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The nonlinear I-V characteristics of thin high-sheet-resistance Hg-Xe alloy films are ex-
amined within the context of the Kosterlitz-Thouless theory of the superconducting transi-
tion. In the regime below the vortex-unbinding temperature T„where logarithmically
bound vortices can be broken apart by a transport current, we find that V-I" '. Compar-
ison with theory allows us to infer the value of T, and the mean-field temperature T,o from
a (T), and the dependence of these temperatures on R~ appears in approximate agreement
with the microscopic theory of dirty superconductors. A systematic deviation appears to be
consistent with renormalization of the vortex interaction close to T, due to the presence of
small polarizable vortex pairs, and can be described by an effective vortex dielectric constant

e, =1.2. Further evidence for this renormalization, which is a key feature of the
Kosterlitz-Thouless transition, is obtained by examining the curvature of the log V vs logI
plot very close to T,. The current dependence of a (I, T)=d (log V)/d (logI) is a direct mea-

sure of the spatial dependence of the vortex interaction, allowing a direct comparison with

the analytic predictions of the renormalization equations. Satisfactory agreement is ob-

tained using physically reasonable parameters.

I. INTRODUCTION

Phase transitions in two dimensions (2D) have
been a subject of much recent interest, ' both theoret-
ical and experimental. The Kosterlitz- Thouless
(KT) transition has been predicted to occur in many
2D systems, including superfluids, superconductors,
X-Y spin systems, and melting of solids. A key
feature of this transition is that it occurs via unbind-

ing of pairs of topological defects, whose interaction
energy exhibits a logarithmic dependence on separa-
tion. The other key element is the renormalization
of this interaction near the transition due to the
presence of polarizable pairs of bound defects. An
experiment which provided clear direct evidence of
these defects, their logarithmic interactions, and its
renormalization near the transition, would be the
strongest possible indication that the transition is of
the Kosterlitz- Thouless type.

In a 2D superconductor, the topological defects
are vortices, which interact with a logarithmic po-
tential over a scale less than the transverse penetra-
tion depth A,z. For a film with normal-state
sheet resistance Rz of order 1 kQ or greater, A, z is
the order of the sample size (mm to cm) over the en-

tire range of interest, so that the sample is an effec-
tive candidate for a KT transition to the supercon-
ducting state. We have earlier shown that in thin

quench-condensed Hg-Xe alloy films, the low-

temperature electrical properties are dominated by
logarithmically bound-vortex pairs, and have
presented some evidence for renormalization effects
near the transition. A number of other 2D super-
conducting systems, including granular films ' and

proximity-coupled arrays, ' ' " have been investigated

by a variety of means, and have generally lent vary-

ing degrees of support to the concept of a KT transi-
tion in these samples, with one notable exception. '

In the course of our further analysis of the data
on the superconducting Hg-Xe samples, we have ob-
tained a clearer understanding of the predicted re-
normalization effects, and how they can be probed
quite directly by considering the current-voltage
characteristics very near the transition. In the
present paper we will attempt to explain how this
can be done, and show how some of the data taken
earlier provides a preliminary indication of the re-
normalization of the vortex interaction, in reason-
able agreement with the predictions of the KT
theory. In this way we present some of the most
direct evidence yet available for the existence of a
KT transition in a 2D superconductor.

We continue in Sec. II with a brief discussion of
the techniques of sample preparation and characteri-
zation, introducing data on the resistive transition of
one particular sample (no. 4) which will be featured
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in the remainder of the paper. Section III proceeds
to analyze the low-temperature nonlinear current-
voltage characteristics within the KT theory, in
terms of current-induced unbinding of bound
vortex —antivortex pairs. This analysis demonstrates
the logarithmic nature of the vortex interaction, and
confirms the dependence of the transition width on
the normal-state sheet resistance of the films. Sec-
tion IV incorporates the effects of bound

vortex —antivortex pairs into an effective dielectric
constant for the medium, and shows how this is im-

portant near the vortex-unbinding temperature T, .
The vortex correlation length for T y T, is discussed
briefly in Sec. V, and the associated fit to the resis-
tive transition is established, in reasonable agree-
ment with theory. Section VI completes the analysis
of the renormalization of the vortex interaction, and
demonstrates how its spatial dependence is directly
reflected in a careful examination of the nonlinear
I-V curves very close to T, . The overall conclusions
of the paper are summarized in Sec. VII.

The annealed films appear to exhibit similar electri-
cal properties to the as-prepared films, and both
types of films will be treated together in this paper.

In Fig. 1(a) we show the resistive transition (R vs
T) into the superconducting state for one sample,
with a composition of 0.60 mol fraction of mercury
(0.40 mol fraction of Xe), which had been annealed
at 18 K. The fit to this data in Fig. 1(b) will be dis-
cussed later. The normal-state sheet resistance at
T=5 K was Az ——1.8 kQ, which taken together
with the estimated thickness d =150 A corresponds
to a resistivity pz ——2700 JMQ cm, placing the materi-
al near the metal-insulator transition. Such a high
resistivity was necessary in order to obtain a film
with a sufficiently large RN (of order 1 kQ or
greater) while maintaining sufficient thickness to as-
sure a uniform film. We have elsewhere examined
the composition dependence of the normal-state
resisitivity of thick as-prepared films. "

