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Application of the intermediate-coupling scheme to a Sd system, K20sC16
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In this paper we have applied the generalized intermediate-coupling scheme, developed by us,

to a Sd system, K20sC16, and have demonstrated very clearly the great convenience and simpli-

city of this scheme compared to the usual strong-field coupling scheme which was applied earlier

in studying this complex. Practically without any labor we have been able to get a very close

agreement with experiment for which the conventional approach needed to diagonalize matrices

of large dimensions. This shows the distinct advantage of the present model in studying the op-

tical and magnetic properties of the complexes of the palladium and platinum groups.

I. INTRODUCTION

A generalized intermediate-coupling scheme was
developed' for the many-electron systems of
transition-metal ions under ligand fields with cubic
(octahedral or tetrahedral) symmetries. The unper-
turbed levels in this scheme fully incorporate the
crystal field as well as the spin-orbit interaction; the
electron-electron Coulomb interaction is treated as a
perturbation. Naturally, this scheme is extremely
helpful for the complexes of transition-metal ions in

the second and third series where the ligand field and
the spin-orbit coupling are large compared to the
electron-electron Coulomb interaction. The applica-
bility and great simplicity of the scheme was illustrat-
ed for the complexes OsF6 (Sd' system)" and
K2ReC16 (Sd system). '

In the present paper we shall show the applicability
of the scheme for the complex K20sC16 (Sd system).
Rahman studied this complex by using the wave
functions in the usual strong-field coupling scheme.
He calculated the energy levels by considering the
configuration interaction between the t2, t2e config-
urations. Such calculations involve simultaneous di-

agonalization of the crystal-field, electrostatic, and

spin-orbit interactions. Naturally, the matrices en-
countered in that approach were considerably large in
dimension; these were 6 x6, 8 &8, 11 x11, and
12 & 12 for A~, E, T~, and T2 levels, respectively.
The seven lower-lying levels for this complex
K20sC16 can be very easily evaluated by using the
intermediate-coupling scheme' where, in good ap-
proximation, the matrices involved are only 2 x 2,
2 x 2, 1 & 1, and 2 x 2 for A ~, E, T~, and T2 levels,
respectively. For the sake of comparison, we shall

employ the same set of values for the parameters Dq,
fd, B, and C, as used by Rahman who got good
agreement with the experimental results of the opti-
cal absorption spectrum and the magnetic susceptibili-
ty.

II. CALCULATION OF ENERGY LEVELS

Os + in K20sC16 is a Sd ion situated in the oc-
tahedral ligand field. To investigate the ordinary
properties of the system we need only a few lower
states. So we start with the seven low-lying uper-
turbed levels constructed in the intermediate-coupling
scheme'.

lysi:~i), Iysly7:~i) ~ lyaIy7:E). Iys&y7:E) ~ Iyslyv:Tt& ly8ly7 T2), Iysiy):T2)

Usually, 6p(y8„) is much greater than eo(ys&) and

eo(y7) so that the states coming from the configura-
tions involving y8„are situated much higher in ener-

gy scale and therefore can be omitted. The expres-
sions for these three single-electron energy levels (in
terms of the crystal-field parameter Dq and the spin-
orbit coupling constant (d) are given in Eqs. (2.3)
and (2.6) in Ref. 1. Thus, for the values Dq =3300
cm ', fd =2S75 cm ' as used by Rahman for
K20sC16, we get Eo(ysl) = . 14775.2 cm, Ep(y7)

I

= —10625 cm ', eo(y8„) =20087.7 cm '. Using
Tables IIIA and IIIB given in Appendix B of Ref. 1,
we express the unperturbed states considered in
terms of the strong-field scheme wave functions.
Then, using the known electrostatic matrices in the
strong-field scheme (see Table A28 in Ref. 5), we

can easily construct the required matrix elements of
the Hamiltonian with respect to these states of the
present scheme. These matrix elements in different
blocks are given below.
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A ~ block (2 & 2):
&ys41'. Ail3'lysi'Ai& =4po(ysl) +B[ 10 12Coz+6Cp4+8~6( C» 2C»+C»)~

+C( 3 C4p+SC4g+SCps+16Cgs) +6A

&y]l

A&I�'~

I y4yl:A & &
=B[J2(5C4o +7C4&+ Cp4+ Cos) +4%3(—C3~ —C33+ Crs) ~

(2.1)

+ C (5 C4p +16C4p —Cy4 +3 Cps)
3

& y)Iyl:A t I Xl y(iy/A r &
= 2 op(ysi) +2po(y7) +B[ 5C4—o+2Czz+4Co4+4 J6(C3~ + C~) ]

+C3 (13 +12Cgp+10Cp4) +6A

E block (2 & 2):

&yliy7 EI~'Iy((y7E& =3po(ysl) +pp(y7) +B(—11 —4Cps+3Cpg+4 AC, 3)

+ C3 (19—14Cps +10Cp4) +6A

&yhy7:Eli~ly(iyl:E& =—242B(Ctp+ C~s) — C(C&p)
2

3

&y4yl:EI3'Iy)lyl:E& =2~o(ysl) +2'(y7) +B(—13+446C~3+4Co, +5Co4)

