi level by occupying them with the appropriate
number of electrons, and an occupied charge density
is formed for the MT spheres and the interstitial re-
gion. As mentioned above, the core charge density
is recalculated in each cycle. To ensure stability we
mixed 20%%u& of the new APW charge density with
80%%uo of the charge density from the previous cycle
in forming the MT Coulomb and exchange-
correlation potentials for the next cycle. Conver-
gence was considered to have been achieved when
the eigenvalues from successive cycles were stable to
+3 mRy or better. For all three compounds con-
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FIG. 2. Energy bands and DOS's for ZrFeq. FIG. 3. Energy bands and DOS's for ZrCoq.

sidered here eight SC cycles were needed. A mesh
f '

k
'

t in the irreducible Brillouin zone
(IBZ) [32 k points in the full Brillouin zone ( ]
was used in the SC iterations. These were the points
I (000), b, (010), X(020), L (111), W(120), an
X(110) all in units of m/a.

After self-consistency was achieved, a finafinal AP%
run was done on a mesh of 32 k points in the IBZ
for determining the density of states (DOS). T is
mesh includes the k points on the "standard" 20-k-
point fcc mesh plus 12 additional points, four along
the 6 direction, four along the X direction, and two
along both the A and Z directions, respectively. T e
APW results for 32 k points were interpolated onto
a mesh of 89 k points using Boyer's symmetrized
Fourier method and tetrahedral integration
was used to determine the DOS's.

%e finally note that our symmetrized APW's
were constructed using

This yielded eigenvalues converged to 1 or 2 rnly.
The dimensions of the symmetrized APW matrices
were up to 154 for the twofold-symmetry points on
the 20-k-point mesh. The calculations were per-
formed on a Texas Instruments Advanced Scientific
Computer.

III. ENERGY BANDS AND DOS's

Figures 1—3 show the energy bands and DOS's,
both total n(E) and site- and angular-momentum-
decomposed n~"' '(E), of ZrVq, ZrFez, and ZrCoq.
Table II presents DOS values at Fz together wit
the SC c arges I in
Fermi velocities VF (( V )E )

~ . Jarlb——org and

Freeman ' have published linear muffin-tin orbital
(LMTO) band-structure calculations for ZrV~. ur
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results in Fig. 1 are very similar to theirs.
From Figs. 2 and 3 we note that the energy bands

and DOS's of ZrFe2 and ZrCo2 are very similar.
For the regions shown, the E( k ) values differ
by —10 mRy or less, and the overall DOS structures
are in good quantitative agreement for both materi-
als, although there are some differences in the fine
structure. Of course the Fermi energy EF is higher
in ZrCo2 due to the extra Co electron (four extra
electrons per unit cell), but the DOS's in the region
between the different EF values for the two materi-
als are also very similar. This behavior suggests that
the rigid-band model (RBM) is a reasonable approxi-
mation for the electronic structure of the
Zr(Fe& „Co„)2 system. Indeed we find that the
RBM is successful in quantitatively explaining the
magnetic moment variation in this pseudobinary
system (see Sec. IV).

For all three compounds there is a low-lying
bonding Zr—B s-like band beginning at 0.179, 0.128,
and 0.123 Ry for ZrV2, ZrFe2, and ZrCo2, respec-
tively. These bandwidths, as measured by the
I

&

—X& energy difference, are nearly the same for
all three compounds (-0.2 Ry). From Figs. 1—3 it
is seen that in the region -0.4—0.65 Ry the 8 atom
d states are dominant, with important contributions
from the Zr d states and others as well. The Fe and
Co d states appear to be confined to this energy
range, while the V d states are seen to have addition-
al significant contributions in the range of 0.7 Ry
and above. The hydridization between the V d
states and the V p and the Zr p and d states is
strongest in the region around 0.6 Ry, where the
Fermi level falls, while the corresponding states in
the Fe and Co compounds are more diffuse. In
these latter compounds the Zr d states show peaks
between 0.7 and 0.8 Ry.