II. EXPERIMENTAL PROCEDURE
AND RESISTIVE TRANSITION

6000

In the following we will be referring to data taken
on samples consisting of ultrathin (100 A) films of
an alloy of Hg and Xe, quench-condensed from a
molecular-beam oven onto substrates thermally sunk
to the liquid-helium bath at 4.2 K. The condensa-
tion rate, less than about 1 A/sec, was low enough
so that heating from the incident atoms could be ig-
nored, and oven shielding likewise made radiational
heating negligible. The substrates were glazed
alumina, where the glazing was necessary to elim-
inate microscratches that would make these films
discontinuous, an earlier problem with crystalline
sapphire and quartz substrates. We have not yet ob-
tained structural analysis of these samples, since
warming to room temperature clearly destroys them.
However, their method of preparation, as well as a
number of other factors, leads us to believe that they
are likely to be amorphous as prepared, or if granu-
lar, with grains that are smaller than about 100

13—15

We have studied the electrical characteristics of a
number of samples, some of them directly as
prepared by quench condensation, others "annealed"
at temperatures between 10 and 40 K, still far too
cold for Xe sublimation. Annealing always resulted
in an irreversible lowering of the resistivity, perhaps
because of clustering on the microscopic scale. This
decrease in resistivity generally appeared to saturate
after a film was maintained at a given temperature
for a period of under 10 min, and no such decrease
ever occurred if the sample was kept below 8 K.
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FIG. 1. (a) Resistive transition R (0) vs T (K) for sarn-

ple no. 4, shown on a linear and a log scale. (b) Fit of the
data from (a) for T &3.5 K to the theoretical expression
Eq. (40), using T,o——3.6 K, and taking T, =3.3 K (right)
and T, =3.2 K (left). The curve on the right is a guide to
the eye; the straight line on the left corresponds to A =0.5
and b =16.6.
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The resistances in Fig, 1 were measured in the
low-current limit, typically using a measuring
current of 1 pA or less, mechanically chopped at
37.5 Hz, with the resulting voltage detected with a
lock-in amplifier with sensitivity to better than 10
nV. It was important to check the linearity of the
I-V relation, particularly at the tail end of the transi-
tion, where the characteristics became strikingly
nonlinear (see below) at somewhat higher currents.
Another important concern was the possible pres-
ence of a magnetic field, since externally produced
vortices will add to the resistance due to the
thermally excited vortices. Although a p-metal
shield was present around the outside of the Dewar,
residual magnetism in the structure of the apparatus
necessitated the use of a small solenoid to cancel out
the component of the field perpendicular to the film
((50 mo). This was accomplished by minimizing
the resistance in the tail of the transition, where it
was highly sensitive to such fields.

III. CURRENT-INDUCED
VORTEX UNBINDING

The primary measurements of the films under in-

vestigation are the dc current-voltage characteristics.
In Fig. 2 we show the I Vcurves -for the same sam-

ple (no. 4) as in Fig. 1. The striking feature of this
set of curves is that, on a log-log plot, they tend to
fit a straight line over a large range of currents and

voltages, particularly for the lower temperatures.
This hnear fit on a log-log plot means that the volt-
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FIG. 2. Low-temperature I-V curves for sample no. 4,
on a log-log plot, for various fixed temperatures. The
dashed line with slope =3 corresponds to T,.

Fi=J,4 /0c, (2)

where 40——hc/2e is the flux quantum. In the ab-
sence of vortex pinning, this produces a steady dissi-
pative vortex motion, which results in the presence
of a nonzero resistance. A vortex and an antivortex
(one of the opposite polarity) attract each other,
however, and below a lower critical temperature
T, =TKz, they are effectively bound together as a
pair. Since an applied current exerts an opposite
force on each member of the pair, the net force is
zero and the vortices do not move. Hence there is
no resistance, and the major physical feature associ-
ated with superconductivity is established.

However, zero resistance is strictly found only in
the limit of zero current. Precisely because an ap-
plied current exerts an opposite force on the
members of a pair, a sufficiently large current will
break apart the pair, yielding two vortices which are
then free to move around, producing resistance, un-
til they recombine. ' ' We will show below that
for any arbitrarily small current, some pairs will be
broken apart, specifically the ones whose constituent
vortices are very far apart. Therefore, in contrast to
a three-dimensional (3D) superconductor, the criti-
cal current of a 2D superconductor is properly zero.
This sensitivity to small perturbations is a general
characteristic of quasi-long-range order in 2D. As
the current is increased, a larger and larger fraction
of the vortex pairs can be broken, yielding a
current-dependent resistance R (I). Since larger
currents tear apart smaller vortex pairs, and thus
probe smaller distances, one expects that the func-
tional dependence of R (I) should give some useful
information on the way the vortex-antivortex in-
teraction changes with scale. That is the fundamen-
tal idea behind what will follow.

We will begin by considering only the unrenor-
malized interaction. The vortex-antivortex pair en-

age varies as a power of the current, i.e.,

V-I'(z)

where the power a ( T) is a function of temperature,
increasing as the temperature is lowered. We will
later identify the temperature at which a(T) =3 as
the location of the KT vortex-unbinding transition.

