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New method for self-consistency in disordered systems
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Effective-medium theories for the electronic structure of disordered systems often lead to
self-consistent equations for the self-energy. We present a powerful method which solves
for the self-energy by converting the integral equations into a system of simultaneous equa-
tions. We consider two distinct cases: tight binding and muffin tin. Convergence is easily
obtained where previously it was very difficult. Further, we provide a physically appealing
and useful interpretation to our method.

One approach to an understanding of disordered
systems is to replace the disordered medium by an
effective medium. For the case of electrons in a
substitutionally disordered medium the coherent-
potential approximation' (CPA) and some proposed
extensions of it ' are used. For the case of position-
ally disordered (amorphous) systems, the effective-
medium approximation (EMA) of Roth is generally
regarded to be the best method, although it is one
of the most difficult computationally. The replace-
ment of the disordered medium by an effective
medium often leads to coupled nonlinear and nearly
singular integral equations for the self-energy.

We shall present a powerful method to solve for
the self-energy. It consists of first converting the in-
tegral equations to a large system of simultaneous
nonlinear equations. Solving this system yields the
single-particle Green's function and related physical
quantities such as the density of states (DOS).
There exist many methods which may be used to
solve this system of equations. s In particular, we
select the complementary Broyden approach. ' Our
method is particularly useful in dealing with prob-
lems of positional disorder (the EMA) (Ref. 4) and
the extensions of the CPA. ' Further, we provide a
physically appealing interpretation to our method.
The interpretation is based on the two-particle
Green's function. The latter is related in a simple
way to transport properties in disordered systems
via the Kubo-Greenwood formula. ' '"

We illustrate our method by considering the EMA
(Ref. 4) in detail. We define the tight-binding
unaveraged Green's function G;1 as '

$ (ES t H;t )Gtt ——5ij. — (1)
I

Here i, j, and I refer to site indices. H,z and S,J are
the transfer and overlap integrals, respectively. The

"Mk =n~k+~a

Hz J[H(r)——ES(r)]g—(r)e'" 'dr . '
(4)

Here n and g(r) are the number density and pair
distribution function (PDF), respectively. The na-
ture of the various proposed approximations is
determined by equations describing the self-energy
X~ and XIk. In the EMA of Roth

dk
Xg —— Hk6 Mk k k 8 3

dk'
Xtq ——n I h(k —k')Mk, Gq.

(sa)

(Sb)

and h (r )=g (r ) —1 is the pair correlation function.
Almost all the proposed effective-medium

theories may be cast in the above form with dif-
ferent expressions for the right-hand side (rhs) of
Eq. (5). In Eq. (18) we shall give an example of a
different approximation. The self-consistency prob-
lem is to find M-„and Xq such that Eq. (5) is satis-
fied. One usually takes S(r) to have an exponential
form

S(r)=e [1+rlao+ —,(rlao) ], (6)

where ao is a parameter which governs the range of
S(r) H(r) is pro. portional to S(r). Details of the
model are provided in Ref. 6. For the muffin-tin
case treated in this work we have selected a single
phase shift which mimics the resonant d phase shift

averaged Green's function in momentum space is
given by

G- =(E) n
k E —nM —X~k

where
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of Ni. The formalism and details have been
described before. '

To solve Eqs. (3) and (Sb) numerically, one as-
sumes that the integrand can be evaluated on a set of
mesh points [k;] where we make an implicit as-
sumption that all functions in the integrand are
available at every k;. We have on using Eqs. (3) and
(S)

M(k;) =nH(k;)
N

+ g w;ih(k;, k))M (k))G(k)),
1=1

where

(7a)

N—g w(ih(k;, kj)M (ki)G(ki) .
1=1

(8)

Note that the coupled Eq. (Sa) can be included in

Eq. (8) by augmenting the vector function F(M).
One can now use powerful quasi-Newton methods

to solve this system. We select the complementary
Broyden method which has several advantages: (i)
It does not require explicit derivatives (as do the
Newton and Gauss-Seidel methods). (ii) It does not
require inverting large matrices even for problems
with many variables such as ours (one has an N2 in-

Jkl+I. J

h (k;,kj ) = I „' h (s)sds (7b)
l J

and w;I are the weighting factors for numerical in-
tegration. One procedure is simple iteration where
one guesses a form for M z (=M'z') and iterates the

above equation. Note, however, that the iteration
procedure is not relevant to the final solution. The
M(k;) are determined from Eq. (7) and it does not
matter how one gets to them as long as the final re-
sult can be shown to satisfy Eq. (7). This prompts
us to regard Eq. (7) as a large system of simultane-
ous equations, one for each point k; of interest.
Consider the following functional

Fa,.[[Ma, ]]=M(k') —nH(k')

stead of an N process). (iii) The convergence is ra-
pid. This last point is achieved by using the infor-
mation from the entire past history to guide the
present iteration.

The following is a brief description of the comple-
mentary Broyden method ' as applied to our prob-
lem. Let us consider a Taylor expansion of Eq. (8)

F(M) =F(M(P))+J(M M'P—') . (9)

Since the matrix J ' is generally not available, we
approximate it based on information from previous
iterations, i.e.,

(P —() M(P)+[J—1](P)

X [F(M'P -")—F(M'P')] .

Thus Eq. (9) is used on the previous step to define

[J ']'p'. However, Eq. (11) places only N con-

straints on the N elements of J '. To completely

specify [J ']'p' and further, to retain information of
the iteration history, we demand that the Frobenius
norm of the change be minimized,

$ g [(J—1)(P) (J 1)(P —1)]2 0 (12)

We then use the method of Lagrange multipliers
to include the constraint Eq. (11)and obtain

Here p denotes the iteration number and the Jacobi-
an matrix of first partial derivatives has the follow-
ing elements:

J;J=5;J—w;Jh(k;, kj)

X[2M(kj)G(kJ)+M (kj)G2(k )] .