The Fe and Co d states are also more spatially
confined than those of V. This can be seen by not-

in~ from Table II that the MT charges are

Q» =3.291, »' ——6.580, and Q»'=7. 533, and real-

izing that Q»' and Q»' exceed Q» by more than the
three (four) extra electrons in Fe(Co) compared to V.
This is in spite of the fact that the Fe and Co MT
radii are smaller than V due to the smaller lattice
constants of the former two. We also note that this
is not a "charge-transfer" effect, as the Zr SC MT
charges for all three compounds are numerically
similar when one accounts for the different MT ra-
dii. Further evidence for the localized nature of the
Fe and Co d electrons follows from noting that over
90% of the charge of the extra d electron in ZrCo2
compared to ZrFeq i.s contained in the MT sphere
(Q»

'—Q»
' ——0.95).

A further indication of the bonding in these com-
pounds follows from comparing the SC and starting
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MT charges and examining the changes

bQ"' '= g [Qi"' '(SC) —Qi"' '(starting)] .
l

We find that EQ '= —0.37, —0.50, and —0.52,
respectively, for ZrVi, ZrFei, and ZrCo2,' and
hQ =+0.01, b,Q"'=0.09, and b,Q '=0. 12. We
see that the 8 atom charges show small positive
changes while the Zr charges decrease considerably.
This indicates that the Zr wave functions spread
out, or are somewhat depopulated, in the Laves
compounds. It should be kept in mind that these in-
terpretations are dependent on the starting atomic
configurations used in our calculations.

The Fermi levels in ZrV2 and ZrFei fall in a peak
in the DOS and the n(EF) values are quite large.
Recalling that there are six atoms per unit cell, we
see from Table II that n(E+) =37.0 and 53.5
states/Ry atom for ZrV2 and ZrFe2, respectively.
Compare these with the value of 25 states/Ry atom
typical of the high-T, A 15 materials such as VsSi.
From the enormous value of n(Ep) for ZrFei we an-
ticipate a prediction of a magnetic instability for
this compound (see Sec. IV), in accord with experi-
mental observations. ' For ZrVi we do not find a
magnetic instability, but the large value of n(EF) for
the cubic structure, and the rapid variation of n(E}
near EF shown in Fig. 4, would seem to indicate
that the cubic-rhombohedral phase transition may
be strongly related to an electronically induced in-
stability reminiscent of the A 15 materials. ' In par-
ticular, we see from Fig. 4 that n(E) varies by
+15% from the value of n(EF) in a 3-mRy range
around EF. From Fig. 1 it is seen that this peaked
structure near Ez corresponds to extremely flat
bands near the Fermi energy along the X[110]direc-
tion close to the X point, with some additional flat-

band contributions near the 8' and I. points. We
note that the peaked n(E} structure near EF which
we obtain appears not to be very sensitive to the lim-
ited number of first-principles k points that we have
used, nor to the interpolation scheme. This con-
clusion results from comparing these n(E) results
with a similarly performed calculation using only 20
k points (instead of 32) as input into Boyer s inter-
polation scheme, and observing that there are only
relatively small quantitative changes of a few per-
cent in the DOS results.

IV. MAGNETIC PROPERTIES

1 5E„,(p, m)
K(r )=-

5m(r) m=0
(3)

y(r )= (4)

Although all of our energy-band calculations were
performed for a paramagnetic system, here we will
discuss the magnetic properties for the three com-
pounds based on the Stoner theory of magne-
tism. The procedures that we have used are
discussed fully by Vosko and Perdew, Gun-
narsson, and Janak.

In the Stoner theory, the exchange-enhanced spin
susceptibility at T=0 is given by

X,p psn(E——F) /[1 n(Ep)Ip—],
where p~ is the Bohr magnetron and IF is a general-
ized Stoner parameter which can be calculated from
the paramagnetic band structure by the following
equations

Iz Jdir——y (r)~E(r)~, (2)
unit cell

with

where

n(EF )= g 5(EF E, ) . — (5)

N
@

W O
05 OO
N

ZrV,

I

2.0 3.0—3.0 —2.0 —1.0 0.0 1.0
ENERGY (xnRy)

FIG. 4. Total DOS of ZrV2 (solid curve) and, for com-
parison, V3Si (dashed curve) from Ref. 16, near the Fermi
energy which is chosen as the zero of energy.

Here i denotes a combined wave vector, spin, and
band index, p( r ) is the charge density, m( r ) the
magnetic moment density, and E„, is the local-spin-
density exchange-correlation energy functional. It is
straightforward to combine the contributions to IF
from the individual MT's and from the interstitial
region.

The Stoner theory predicts a magnetic instability
when

IFn(EF) &1 .