Within the picture of the KT transition in a su-
perconducting film, below the mean-field transition
temperature T,o, there exists a local-order parame-
ter, but long-range order is destroyed by the pres-
ence of vortex excitations of both polarities, even in
the absence of an external field. A current density
J, =n, eu, exerts a force on a vortex (the Lorentz
force), perpendicular to the direction of the current
flow, of magnitude,
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ergy, for zero applied current, can be written in the
form

Uo(r) =2E, +q ln(r/g), (3)

where E, is the vortex core energy and / =got is the
effective vortex core radius. By analogy with the
2D Coulomb gas, q=(an, A /2m)'r is the effective
vortex charge, and n, =n, =n, d is the 2D su-
perelectron density, where d is the film thickness.
In the presence of an applied supercurrent, this in-
teraction energy is modified by the Lorentz force as
follows:

U(r)= Uo(r) FL r—

=2E, +q [1n(r/g) —2mv, r /A] . (4)

U(r, ) =2E, +q [1n(r, /g) —1]

= Uo(r, ), r, »g
=2E, —q ln(J, /Jv), J, «Jo

where the current Jo An, e/——2m( is essentially (to a
factor of order unity) the Ginzburg-Landau critical
current. If we then assume a simple classical escape
over this saddle point, the rate of production of free
vortices I, goes as

I, -exp[ —U(r, )/k~ T]
( —~/k T)-(r, /g)

(q2yk T)-(J,/Jo) (7)

The density of free vortices NF will be determined
by the balance of the rate of production and the rate
of recombination. Since recombination is a two-
body process, and there are equal numbers of vor-
tices and antivortices, the rate equation can be writ-
ten as

NF ——I,—aNF,2

so that in steady state, NF -I,' . Then, since in the
absence of flux pinning, the electrical resistance
should be proportional to the density of free vor-
tices, one has

This potential has a saddle point for vortices orient-
ed such that the vector connecting them is at right
angles to the direction of current flow. The distance
to the saddle, which corresponds to a maximum in
the potential in that direction, is

r, =A'/2mv, =An, e/2m J, ,

with an energy at the saddle of

q (T, )=em, (T, )A' /2m =4k+T, .

This suggests that one can determine T, experimen-
tally by the relation

a(T, )=1+q (T, )/2ksT, =3 . (12)

Outside of the critical region close to T„renormali-
zation effects should be small and the superelectron
density should be given by its unrenormalized value
n, . This "bare, " unrenormalized n, goes linearly to
zero at T,0 as n, —1 —T/T, 0, for T not too small.

0

Thus in this regime the exponent a (T) should have
the approximate form

a&;„(T)=1+const(1—T/T, o) . (13)

It is then possible to extrapolate from this region to
determine T,o using the relation ah„(T,O) = 1 which
follows from Eq. (13). In Fig. 3 the temperature
dependence a (T) is shown for three samples of vary-
ing sheet resistance. There is, in fact, a low-
temperature linear region, and at a higher tempera-
ture a(T) crosses the value 3. Thus it is possible to
define both T, and T,0.

The values of T,0 inferred depend in part on
which points are included in the straight-line fit. In
an earlier work, points close to T, were included in
this linear fit, and the resulting values of T,0 were
somewhat smaller than those which we now claim.
As we will discuss later, the points close to T,
should fall below the linear fit due to renormaliza-
tion effects. Another aspect to the fit is that given
the theoretical temperature dependence of n, /T, one
would expect deviations from the linear relation of
Eq. (13) at sufficiently low T, corresponding to up-
ward curvature above the straight line. However,
the data points for the lowest temperatures in Fig. 3

R =(2mf~R~)NF

( ~/2k T)-(J,/Jo)

and the voltage is then of the form V-I', where

a =1+q /2k&T=1+~n, A /4mk&T

is the exponent that we should associate with the ex-
perimentally determined slopes of Fig. 2. From this
analysis it is evident that measurements of the
temperature-dependent I-V characteristics of 2D su-
perconducting films permit the determination of
n, (T)

For all such systems with logarithmically in-
teracting vortices, application of renormalization-
group technology to the KT model predicts a
universal relation between the superelectron density
at the critical temperature T„and T, itself, the so-
called "universal jump condition", '
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appear to be below the straight-line fits. This ap-
parent discrepancy remains unresolved.

Note that in Fig. 3, the samples with higher sheet
resistances have broader transitions, as characterized
by the parameter r, =(T,o—T, )/T, c. This correla-
tion can be compared to theory using the approach
of Beasley, Mooij, and Orlando (BMO). Since

n, =dmc /(4n. e A, ) (14)

the universal jump condition [Eq. (12)] can be ex-
pressed in terms of the magnetic penetration depth
A,(T) as

C&od/2~ 1, (T, ) =4k' T, . (15)

One can then use the dirty-limit BCS formula for
A,(T) to obtain

T~/T o (1+0.17RPr/R ) (17)

Here R, =A/e =4100 0 is the characteristic resis-
tance in two dimensions.

In Fig. 4 we have plotted the inferred value of the
parameter ~, = 1 —T, /T, o for nine different samples
as a function of the sheet resistance Rz, as well as
the BMO theoretical expression Eq. (16). There is
an approximate fit between experiment and theory,
especially inasmuch as there are no adjustable
parameters in this agreement. The vertical error
bars reflect the uncertainty of determining the value

( T, /T, c ) / [ [b ( T, ) /b (0)]tanh [6 ( T, ) /2k& T, ][

=2. 18R,/R~, (16)

or in the simplified form appropriate when T, is
close to T,o,

FIG. 4. Dependence of transition width
g, =1—T, /T, o on the normal-state sheet resistance R~
for nine samples. The vertical error bars represent the un-

certainty in determining T,o by extrapolation. Curves A

and B are theoretical curves using Eq. (37). Curve A uses
a parameter e, =1.2, and curve B, e, =1.0, i.e., the result
of BMO (Ref. 3).

of T,o by extrapolation. Since all the points but one
lie above the line, as do most of the error bars, there
is apparently a systematic deviation of the experi-
mental values above the BMO prediction. As we
will show below, this appears to be due to renormali-
zation effects not properly taken into account in the
universal jump condition given in Eq. (15).