+C3 (17 —SCpg+SCp4) +6A

T~ block (1 X1):

&yljy7 Tl l~ I y)iy7: Ti &
=3'so( ysi& + po( y7) +B( 15 +446 C)3 +—3 Co4)

+C(5 —
3 Cog+ 3 Cp4) +6A

Ts block (2 x2):

&y((yv:Tzl~ly((y7:Ts& =3'(ysl) +so(yv) +B —11 —
—, Cpq+3Cp4+ (—2C3, +C»)4 4'

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

+ C3 (19 12Cpp+10Cp4) +6A (2.8)

&y)iy7:TzlaClyiby&:Tz& =B (6Cio —14Ctr) + Cr& +C (C3o Cia)
4

,
3 3

&y/&y):Tz[X lyhy):Tz& =2ao(ys&) +2po(y7) +B —13+
3 Coz 3 Co4+ (2C&i+Ca)4 i 446

(2.9)

+ C3 (17—4Cpg —2Cp4) +6A

In Eqs. (2.1)—(2.10) we have used the same nota-
tions as in Ref. 1.

We use the same values of the parameters as
chosen by Rahman. 4 These are

Dq =3300 cm ',

fq=2575 cm '

9=365.5 cm ',

C =1561 cm '

These values of the parameters give rise to the fol-
lowing energy levels easily obtained by diagonalizing

I

the small matrix blocks in our scheme:

Ei(Ai) =0
' Eq(A~) =18595 cm '

E~(E) =4629.4 cm '

Es(E) =10173 cm ',
T~ Et(T~) =2681.4 cm '

E~(Tq) =4511.4 cm '

,Eq(Ts) =10314.2 cm '

(2.10)

(2.11)
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where the positions of the energy levels are given re-
lative to the lowest level E~(A~). These relative po-
sitions of the low-lying energy levels almost agree
with those in Ref. 4.

We note that Rahman's calculations in the strong-
field scheme involve the configurations t2 and t2 e
only, omitting the higher states coming from the con-
figurations t2e', t2e', and e . If all the configurations
were included in that scheme the dimensions of the
matrix blocks would have been much larger: 14 x 14,
19 x19, 23 X23, and 27 &27 for A~, E, T~, and T2
blocks, respectively. That this truncation made by
Rahman in the strong-field scheme does not lead to
serious errors can be easily checked with the help of
our intermediate-coupling scheme. Thus, if we retain
in our scheme only these strong-field states which
come from the configurations t2 and t2 e, then the re-
lative positions of the energy levels are found to be
not very much different from those originally ob-
tained in our scheme and given in (2.11). These new
positions of the energy levels are given below and are
naturally found to be a little closer to those in Ref. 4.

III ~ MAGNETIC SUSCEPTIBILITY

As we have seen in Sec. II, the ground level
transforms as A~ (in 0„' double group) so that there
is only a temperature-independent paramagnetic sus-
ceptibility in first-order calculations. The general ex-
pression for this susceptibility is given by Eq. (3) in
Ref. 4. This is

X =0.5106 $) (P„)KL, +2S, ) fp) J'/(E„—Ep) . (3.1)

Since the ground state Pp transforms as A
&

and both
L, and S, transform as

~ T~O), the matrix elements in
Eq. (3.1) will be nonvanishing only for those excited
states which transform as

~ T~O). There is only one
such excited state in the group of low-lying levels
considered in. the present analysis. This is
I y/I y7. T,O &.

Diagonalization of the A ~ block made earlier yields
the following wave function for the ground level:

E&(A&) =0 cm '

' E,(A&) =18473.4 cm ',
Et(E) =4585.8 cm '

E2(E) =10181.9 cm '

T~ E~(T~) =2651.2 cm '

E~(T2) =4490.5 cm '

E2(T2) =10303.5 cm '

(2.12)

Pp=—)E~(A~) ) =cosglysi'. Ar) —sing)ysiy):A~)

(3.2)

where

cos@=0.995 865 8, sin@ =0.090 836 3

The matrix element of the magnetic-moment opera-
tor (N, = KL, +2S,) between the ground state and
the excited

~ T~O) state can now be evaluated by us-
ing Appendix A together with Eq. (3.21) in Ref. 1.
Thus we find that

(E)(A )) ~ N, ~ y/(y7. T)0) =——cosP+ sing [(2 +K2) C]p —v 6K& Cp&]
2 1

3 J2 (3.3)

where, as in Ref. 1, two different orbital reduction
factors (K~ and K2) are introduced. Using Eq. (3.3)
and the value of the excitation energy for the T~ lev-.
el as obtained earlier in (2.11), we find the suscepti-
bility X as a simple function. of the parameters k~ and
k2. The experimental values of susceptibility in
literature vary from 860 && 10~ to 941 & 10~ and the

I

average value is 908 x 10 (see Ref. 4 for details).
If we take k~ = k2=1 in our calculation, the value of
the susceptibility comes out to be 907 x 10~. How-
ever, Rahman found the value of x to be 922 X 10~
on taking k~ =k2=0.7 (in Ref. 4 the notations
k and k' are used in place of k2 and k~, respec-
tively).
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