Furthermore, following the discussion of Gun-
narsson, which assumes a rigid spin splitting of the
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TABLE III. Total DOS at EF, n(E~) (states/Ry unit cell for both spins), generalized Stoner parameter II, " (mRy atom),
total Stoner parameter I~ (mRy unit cell), Stoner factor S= [1 n(—EF)I~] ', and magnetic moment m (per unit cell), using

the exchange-correlation functional of Ref. 37. The numbers in parentheses under IF"" were calculated using the
exchange-correlation functional of Ref. 38 and are shown for comparison.

AB2

ZrFe2
ZrCo2
ZrV2

n(Ep)

321.2
79.0

222. 1

0.056
0.126
0.303

1.716
1.431
0.674

6.979
5.982
3.330

p total
Xp

(6.763)
(5.805)
(3.258)

2.242
0.473
0.740

—0.805
1 ~ 896
3.840

2.17
0
0

bands, the magnetic moment may be defined as the
solution of the equation

m = [E(N+ ) E(N —)]/IF,
where, for a total number N of electrons,

N+ ——(N+m )/2,

with N+ being the number of electrons of one spin
that are occupied in the ferromagnetic system, and
E(N+ ) are the energies corresponding to occupying
N+ electrons of one spin which are determined by
inverting the values of the energy-integrated n(E).
Taking the limit m~0 in Eq. (7) results in the
equality in Eq. (6). Our calculated values of IF,
n(E~)IF, and m, as well as the Stoner enhancement
factor

S= [ 1 n(E~)IF]—

are shown in Table III. The exchange-correlation
energy functional of von Barth and Hedin as
modified by Janak was used in these calculations.
With the use of the recently proposed functional of
Vosko, %ilk, and Nusair' we obtained results for IF
which differ by approximately 3%. A final general
comment is that the interstitial contribution to IF is
negligible, being 1% or less for all three compounds.

the Stoner theory underestimates m (0), and general-

ly m (x), by more than a factor of 3, although the
overall experimental trend is reproduced by the
Stoner theory.

One possible reason for the quantitative break-
down of the rigid-band-splitting Stoner theory for
transition-metal compounds is the mechanism of
"covalent magnetism" recently discussed by Willi-
ams et al. They argue that in transition-metal
compounds there may be spectral-weight shifts from
magnetization-induced changes in the interatomic
covalent bonding between transition-metal atoms
not accounted for in the Stoner theory. Recall that
in the Stoner theory the paramagnetic energy bands
are assumed to be uniformly split by the magnetic in
teraction in a rigid-band sense, and rearrangements
in the shapes of the spin-up or -down n (E) are not
included. Williams et al. give several examples of
compounds (e.g., VPd3) where the Stoner theory ac-
counts for only a small fraction of the total magnet-
ic moment (when compared with results from a
spin-polarized energy-band calculation). There is

(Fe, „co ),

A. ZrFe2 and ZrCo2

The magnetic properties of the pseudobinary sys-
tem Zr(Fe~ „Co„)2 have been studied by Muraoka
et a/. in most of the composition range 0&x &1.
Here we use the Stoner theory outlined above to
determine the magnetic moment m (x) in this sys-
tem. For x=0.0 or 1.0 the procedure is well de-
fined; in the intermediate ranges we use the RBM to
estimate n(E,x ), IF(x), E(N+, x ), and p(r, x ) needed
in the Stoner theory. We used the form

p(r, x) =(l —x)pz F (r)+xpz co (r)

0.0 0.2
I I

I
(

I

0.4 0.6 0.8 1.0

and the values of n(E,x) were determined from the
DOS results for ZrFe2.

Our results for m (x) are compared with the ex-
periments of Muraoka et al. in Fig. 5. We see that

FIG. 5. Experimental (squares) and theoretical (circles)
average magnetic moment from Stoner theory in the sys-
tem Zr(Fe~ „Co„)2. Solid line connecting the experimen-
tal points and the dashed line connecting the theoretical
points are guides for the eye.
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also the possibility of the existence of local moments
in the pseudobinary Fe-Co Laves compounds which
are not accounted for in the band (itinerant) magne-
tism picture. Wiesinger and Hilscher discuss some
of these ideas in a recent paper. However, since the
Stoner theory fails quantitatively for stoichiometric
ZrFe2, a system we believe possesses itinerant
magnetism, the discrepancy between theory and ex-
periment probably results from a breakdown of the
approximations used in the Stoner theory.