IV. RENORMALIZATION OF THE VORTEX
INTERAC'rION

An important aspect of the renormalization-group
theory of the KT transition involves the screening of
the vortex-antivortex interaction due to the presence
of a background of polarizable vortex pairs located
in between the given test vortices. For T~ T„ the
interaction is totally screened at large distances; even
below T, there should still be an effect. In order to
understand the renormalization of the interaction in
a conceptually simple form it is useful to incorpo-
rate the effect of these intervening vortex pairs into
a dielectric constant e of an effective medium, fol-
lowing in part the approach of Young. ' ' In our
discussions of the problem, we will not attempt to
provide a completely rigorous derivation, but rather
to develop a coherent picture of the underlying
physics.
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Because vortex-antivortex pairs are thermal exci-
tations of the system, for T && T„there are likely to
be few vortex pairs present. Therefore, the space be-
tween a given pair is unlikely to contain other vortex
pairs, so that a simple bare (unrenormalized) interac-
tion should be largely correct. At higher tempera-
tures, at T=T„ there are likely to be many more
vortex pairs, including some which are located be-
tween and around the constituent vortices of other,
larger pairs, as shown schematically in the inset of
Fig. S. Since vortices of opposite polarity attract,
these smaller pairs will tend to align in the field pro-
duced by the larger pairs, although the degree of po-
larization indicated is exaggerated for emphasis. As
one can see by analogy with the Coulomb problem,
or by consideration of the current flows surrounding
the vortices, this polarization will act to reduce the
strength of the vortex interaction, i.e., to reduce the
size of the effective charge q(r) below the intrinsic
(unrenormalized) charge qc. This can be character-
ized in terms of an effective vortex dielectric con-
stant e(r)) 1, which takes account of the effect of
vortex pairs of the size less than or equal to r on the
vortex interaction. In terms of e(r), the vortex force
can be expressed as

F(r) =qo/re(r) =q (r)/r,

We also define the fully renormalized quantities

q~ q(r——~ ac) and n, =n, (r~ oo). Since q(r) de-
creases with increasing r, as the temperature is in-
creased, vortex unbinding will first occur at r~ oo.
The universal jump condition is then given, in terms
of these fully renormalized quantities, as

qg(T, )=M n, (T, )/2m =4kgT, ,

qR(T,+)=O=n,"(T,+) .
(20)

As we will point out again later, this discontinuity
at T=T, only appears in the limit of an infinite sys-
tem.

The problem then becomes one of calculating the
screening due to the background of bound-vortex
pairs. This involves the derivation of the renormali-
zation equations, which we will sketch briefly
below. ' ' We can write the dielectric constant e(r)
in the standard way,

e(r) = 1+4rrX(r), (21)

in terms of the susceptibility g(r), which in turn can
be expressed as

1 277

X(r) = f dr' f d8r'nz(r', 8)a(r'), (22)
0

where

and the pair energy is therefore
I

U(r)=2E, + f q (r')d(lnr') . (19)

a(r)=qcr /4ksT

is the pair polarizability and

nz(r, 8)=(Xolg )exp[ —U(r)/ks T]

(23)
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~W~o
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X
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FIG. 5. Renormalization contours of the vortex in-

teraction, in terms of the quantities x and y from Eq. (29).
Actual values of the solution are shown, using Eqs.
(44)—(46), with e, = 1.2, R~ ——2000 0 (parameters approx-
imately appropriate for sample no. 4) and with curves
shown for T/T, =0.995, l.0, and 1.005 (from left to
right). The points correspond to intervals of
l=lnir/g)=-O. S. The inset represents schematically the
physical origin of the screening of the vortex interaction.

de/dr =2mqor n~(r)/k~T . . (2S)

The nature of the coupled equations becomes
more clearly evident if we define several new vari-
ables,

is the density of thermally excited vortex pairs. The
quantity Eo is expected to be of order unity (quite
possibly less than one), and represents the number of
independent sites to place a vortex core in a cell of
area g . It can also be introduced from the point of
view of a configurational entropy 2kglI1Ãp of the
vortex cores, and hence included in the exponential
as part of the free energy. The derivation implicit-
ly assumes a rather low density of vortices, in par-
ticular that there are no pair-pair interactions. This
is evident, for example, in Eq. (23), where the un-
renormalized effective charge is used to determine
the polarizability. This approximation is necessary
to prevent the equations from becoming intractable.

From these equations, it follows directly that the
spatial derivative of the dielectric constant has the
following form:
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K(r) =q (r)/27Tks T =qo/271'E(r)ks T,
y (r)—= r n~(r), l=lnr(g) .

(26)

perature dependence of K~. For low temperatures,
x~-xo, as the renormalization does not have too
much of an effect, so that

In terms of these, one has the Kosterlitz recursion
relations'

dK '/dl =4m'y

dy /dl=y (4 2rrK—) .
(27)

These, taken together with the boundary conditions
at I=O (the core interaction is not renormalized},
provides in principle the complete solution to the
problem.

