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Static electronic susceptibility, X(qii, z,z'), of the Lang-Kohn jellium surface
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We present the first accurate values of X(ql[,z,z'), the static susceptibility of a jellium surface,

including (i) finite surface wave vector qII, (ii) Friedel oscillations (from an exact kinetic energy

functional); (iii) Kohn-Sham exchange-correlation effects (Wigner form); (iv) self-consistent
screening; (v) realistic Lang-Kohn zero-order profile; and (vi) comparison, for r, =2.07, with a

useful approximation.

The self-consistent and non-self-consistent suscep-
tibilities X( r —r ') and Xo( r —r ') of the uniform

electron gas have been quite thoroughly studied. "
Computation of their space Fourier transforms X(q)
and X (q) [—= X"'"d""d(q) ] is facilitated by transla-
tional invariance in r space. For the jellium model
of a metal surface, broken symmetry in the z direc-
tion leads one to consider susceptibilities X(q~i, z, z')
and xo(qii, z,z') defined as follows:

&n(r ) =cos(q~~ r ) Jt X(q~i, zz )Av '(z')dz'

+ O((g Vext)2)

f oo

=cos(tTi~ r) X (qiizz)AV (z)dz'

+ O((g Vsc)2) (2)

Here hn( r ) is the change in electron number densi-
ty at r, induced by an external source yielding an
electron potential energy

5 V'"'( r ) =cos(q r )5 V'"'(z)

where qII = q„x + q~y". 4 V" is a total effective self-
consistent potential which, in density functional
theory, includes external, Hartree, and exchange-
correlation terms.

It has recently been argued s that X(q~~, z, z') is im-
portant in the study of static and lattice-dynamical
properties of simple-metal surfaces within a pseudo-
potential model. Accurate results equivalent to
values of X(q~~ =0,z, z') are already known within lo-
cal density functional theory but no such results
exist for finite qII, so that features arising from crystal
surface structure cannot reliably be described. A
number of workers have used finite step or barrier
models, neglected exchange and correlation, used
semi-classical approaches which omit Friedel oscilla-
tions, or have given expressions considered too com-
plex for practial numerical evaluation. Our method,
while similar to others, avoids these limitations. Full
details of our formulas, which are related to ones for
spin susceptibility and atomic polarizability, will ap-
pear elsewhere. 4 A summary follows.

Consider electrons moving in an external potential
Vi+" (z) due to a half-space z (0 of uniform jellium
background, plus an external three-dimensional per-
turbation 6 V'"( r ). The self-consistent Kohn-Sham
equation' is

[ tt2V2/2m— + Vo«(z)+Avsc(r )]xlr (r )

, ~, , nLx(z')+&n(r')
+e' d'r

Ir —r'I (4)

where p.„,(n) is the exchange-correlation contribu-
tion to the chemical potential of a uniform gas of
density n.

The zero-order problem [b V'"'=0=6 v",
hn( r ) =0] is the one-dimensional jellium problem
solved by Lang and Kohn, with box-normalized
eigenfunctions

xlr
k ( r ) =(2/Q)i 2exp[i (kx+ kry)]i]ii, (z)

i]tk(z) — sin[kz —y(k) ] (6)

(a) Non self-consistent susc-eptibility Xo(qq, z, z'). We
temporarily assume the total self-consistent
potential-energy perturbation 6 V"( r ) to be known,
and to have a sinusoidal variation in the xy plane.
Then the first-order correction b, %", to the zero-order
Lang-Kohn solution xlr-„( r ), satisfies

[—tr 'vr /2m + VoL" (z) —e k ] Exit
k ( r )

= —b, V"(z)cos(qii r )xIr'-„( r ) . (7)

The solutions hxlr-„( r ) have a surface-parallel posi-
tion dependence exp[i(kii+ qi~) r ], leading to a

=ek lkxr( r ) . (3)

Here the total self-consistent potential energy is com-
posed of external, exchange-correlation, and self-
consistent Coulomb terms:

v,"(z) +a v-( r)
= Vi'i'(z) +A V'"'( r )+p„,[n (z, ) +An( r )]
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one di-mensional (1D) Schrodinger equation containing the zero-order potential VoL" (z), with energy E = e-
k—lt'(kll+qll)'/2m. [Note: Ecan lie below the minimum of Vo~" (z).] We solve the 1D equation via a Green

function constructed from "right" and "left" zero-order solutions at eriergy E, thus avoiding infinite summations.
This gives an expression for b n ( r ) in the form of Eq. (2) with

X (qll, z, z') = (8m/mh ) d k 8(kF —k) rlrk (z) rlrk (z') rlrF+(z&) rirF'(z&)/I pl

Here, p = (k, —2k„qll —
qll )'/ (which can be imaginary), while r[r»+, rlr» are solutions of

[ ir2d /—(2mdz ) + V (z) —V "(—oo) kK—/2m] [rr»(z) =0

(8)

satisfying the following boundary conditions:
(i) For K real,

1

sin[Kz —y(K) ], z ——~
r[/»(z)