(10)

Newton's method which forms the basis of most
modern methods, specifies that the "guess" M'p+"
for the next iteration be one that makes the rhs of
Eq. (9) vanish, i.e.,

M'P+"=M'P' [J] 'F[—M'P'] .

IgM(P )) (J ))(P ))~F(P ))I(HAFT)(P
—))

(J—1)(P) (J—1)(P —))+ (13)

where
hM'P —"=M'P' —M'P —"

(14)

~(p —&) p(p) F(p —&)

An initial guess for the Jacobian inverse is needed.
If we choose to model the initial guess by a diagonal
constant matrix'

(J ')"'=aI,

I

where a is between zero and unity, we obtain from
Eq. (9),

M'-" =(1—a)M(-"
k k

dk'
+a H-„+ f h(k —k')(M'-„', ) G'-„',

(1S)
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tial mixing is used (see also Ref. 15). Note that the y axis is a log scale.

This is "potential mixing" (also called simple itera-
tion when a = I).

Figure 1 compares the convergence rates of the
proposed method with potential mixing, for typical
cases. For some choices of the energy, the potential
mixing actually diverges. ' ' The convergence rate
of our method is dramatically better.

In Fig. 2 we plot the DOS for the tight-binding
model. The shaded areas are regions where conver-
gence in the EMA was not obtained even with 60
iterations either by potential mixing or Pratt
scheme. Our method converges within 15 iterations
even for these difficult regimes. We note the follow-
ing: (i) The EMA agrees well with calculations done
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FIG. 2. Density of states for the nonorthogonal tight-
binding model. The shaded areas represent regions where
the EMA failed to converge by conventional methods.
See text for a discussion.

via the negative eigenvalue method, by Fujiwara and
Tanabe. ' (ii) The present method shows that the
EMA yields the band edge at E=8.2 in agreement
with the Fujiwara-Tanabe calculations and in re-

k bl contrast to other effective mediummar a e
iii~ Thetheories which do poorly at the band edges. (iu e

EMA is observed to behave analytically for all ener-
gies. We have also plotted the DOS for a recently
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FIG. 3. Density of states for a single phase-shift model
of liquid Ni. The shaded area represents a region where
convergence by conventional methods is ve yr difficult to
obtain (see Ref. 15). The small differences in the two
curves is because higher accuracy is possible by the rapid-
ly converging proposed method.
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proposed herglotz approximation (HA)' where con-
vergence was obtained by potential mixing. The
reason for the success of the potential mixing
method in this case is discussed below [Eq. (18)].
Other herglotz approximations' ' do worse than
the one plotted here. Figure 3 shows the DOS for a
single phase-shift muffin-tin model of liquid Ni.

The experience with the calculations in Figs. 2
and 3 suggests that on an average, EMA calcula-
tions can be done with greater accuracy and an
order of m-ag-nitude reduction in computer time by
the proposed method. This could be very useful in
treating sophisticated models of nonsimple liquid
metals, ' complex alloy systems such as metallic
glasses and extensions of effective medium theories
to problems in elasticity and electromagnetic
scattering.

The proposed method will also be very useful for
many problems in substitutionally disordered sys-
tems. Some examples are the following: (i} for a
multiband (eight or more bands} case where one has
both diagonal and off-diagonal disorder (an exam-

ple is the important semiconducting quarternary al-

loy In„Ga&,As„P~ «), (ii) cluster CPA calculations
where the complexity of the problem goes as the
square of the cluster size, (iii} recently proposed ex-

tensions of the CPA where the self-energy is k
dependent, and (iv) substitutionally disordered
Heisenberg ferromagnets and antiferromagnets.

We offer a physically appealing interpretation to
the inverse of the Jacobian. The conductivity tensor
for a system with short-range order has recently
been derived. " For a tight-binding model in the
EMA one has"

o(E)=—f j -„j-„tRe[G-„A,-„(E,E)]

+ ( 6-„~ k2-„( ,E'E}J
dk

(16)
Here the j's are the current matrix elements.
A, k (E,E') are related to the vertex corrections with

A, (E,E)=(J) 'I, (17)

where I is a vector with each element equal to unity.
The Jacobian needed to obtain the single-particle
Green's function can similarly be related to the
two-magnon response function for disordered fer-
romagnets and the lattice thermal conductivity for
the phonon case.

We have treated the EMA in detail. For a num-
ber of theories which rigorously satisfy analyticity
requirements (e.g., herglotz theories)' one can
obtain simple forms for the Jacobian. For the
Gyorffy-Korringa-Mills theory, ' Eqs. (5) become,
for example,

dk'
Xg+ n -„=n H-„+ f [1+nb ( k —k ') ]H -„,6-„,

(18)

Using the fact that 1+ nh (k =0)=0 and if H
k

is a rapidly decaying function, one can show that for
these theories the Jacobian is approximately an iden-
tity matrix. Recall Eqs. (14) and (15), and one sees
why a simple iterative scheme will be successful for
these theories. This is indeed why in Fig. 2, the HA
(Ref. 18) converges easily by potential mixing. Fur-
ther, we have on using Eq. (17) that the vertex
corrections may be small for these theories. A simi-
lar method has been used successfully for the band
structure of ordered, but complex semiconductors.
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[E,E'~(E+i ri, E —ig)]

understood. In Ref. 11 an approximation to A, -„was
defined, which was called the Rubio-Ashcroft-
Schaich approximation. Within such an approxi-
mation, one can show
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