Further simplification can be obtained very near
the transition, where T=T, and E=2/m. . If we de-
fine the quantity x such that

x—:(2/n. K) —1 = 1 nK/2, —

K=2/(1 .—x ) =2—2x,
then the above recursion relations become

(28)

dx/dl =8m y

dy/dl =2xy .

In this form, one can easily see that the quantity

x —4m. y =C=xo —4~yo2 2 2 2 2 2

is an invariant of this system, i.e.,

dC/dl=O [xo—=x(l=O), yo=y(l=O)] .

(29)

(30)

Since the only other variable in this system is the
temperature, C=C(T). This establishes that the
solutions to these equations lie on a set of hyperbo-
las, which describe three distinct regimes, depending
on the temperature, as illustrated in Fig. 5.

First, for C=O, which corresponds to T=T„ the
hyperbola is the degenerate case of a straight line

going to the origin. The point x =0,y =0 represents
a fixed point of the system as r~ ao. Physically,
x~ ——0 coxiesponds to the universal jump condition
Ka ——2/m, and y~ ——0 means that there are no free
vortices at infinite separation. For C&0 (T& T, )

the curve turns away from the origin and ap-
proaches infinity at infinite separation. Here

x~ ——ao corresponds to Kq ——0, i.e., the interaction
has been totally screened, and yz ——00 means that
there are plenty of free vortices at large distances to
do the screening. In the other limit, for C~O
(T & T, ), there is again a fixed point at y =0, but
now with a value xq ———v C, corresponding to a
somewhat stronger interaction. This line of fixed
points for T & T, is a novel but well-known feature
of the Kosterlitz-Thouless model.

From this, one can obtain the approximate tem-

Kz -Ko n-, -(1—T/Tco)0

(provided the temperatures are not too low). Very
close to T„since C(T, )=0, C(T)=b(1—T/T, ),
and

mKg ——2+2[b(1 T/T—, )]' '. (31)

This square-root cusp is another well-known feature
of the KT transition. These two dependences are
shown in Fig. 6, together with several other "partial-
ly renormalized" plots of K(l, T) to be discussed
later. Since the experimental exponent a (T) in Fig.
3 is to be associated with 1+m%~, the curves in
these two fiqures should be compared and have
several qualitative similarities, among these being
the downward curvature below the extrapolation
from the linear regime.

This downward curvature is a reflection of the in-
creased value of the effective vortex dielectric con-
stant e as T~ T, . A particularly useful parameter
to describe this is

F.,=F(r~ ao, T—~ T, )

=~Ko(T }/2=[1+xo(T )]
= [1—2myo( T, )] (32)

which represents the fully renormalized value of e
just below the transition.

In contrast to some other aspects of the KT tran-

8.ss I.O l.05

FIG. 6. Temperature dependence of the theoretical
quantity nK(l, T) [=a(T} 1] for several fixed v—alues of
the scale l. The same parameters are used as for Fig. 5.
The line l =0 corresponds to the bare, unrenormalized in-

teraction ~Ko,' the curve for I = oo to the fully renormal-

ized mK~ {T).
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sition, the value of yo(T, ) appears to be model
dependent, and therefore nonuniversal. From Eq.
(28) it can be expressed in terms of the quantities No
and the core energy E, as

yo(T, )=Noexp[ E,(—T, )lksT, ] . (33)

We can express E, in a simple model, as simply the
superconducting condensation energy lost in a vor-
tex core of radius g,

E,(T, )=[~( (T, )d][H, (T, )I Sm]

=40d /64vr'A',

=en, (T, )8 /16m =ks T, /2, (34)

where we have used the universal jump condition
Eq. (11) and an identity of superconductivity
theory. ' The fact that E, is of order kT, should
not by itself be surprising, since 2E, is the
minumum excitation energy of a vortex pair, an ele-

mentary excitation of the system, and these excita-
tions are fairly common at T, . Substituting this
into Eq. (33), one obtains

e, =(1—3.8NO) '=1+3.8NO, (35)

=40d /[Sm. A, ( T, ) ]e. (36)

If one then uses the BCS microscopic-theory value
for the penetration depth A,(T, ) as before, but retains
e„one finds that e, occurs only in the combination
R&e„yielding

( T, /T, o)I[6( T, ) Ih(0) ]tanh[b ( T, )/2k' T]

=2.18R, /Rge, , (37)

in general, and for T, near T,p the approximation
form

Tc /Tco =[1+0.17R&ec /Rc ] (38)

Then we can go back to the results of Fig. 4. If we
assume that e, is independent of R&, then using e,
as a single fitting parameter for all the samples
yields a best-fit value e;=1.2+0. 1, which corre-

where Ep is an unknown quantity. For these ap-
proximations to work, one must have Xp((1. It
should probably be calculable from first principles,
but we are not aware of such a calculation. In that
case, it makes sense for us to include the parameter
e, in the analysis of the experimental data, and thus
to infer a value for e, and hence for Ep.