0, gazoo
1

cos[Kz —y(K) ], z
rtr»(z)—

Ioo, z +no

(ii) For K imaginary,
r—exp( —[Kiz)/2, z- —~

$»(Z)—
[0, z-+
r

exp( ~
K ~IZ), z -—

rlr» (z)—
OOF g ~+OO

We obtained i[r+ and ii/'numerically, using zero-order
Lang-Kohn surface potentials VOL" (z) generated by

X (qll, zz ) X ""(qll, Iz z ~)

(2K) X
in ar [(q +q ) /]

& —oo

x exp(iqz) dq (10)

(ii) For z' —0 and z

I

Ferrante"; these are self-consistent and employ lo-

cal exchange-correlation potentials derived from the
Wigner interpolation formula. ' We performed the k„
integral in Eq. (8) analytically, and converted I dk„

to Jdp. There resulted a two-dimensional integral in

the k„p plane involving [for qll (2kF (bulk)] finite

pieces on both the real-p and the imaginary-p sheets.
The results for aluminium (r, =2.07) are shown in

Fig. 1.
Features of the solution are as follows: (i) For

z -z'(& —1 a.u;, X reduces to the bulk result

'»n[(4kF' —
qll ) '"I 41

—@], qll + 2kF
X qii, z, z CI gI X '

exp[ —(qii 4kF')'"I(I], —
qll +2kF,

X(qll, z, z') = X'(qll, z,z')

+ JI dz& 0(qll, z,») X(qll, zi,z'), (12)

where

Q(qll, z,zi) = J [p,„',(zi)8(z2 —zl)

+2rre'exp( —qll)zi —Z2()/qll]

&& X (qll, z, z2) dz2 (13)

where (=z —z', and rtr and c are independent of z
Thus Friedel oscillations appear only when q]] & 2kF.

(b) Self consistent scr-eening From Eq. (. 1), the
self-consistent susceptibility is just the linear
response, at z, to an external perturbation

6V'"'( r ) =5(z —z') cos(qll r )

We put this into the linearized form of Eq. (4) and
performed the x- and y-Coulomb integrations
analytically. Multiplying the resultant expression for
5 V"(zi) by X (qll, z, zl), and using Eq. (2), we ob-
tained

I

and p, „',(zl) is the density derivative evaluated at the
Lang-Kohn density nLx (zi).

We discretized Eq. (12) and solved it iteratively,
taking care with the Friedel oscillations for q[[ & 2kF.
The results appear in Figs. 1 and 2.

(c) A simple approximation for X. The lack of
Friedel oscillations for q][) 2kF does not indicate that
our solutions in this regime are the Thomas-Fermi
ones. A quasilocal approximation is available, how-

ever: Consider

(qii. z, z') = X'"'"(qii, ~z —z'I, n) (14)

where X
"'" is the self-consistently screened version

of Eq. (10), including exchange and correlation. The
bulk density n used in (14) is the average of zero-
order jellium densities, n = [ nLx (z) + nLx (z') ]/2.
Figure 2 shows that, in the case of aluminum at
least, this ansatz is very accurate for q[[ )2kF and

surprisingly good for q][ ( 2kF, though the Friedel os-
cillations in the latter case are, of course,
misrepresented. These results largely vindicate the
use of X'"""rather than X in a recent calculation of
the surface energy of Al. '
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FIG. 1. Electronic susceptibilities of the Lang-Kohn jelli-
um surface with Fermi wave number kF =0.927 (alumi-

num), for two nonzero surface wave vectors qll. The
dashed line represents the non-self-consistent susceptibility
X (qll, z, z') from Eq. (8). The solid line represents the self-
consistent susceptibility X from Eq. (12). All quantities are
in a.u. (atomic units, e =f = m, =1). The cusps indicate the
location of z'.

In practice, we suggest the use of Eq. (14) for z
and z' both near the surface, or both deep in the
metal, in the case qll (2kF, and for all z, z' in the
case qll )2kF. We have developed efficient algo-
rithms for Xb"'k(q~~, lz —z'I, n) Equations .(11), to-

gether with other results which we are developing to
deal with asymptotic reflection and interference
terms, should then reduce the amount of tabulation
required to give a complete summary of X. Detailed
calculations based on wave functions may therefore

FIG. 2. Comparison between the self-consistent suscepti-
bility X(qll, z, z') from Eq. (8) (solid line) and the average-
density approximation x'"""(qll,z, z ) from Eq. (14) (dash-
dotted line).

be unnecessary in the future. We should also point
out that, because of the simple way in which p;„,
enters this theory [see Eq. (13)], improved and even
nonlocal density functionals can easily be included.
We can thus hope that, shortly, lack of a reliable stat-
ic jellium surface susceptibility will no longer be an
obstacle in the theory of simple-metal surfaces.
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