IO

Q
I

O

B. ZrV2

n(T)
1 Ipn ( T)— (10)

Comparing Eq. (10) with Eq. (1) we see that the
finite-temperature expression involves replacing
n(EF) by the quantity n(T) which is determined
from the thermal-occupation expression

n(T)= f fp(E —g( T) ) it tt(E)dE
a

where fp is a Fermi function and g(T) is the chemi-
cal potential determined from conservation of elec-
trons. The quantity n,rt(E) is an effective density of
electronic states which for strongly interacting
electron-phonon systems accounts for the effects of
thermal lattice disorder by the expression

n,tt(E)= J dE'n(E')
00 (E E') +I—

(12)

We use the broadening halfwidth given by

(13)

Marchenko and Polovov have measured the mag-
netic susceptibility of ZrV2 from approximately
20—300 K in both the cubic (T& 125 K) and rhom-
bohedral (T& 125 K) phases. They find a signifi-
cant temperature variation in X(T) as well as a sharp
drop below the structural phase transition at 125 K.
In order to compare our results with theirs we first
have to generalize the Stoner theory to finite tem-
perature since the variation in X(T) found experi-
mentally may result from the variation in X,z(T) in-

Iduced by the fine structure in n(E) near Ez (see Fig.
4).

Following the development of Pickett, we write

X( T)=X„b+X,p( T),
with X„q an assumed temperature-independent orbi-
tal contribution, and

0
I

' ' ' '
I

' ' ' '
I

' ' ' '
I

100 150 200 250 300

FIG. 6. Experimental (Ref. 8) susceptibility P(T) of
ZrV2 (connected squares) compared with theoretical cal-

culations using Eqs. (9)—(13). Theoretical results are for
assumed values of A, of 1.0 (dashed curve) and 2.0 (dotted

curve). (See discussion in Sec. IV.)

which is the asymptotic form valid for T))8D,
where 8D is the Debye temperature, but holds
reasonably well for T) 8D /2. Although A,„ is in

principle the transport equivalent of the electron-
phonon mass-enhancement parameter X which
enters into the superconducting T, and the electron-
ic specific heat, experience has shown that k„=A, to
a good approximation. '

We compare our theoretical results for X(T) with

the experimental results of Marchenko and Polovov
in Fig. 6. Two calculations of X(T) are shown, us-

ing X=1.0 and 2.0 (the actual value of A, is expected
to fall between these two extremes). The corre-
sponding fitted values of X„b are 1.80 and 2.02
emu/g-at. , respectively. These values of X„b are
close to the estimates one would get from appropri-
ately weighting the experimerital or theoretical

values for atomic V and Zr.
From Fig. 6 it is seen that the temperature depen-

dence of X(T) above 100 K is well described by ei-

ther theoretical calculation. In this temperature
range ZrV2 is in the cubic Laves phase correspond-

ing to the crystal structure assumed in the APW cal-
culations. In the region below 150 K, X(T) falls pre-

cipitously as the crystal undergoes a phase transition
to the rhombohedral structure, and our theory,
which predicts the cubic state behavior, deviates
from the experimental results. Assuming that 7„&
does not change due to the transformation, and
furthermore neglecting a possible change in IF, we

can estimate the decrease in n(EF) in the low-

temperature phase by comparing

[ X(T~O) —X„b],„ii
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with

g, (T~O) =psn(EF)/[I Ip—n(Ep)]

from the calculations in the cubic phase. We find
the ratio

~ (EF )rbomb

& (EF )cgbjg

to be 0.73 and 0.67 for A, =1.0 and 2.0, respectively.
Thus, the susceptibility analysis leads us to con-

clude that there is a substantial (-30%) reduction
in n(EF) for the transformed crystal. This result is
in concert with what one would expect based on the
idea that the cubic-to-rhombohedral transition is
driven by an instability induced by the high sharp
peak in n(E) near EF which drives a phonon insta-
bility. Upon making the phase transition one would
expect that the lower-symmetry phase has a reduced
n(EF) value which passivates the phonon instability
and therefore leads to an overall stiffening of the
phonon spectrum. This has been observed in ZrV2
and similarly behaving Hf Vq (see below}.