We can do this by modifying the result of Beas-
ley, Mooij, and Orlando to take account of renor-
malization. Using e, as a parameter, the universal
jump condition Eq. (11) can be expressed as

4k' T, =qz ( T, ) =q0( T, )Ie,

sponds to Np =0.05+0.03.
This value of e, =1.2 is quite comparable to those

predicted and measured in other systems, ' ' espe-
cially inasmuch as it is expected to be a nonuniversal
feature of the transition. The value of Np ——0.05
seems rather small, but if vortices can be packed at
the upper critical field H, z to a density of 1/2m/~,
then perhaps one might expect Xp-1/2m. . If our
inferred value of Np is too small, it is also possible
that our simple model of the vortex core may un-
derestimate the core energy E, . In any case,
yo(T, )=0.03 «1, as it must be for the validity of
the lowest-order theory that we have been applying.

There is a possibility that the Hg-Xe films used in
this study may be strong-coupling superconductors,
inasmuch as pure Hg is well known to be one. In
such a circumstance, Eq. (37), which is based on
BCS theory, would no longer be valid. To a first ap-
proximation, it might be corrected by replacing the
ratio 25(0)IksT, =3.5 used in its evaluation by the
value appropriate to the actual material. The ef-
fect of such an alteration would be to permit larger
values of T, for given values of T,o and Rg than
those predicted by BMO. This is opposite to the ef-
fect of renormalizing the interaction, and would re-
quire an even larger value of e, than that estimated
above. For example, if we take the value
26( 0)l kz T, =4. 0, appropriate to pure Hg, as an
upper-limit strong-coupling correction for the Hg-
Xe system, then one obtains e, =1.4. There is
currently insufficient evidence to resolve this issue,
but in any case the renormalization effects would
appear to be substantial.

V. THE VORTEX CORRELATION LENGTH
AND THE RESISTIVE TRANSITION

One aspect of the vortex-unbinding transition that
we have not been emphasizing is the shape of the
resistive transition itself, in the regime for T ~ T,
(Fig. 1). This is in part because our analysis sug-
gests that the low-temperature I-V characteristics
are more closely related to the essential quantities of
the KT transition. The resistive transition is, how-
ever, expected to relate to one important parameter
of the KT transition that we have not discussed un-
til now, the vortex correlation length g+(T), which
is defined for T& T, and diverges as T~ T, . It
should be clearly distinguished from the usual
Ginzburg-Landau coherence length g( T), which
diverges not at T, but at the mean-field temperature
T,o. Physically, g+ represents the scale at which
vortices begin to unbind. For smaller scales, vor-
tices are still bound in pairs, even though the tem-
perature is above the nominal vortex-unbinding tem-
perature T, . In part because the effective scale in
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the KT problem is logarithmic, the theoretical ex-
pression for the correlation length g+ takes the
unusual exponential form

(+(T}=Cg(T)exp[[b(T,o T,—)/(T, —T)]'
(39)

where the constants C and b are expected to be of
order unity.

A further refinement has been suggested by
Minnhagen " (and used by Abraham et al. "),
whereby the expression T,o —T, in the numerator of
Eq. (39) should be replaced by T,o T, to—take into
account the fact that in this problem, the effective
charge q -n,' is a function of temperature. An al-
ternative extended form of Eq. (39) has been pro-
posed by Halperin and Nelson, which interpolates
between Eq. (39) close to T, and the form appropri-
ate to fluctuation resistance above T,o. Since the
physical justification for this appears to be some-
what uncertain, and in any case we will be examin-
ing the data only for T & T,o, we will use only the
former correction factor. Another generalized ex-
pression for g+(T) has been derived for the two-
dimensional Coulomb gas, but has not yet been
adapted to the case of a 2D superconductor.

Since all vortices within the clusters of size g+
will be paired, except for those few of a single sign
in excess, the effective densit~ of free, unpaired vor-
tices should go as Nf-1/g+. This will produce
resistance in the low-current limit of the form

R =R~2m'g NF

VI. RENORMALIZATION
AND THE I-V CHARACTERISTICS

One can proceed even further in this renormaliza-
tion analysis, if one realizes that the experimentally
measured quantities are in fact not fully renormal-
ized. As discussed earlier, measurement of the non-
linear I-V characteristics at a current I corresponds
to probing the vortex interaction at a distance
r, —1/I, or 1, =in(r, /g) on the logarithmic scale.
For the range of currents in our experiments, l, will
turn out to be in the range from 2 to 5, which is cer-
tainly not in the large-distance limit.

In particular, if we reconsider our earlier deriva-
tion of the I Vcurves -for T&T, [Eqs. (7)—(9)], the
current-dependent resistance R (I) depended ex-
ponentially on the pair in interaction energy U(r, ):

R (I)—exp[ —U(r, )/Zkz T] . (41)

Then the derivative on a plot of log V vs logI can be
expressed as

( )
dlnv

1
1 dU

dlnI kgT dlnr

gime in the low-current limit. The former data is
thus less likely to be perturbed by the presence of
stray magnetic fields, edge effects, etc. Neverthe-
less, the fact that the resistive transition is roughly
in agreement with that predicted by theory is en-
couraging.

=JR~exp[ —2[b(T,o
—T)/(T, —T)]'~2] (40) = 1+vrK(r, ) .

where 2=0(1). In Fig. 1(b) we show a plot of
log(R) vs [(T,o T)/(T, —T)]—' for the same
points as in Fig. 1(a) from T=3.3 —3.5 K. The
parameters T,o

——
. 3.6 K and T, =3.2 K were deter-

mined for this sample from the low-temperature I-V
characteristics, and are used for points on the right
of Fig. 1(b). However, the points follow a straight
line much more closely for T, =3.2 K, as is shown
on the left. This fit corresponds to 2=0.5 and
b =16.6 in Eq. (40). The value of b may seem high,
but similar fits to other superconducting systems
have also given values in this range or greater.