V. SUPERCONDUCTIVITY

We have calculated the electron-ion interaction
constant g for all three materials using the rigid MT
theory of Gaspari and Gyorffy

rl~=n(EF)(I

EF

m n(E~)

X +2(1+1)stn (5(+,—51 ) (, ) (, )
l

(14)

where 5I are scattering phase shifts at EF for atom
a and angular momentum 1, nI'" (EF) are "free-
scatterer" DOS's defined in Ref. 44, and nP (EF) are
the site-angular —momentum Fermi-level DOS's

so that we make the approximation

(15}

(16)

Here M is the average mass in the unit cell, and to
estimate the theoretical values of T, we use the

[the DOS quantities to be used in Eq. (14) are the
values per spin, one-half of the numbers given in
Table II]. The results are given in Table IV. For
ZrV2, two sets of results of g=qz+gz are given,
one set using the n(EF) and nl (E+) values appropri-
ate to the high-temperature cubic phase, and the
other set using values scaled by the factor 0.7, corre-
sponding to our estimate of the reductions in the
n(E+) and n~ (Ez) values in the low-temperature
rhombohedral phase discussed in the preceding sec-
tion. This scaled value of q,h,mb has been deter-
mined with the assumption that the other factors,
i.e., phase shifts and ni ", are approximately
unchanged so that g scales as n(EF )

We note that in ZrV2, gz, ——,gv, while Zr makes
a much smaller contribution to the total g in ZrCo2
and ZrFe2. Our value for q in the cubic phase of
ZrV2 is 25% smaller than that of Jarlborg and Free-
man ' who used an overlapping MT sphere im-
plementation of the Gaspari-Gyorffy theory.

In order to proceed further and calculate A, and T,
we need estimates of the phonon moments for these
materials. Since there are no neutron scattering re-
sults available, we use approximate values obtained
from specific-heat measurements. In the case of
ZrV2 we can make use of the work of Marchenko
and Polovov in determining the geometric mean
phonon frequency cog from an analysis of their ex-
perimental specific-heat and susceptibility data. It
has been shown previously that cog is closely related
to the value of the co2 phonon moment which enters
into the determination of A, ,

TABLE IV. Total DOS n(EF) (states/Ry unit cell both spins), electron-phonon parameters

q (eV/A ) and I,, phonon moments co2 (K) (see text), and calculated and experimental values of
T, (K). For Zr V2, values for the cubic and rhombohedral phases are given (see text).

ZrV2
Cubic

Rhombohedral
ZrCo2
ZrFe2

n(EF)

222. 1

155.5
79.0

321.2

2.07
1.45
0.34
0.34

5.79
4.05
1.49
6.76

/tot

7.86
5.50
1.83
7.10

225
204
283
283

1.36
1.16
0.18
0.70

Tcale
C

17
12

-0
9a

~empt
C

-9
—8

0
0

aThis theoretical estimate is based on treating ZrFe2 as a paramagnetic material. In actuality,
ferromagnetism quenches superconductivity in this compound.
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Allen-Dynes modification of the McMillan equa-
tion,

log 1.04(1+/}
A, —p '(1+0.62K, )

(17)

with p*=0.13 and co&,g—-0.8coz-0. 8cog, as is typical
for most transition-metal systems.

From Table IV we see that for transforming ZrVz
the resulting calculated values of A, and T, are 1.16
and 12 K, respectively. The calculated result for T,
is in reasonable agreement with the experimental
value of -8 K, especially considering the approxi-
mations that were used in obtaining the theoretical
estimate.

Marchenko and Polovov have found that as-cast
samples of ZrVz do not transform to the rhom-
bohedral phase as the annealed samples do. The
nontransforming samples have T, values slightly
higher than those that do transform (about a 1-K in-
crease in T, ). The nontransforming samples also
have cog values some 10% larger indicating a signifi-
cantly stiffer phonon spectrum. Performing a calcu-
lation for the nontransforming sample using our
unscaled (cubic) value of g and a 10% increase in

r0&, leads to values of A, and T, of 1.37 and 17 K,
respectively. The increases in both quantities are
qualitatively correct, but too large in magnitude.

We mention two factors which can lower T, from
these calculated values. First, it is clear that the ef-
fective electron-phonon interaction A,,ff in systems
with sharp structure in n(E) which determines T, is
proportional not to n(EF), but to some effective
value resulting from virtual phonon exchange
averaging n(E) over a range EF +co,„with the max-
imum phonon energy co,„-2 mRy for ZrVz.
Second, . actual ZrVq samples contain defects which
also broaden structure in n(E). For the DOS func-
tion shown in Fig. 4, both of these effects will lower
T, . Also, it appears that only unannealed samples
(with large disorder) remain cubic below —125 K,
and the large amount of disorder in such samples
can account for T, -9 K found experimentally be-
ing much lower than the perfect-crystal value which
we calculate. Such behavior also occurs in Nb3Sn
and V3Si.

For ZrCoq and ZrFeq there is no information
available on the phonon spectra or cog, so that the
results in Table IV make use of the Debye approxi-
mation co&- —,SD in Eq. (16}. We find that A, for
paramagnetic ZrFez is substantial. Of course, the
occurrence of ferromagnetism in this material effec-
tively eliminates superconductivity.

VI. SPECIFIC HEAT

Low-temperature specific-heat measurements on
ZrVz have been reported by Marchenko and Polo-
vov and by Rapp and Vieland. The former mea-
surement gave a value of the electronic specific heat

y of 10.0 mJ/g-at. K, while the latter measurement,
which was performed in a magnetic field of 105 kG,
yielded a value of 16.5 mJ/g-at. K. The large
differences between the two measurements could re-
sult from deviations from stoichiometry, as both sets
of experimental results were on samples with some
second-phase material. Our theoretical results for
y~n(Ep)(1+A, ) are 9.7—14.7 mJ/g-at. K~, which
approximately span the values from the experi-
ments. The theoretical range is due to our estimates
for the values of n(EF) and A, for transforming
(rhombohedral, low-y) and nontransforming (cubic,
high-y) samples. Again, disorder in the non-

transforming samples would decrease the perfect-
crystal cubic value.

Although specific-heat measurements of ZrCoz
and ZrFez are available, the presence of magnetic
clusters and ferromagnetism, respectively, have lim-

ited the reliability of these measurements for deter-
mining y. Results of different workers differ con-
siderably. Our predictions for good quality ZrCoz
samples (and for ficticious paramagnetic ZrFez) can
be obtained from the data in Table IV.

VII. CONCLUSIONS

We have performed APW band-structure calcula-
tions of the paramagnetic electronic structure of the
cubic Laves (C15) phase compounds ZrVq, ZrFez,
and ZrCoq, and the results have been applied to cal-
culate and discuss the bonding and several of the
variables relevant to magnetism and superconduc-
tivity in these materials.

To study the magnetic properties we have used
the Stoner theory, finding that ZrVq and ZrCoq are
paramagnetic while ZrFez is ferromagnetic, in agree-
ment with experiment. However, the calculated
magnetic moment of the latter compound is too
small by nearly a factor of 3. The magnetic moment
of the pseudobinary system Zr(Fe& „Co„)zwas also
studied using the Stoner theory together with a
RBM for n(E), and we have found results in good
qualitative agreement with experiment as to the
monotonic decrease of the moment with x and the
vanishing of ferromagnetism for x=0.5, although
the calculated moment is too small in the range
0.0&x &0.5. This result is consistent with the ob-
servation by others that the Stoner theory is quan-
titatively inaccurate in compound systems where
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there is significant covalent bonding.
Theoretical estimates for the superconducting

parameters g, A, , and T, have been determined and,
in agreement with experiment, we find that Zrcoz is
not a superconductor, ZrVz is a relatively high-T,
material, and ZrFez has its superconductivity
quenched by ferromagnetism. By analyzing the sus-
ceptibility data, we have also shown that the
structural instability (cubic to rhombohedral at
T —100 K.) in ZrV2 results in a significant lower-
ing of n(EF) and T, from the values that would
have been obtained if this material remained cubic
at low temperatures. In this regard, it is to be noted
that there is fine structure in and large values for

n(E) near EF for ZrVz on the same scale as has been
found in high-T, 315 materials such as V3Si and
Nb3Sn. The structural instabilities in ZrVz are like-

ly to be related to this n (E) behavior as they are for
the 315's, although the structural transition tem-
perature in ZrVz is somewhat higher.

Further theoretical studies on these materials
would seem to be warranted. These should include
spin-polarized band-structure calculations for ZrFez
as well as further research into the origins of the
structural instabilities in ZrVz. Two of us have al-

ready used the present band-structure results to
study the hydrogen-storage behavior in these materi-
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