Finally, there are reasons to expect that the data
obtained in the resistive transition, particulary in its
low-temperature tail, may be somewhat less reliable
than the data obtained from the I-V curves. One
such reason is that the actual resistance levels, and
hence the number of vortices being detected, is typi-
cally much greater in the low-temperature, high-
current regime, than in the higher-temperature re-

This derivative a(I, T) should be independent of I
only for T &T, in the limit of arbitrarily small
current (r,~ oo). In fact, the lines on the log-log
plot in Fig. 2 are not all perfectly straight, particu-
larly for T & T„but even for T & T, . It should be
possible to analyze this curvature to provide evi-
dence for the spatial renormalization of the vortex
interaction.

To obtain a more detailed comparison between
theory and experiment, a full solution of the set of
Eqs. (2)—(7) is necessary. Fortunately an analytic
solution is available to the approximation set of Eqs.
(29},' valid sufficiently close to T, Since.
x —4m y =C, the first equation can be rewritten

dx/dl =2(x —C) (43)

and is directly integrable. The solutions take three
different forms for the three different regimes, and
are listed here for reference:
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(i) T=T: C =0 xp = —27Tyo

x = —2/(1 —2/xp ),
2&y = —X

(ii) T&T.: C&0 lxol &27ryo

x = —A coth(2A1+8),

2my =Acsch(2Al+8),

A =C', 8 =cosh '(xp/2vryp) .

(44)

(45)

gument we made earlier, one has that the resistance
goes as

R(I)—[nz(r, )]'~ =y(r, )/r, -yI (48)

Therefore, we can make the association y —V/I .
This suggests that the experimental data for T=T,
should be replotted in the form ln(V/I ) vs ln(I),
and compared to the analytic solutions for ln(y) vs
—1=in(I/Ip). On a log-log plot, the constants of
proportionality amount to horizontal and vertical
shifts, and the slopes should be the same:

(iii) T& T, : C&0, ~xp
~

&2vryp din(V/I )/dlnI = —dlny/dl = —2x, (49)

x =Dtan(2Dl+E),

2' =Dsec(2Dl+E),

D=
~

C
~

'~, E=sin '(xp/2~yp) .

(46)

nz(r ) =y (r)lr -exp[ —U(r)/k~ T] . (47)

In terms of this, and using the kinetic-equation ar-

We have used this analytic solution to calculate
the expected temperature dependence vrK( 1,T )

=a(l, T) —1 for various fixed values of 1. In carry-
ing this out, we have used parameters T,p/T, = 1.1,
eo ——1.2, and a linear unrenormalized dependence
Kp(T)-n, (T)-(1—T/T, p), all of which may be
appropriate for the data shown in Fig. 2. As one
can see in Fig. 6, the universal jump condition shows
sharply only for infinite scale (1=100 is quite suffi-
cient in this case). For finite 1, the jump is smeared
out over a range of temperatures, and the position of
the transition, as determined by where a (T) crosses
the value 3 is increased slightly above the actual T, .
Therefore, the lack of a clear square-root cusp and a
sharp jump at T, in the experimental data should
not be surprising.

The fits to determine a (T) from Fig. 2 were taken
typically over currents in the range from 10 to 300
pA. The resulting values of a(T) go continuously
through a ( T, ) =3 (see Fig. 3). However, the resis-
tive transition [Fig. 1(a)] was measured using
currents of 1 pA, and the linearity of the I-V curves
was checked, corresponding to a ( T)= 1 for T & T, .
Therefore, if we had chosen to determine the ex-
ponent a(T) by fitting at the lowest current still
yielding a voltage above the limits of resolution and
background (as appears to have been done in Ref.
11), we would have seen a sharper apparent transi-
tion in Fig. 3. Nevertheless, the comparison be-
tween theory and experiment for finite I is in
reasonable agreement with 1 =ln(Ip/I) =2—5.

One can obtain a more quantitative comparison
by examining the I-V curves themselves. From Eq.
(24), the density of thermally excited pairs is

so that this analysis involves both x and y, the vari-
ables of the renormalization equations. Further-
more, since V-I near T„ this treatment removes
some of the many orders of magnitude of variation,
and makes the curvature in the characteristics more
obvious. Some of the data for the sample shown
earlier in Fig. 2 is plotted in this way in Fig. 7(a),
and a set of theoretical curves, which have been ap-
proximately scaled to match the experimental
curves, are shown in Fig. 7(b). In this scaling, we
assumed that I scales with Ip(T)-(1 —T/T, p)
and that Vscales with Vp(T) =AIp(T)RN such that

y(1)= [V/Vo( T)]/[I IIo(T)]' . (50)

The fit was obtained by first setting the temperature
dependence into the set of theoretical curves, then
shifting the whole set of curves horizontally and
vertically to get the best visual match of the entire
set of curves. In this way, we obtained Io(T, )=2.4
mA, with the constant A =0.25. Given the rough-
ness of the fitting procedure, these are very reason-
able. With this fit, / ranges from 2 to 6, and lny
from —5 to + 1.

As for the comparison between the experimental
and theoretical curves, there is reasonable semiquan-
titative agreement in the curvature and the rough-
temperature dependence, with T, here corresponding
to about 3.29 K, very close to the previous estimate
of 3.3. There are substantial deviations between the
two sets of curves, particularly away from the ceriter
of the graph, but many of these deviations can be
understood. First, the analytic solutions to Eq. (29)
are physically valid only for small x and y. In the
upper left-hand corner, y is getting larger than unity;
in the lower right-hand corner, x is getting large.
For large currents, most of the experimental data
curves up slightly. We believe this may be due to
heating of the sample slightly above the nominal
temperature. For currents not too much larger than
these, thermal runaway occurs. Finally, in the lower
left quadrant of the experimental data, problems of
minimum resolution and background effects start to
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pal=1&10 " Qcm, then 1=0.4 A. This is al-
ready clearly outside the regime on conventional
transport, but we earlier used the same theory of dir-
ty superconductors to determine the dependence of
R~, with reasonable results.

The BCS coherence length is estimated to be

gp ——5000 A, taking T,p ——3.6 K and V~=1.5X10
cm/sec, and assuming the weak coupling formu-
la ' (which may not be appropriate). From these
values and the dirty-limit formula ' we obtain the
Ginzburg-Landau coherence length g(T, )=130 A.
Given the approximations made, this may be satis-
factory agreement with the value inferred above
from Eq. (51). However, back in Eq. (6), in the
derivation of the vortex excitation rate over the sad-
dle point, the approximation was made that

In(r, /g) —1=in(r, /g) .
IO O

)0 - l 0—

+

-l2
2 5

—L + 1n[Ip (T) (y, A )]

I.O

0.99
0.99

FIG. 7. (a) Plot of ln(v/I ) vs ln(I) from the data of
sample no. 4, for a range of temperatures very close to
T, =3.3 K. The lines are drawn connecting the experi-
mental points. (b) Set of theoretical curves systematically
shifted to match the experimental curves of (a).
1n(y}+In[Vp(T}/Io(T}] is plotted against t+1n[Ip(T—}].
The fit corresponds to Io( T, ) =2.4 mA,
Io( T)-(T—T,o), and Vo( T) =AIO( T)R~, where

A =0.25.

Therefore, a more careful analysis would replace
g(T, ) in Eq. (51) by eg(T, ) [e=exp(1)=2.7 ],
yielding a corrected estimate from Eq. (51) of
g( T, ) = 140 A. It would be desirable to have a more
direct check on g( T, ), but all in all the agreement is
highly encouraging.

This analysis, while not in itself proving that the
experimental data follows the renormalized theory,
certainly points the way toward a more definitive
test. What is needed on the experimental side are a
set of careful measurements of the I-V curves very
close to T„over a wide range of currents, for a
well-characterized and uniform sample. An in-
dependent measurement of the vortex core size
g(T, ) would also be useful. On the theoretical side,
it would be desirable to extend the form of the re-
normalized interaction farther into the regime for
T& T„ for larger values of y(t, T). Work in these
areas is continuing.

Ip( T ) =4eks T w A h g( T )

=880 mA/g( T, ) (A) (51)

(w is the film width = 1 mm) which gives
g(T, ) =370 A for the inferred value of 2.4 mA for
Ip(T, ). We were unable to obtain a direct measure-
ment of g(T, ) [e.g. , from a measurement of the per-
pendicular critical field II,2(T)], but one can obtain
an approximate value by using the theory of dirty
superconductors. The estimated normal-state film
resistivity is pN ——2700 pQ cm. If we estimate

become important.
An additional check on the consistency of this ap-

proach comes from considering the magnitude of
Ip(T) =2.4 mA inferred from the fit. From the def-
inition of Ip, if one uses the universal jump condi-
tion [Eq. (11)]to evaluate n, ( T, ), one obtains

VII. CONCLUSIONS

To summarize what has been shown in this paper,
we have fabricated high-sheet-resistance homogene-
ous films of Hg-Xe alloys, and examined the non-
linear I-V characteristics near and below the super-
conducting critical temperature. The fact that the
I-V curves are linear on a log-log plot is a rather
direct indication of the logarithmic nature of the
vortex-antivortex interaction. The slope a(T) on
this log-log plot is a measure of the prefactor of this
logarithmic interaction, and we can unambiguously
infer the BCS critical temperature by extrapolating

a(Th, )=pi, and the temperature T, at which the
Kosterlitz- Thouless vortex-unbinding transition
should occur by taking a ( T, ) =3. The transition
width ~, =1—T, /T, o depends on the sheet resis-
tance of the films Rz in approximate agreement
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with the theory of dirty superconductors, as derived

by Beasley, Mooij, and Orlando. This provides ad-
ditional confirmation that the low-temperature
transport properties are dominated by logarithmical-
ly interacting vortex pairs. However, there is a sys-
tematic deviation from the simple unrenormalized
interaction, characterized by an effective dielectric
constant at the transition e, =n, /n, = 1.2+0. 1, in
reasonable accord with expectations of theory, al-
though this parameter is nonuniversal. The shape of
the resistive transition for T y T, is also in reason-
able agreement with predictions of the KT theory.
Furthermore, the apparent lack of a sharp jump in
a(T) is consistent with its measurement at a finite
current and hence a finite scale. Finally, detailed

analysis of V(I) near T, provides reasonable agree-
ment with theoretical predictions of the spatial re-
normalization of the vortex interaction and related
quantities. Taken together, these appear to provide
fairly strong evidence for some sort of vortex-
unbinding transition at T„which may be of the KT
universality class.
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