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From our solution of Maxwell's equations for aggregates of spherical particles, we answer

questions such as: When is a particle isolated, or when can one not dist&nguish one small

particle near or in contact with a larger one? In order to do so, the theory is limited to the

dipolar approximation and applied to binary clusters of metallic particles; numerical results

are presented specifically for sodium. The dielectric constant contains plasmon effects. A

discussion of high-order polar effects is included.

I. INTRODUCTION

Much attention has been recently devoted to the
prediction of the absorption modes and the shape of
the absorption spectrum of clusters of particles. The
ntx:essity of studying clustering effects naturally
arises since it is extremely difficult in experimental
work to isolate a single particle of volume as low as
1000 A, either because there is necessarily another
particle nearby, or because instrumental techniques
relying on "visual" observation are not sensitive
enough to allow for the detection of a very small
particle near a larger one.

Therefore several questions, which theoretical
work can attempt to answer, are put forward. (l)
What is the closest distance of approach for which a
particle can be said to be isolated? (2) What are the
"obvious" effects of a small particle next to a much
larger one? (3) When are they important or negligi-
ble? (4) When can one observe or not a small parti-
cle next to a larger one'? Following such an
enumeration it appears that we are obviously con-
cerned with a problem involving "small clusters, "
but similar questions can be asked in the context of
studying larger clusters.

However, in such a case the cluster statistics is
likely to be relevant and sufficient information is
usually not available in the literature. In fact, at-
tempts to describe the pair-correlation function for a
powderlike system are rather rare. Usually very
large clusters cannot be systematically reproduced,
and any theory must rely on averaging procedures as
done in the numerous works pertaining to the theory
of the effective dielectric constant (EDC) of a ran-
dom medium. ' %e have presented a simple "statist-
ical" approach giving very reliable results else-

where, and following the same ideas as those
presented in previous papers of this series. How-

ever, it seems clear that information on the short-
range order in a cluster is very important for
describing an EDC. Therefore, further information
on very small clusters has to be presented, not with-

standing the more experimentally oriented questions
listed here above.

Obviously the simplest cluster is the single parti-
cle. Mje, Clanget, Simanek io, 11 and Ruppin
among others have studied independent particles.
Effects of aggregation were nicely illuminated in the
pioneer work of Clippe, Evrard, and Lucas'~ (CEL)
based on a Hamiltonian (or dynamical matrix)
description of interacting dipole fiuctuation in

spherical particles. Although limited to dipolar cou-

pling, the CEL theory and subsequent work' '
could present some qualitative result in reasonable
agreement with experimental optical spectra.
Several discrepancies have been discussed by various
authors, ' ' and were somewhat resolved.

The most annoying features of CEL theory are
likely the difficulty of including high-polar-order
couplings (or charge-density fiuctuations) which are
very relevant when particles are close to each other
and form dense clusters. The extreme case of very
large random aggregates does not seem easily tract-
able due to the difficulty of introducing a clear sta-
tistical picture in the formalism, and of taking into
account retardation effects. From an experimental-
ist view point, one can say that CEL theory could
not reproduce the low-energy part of the optical
spectrum and does not give back the bulk properties
in the limit of large particles.

Our way to "extend" CEL theory was to solve
Maxwell's equations as exactly as possible to all po-
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lar orders. In paper I of this series, we presented
the long-wavelength-limit solution and applied it to
the ionic aggregate cases as those looked at by CEL.
In paper II, we presented the general theory in or-
der to treat any arbitrary cluster geometry and any
light incidence. Retardation effects as well as elec-
tric and magnetic interactions were included on the
same footing. Metalliclike particles with given
plasmon dispersion relations were studied. In paper
III, ' we have studied the case of inhomogeneous
particles. In several cases, quadrupolar and octupo-
lar interaction effects were looked at, e.g. , for binary
clusters, linear chains, tetrahedra, and more
complicated clusters. We have proved that contri-
butions from high-order polar interactions are im-
portant in not only modifying the position of ab-
sorption modes but also in introducing secondary
structures. ' Nevertheless, the amount of numerical
calculation increases and becomes somewhat tedious
when the size of the cluster grows or when the rela-
tive sizes of the particles are arbitrary. Further-
more, going beyond the dipolar approximation as we
have done improves the agreement with experimen-
tal data, but does not give any better hint to the
above questions than a simple calculation limited to
the lowest-order approximation.

In fact, when applying our theory to the metallic
particles in II, it was observed that the lowest-order
approximation was already sufficient to distinguish
various spectral regions. The frequency region
above the bulk-plasmon frequency co& consists in a
large hump with very small ripples. A very dif-
ferent behavior is observed in the vicinity of the
Frohlich mode at co&/W3. Therefore, the following
results will serve to illustrate only the region below

co&, and will only concern the binary-cluster case.
The theory is exactly that presented in paper II of

this series, and is summarized in Sec. II. However,
we consider also the case in which the light propaga-
tion is parallel to the line joining the centers of the
spheres. In Sec. III, one will see that in such a
geometry "shadow effects" are observed.

It has appeared more pedagogical to group our re-
sults into two classes according to the size of one
particle. Somewhat surprisingly, the results seem to
be different indeed if one particle is very small (10
A) or is of larger size (100 A). We also treat the
case of two equal-sized particles with increasing ra-
dii to explain such a surprising effect. Drawings
(for a large number of cases) can illustrate the great
variety of results "better than words" and they will

represent in some sense "experimental results. "
In Sec. IV we conclude this work by showing the

various trends of absorption modes, and thus we
answer the questions set in this introduction. We
compare to other works. We also consider the effect

of high-order polar interaction, but in the long-
wavelength limit only (Appendix A).

II. TWO-SPHERE —CLUSTER THEORY

The theory which we follow is identical to that
presented in Ref. 6. The solution of Maxwell's
equation is established via the usual boundary condi-
tions. If the fields are small enough such that the
sum of the polarization and diffusion currents is
proportional to the electric field, it is formally possi-
ble to solve Laplace's equation for a system of many
spherical particles imbedded in a matrix. We refer
the reader to paper II where the theory has been
presented for the most general situation then. It is
thus sufficient for our purpose to restrict at once the
number of particles, and consider only two spheres
of radius R~ and R2, separated by a distance
a &R&+R2. The particles are assumed to be made
of the same metallic material and characterized by a
plasmon frequency co& and a dielectric function E

(identical to that used by Ruppin' in the study of
isolated particles). At the numerical stage, the
parameters will be chosen to be those of sodium
(co&

——8.65&& 10' Hz). The matrix is supposed to be
vacuum. There are various ways of rewriting the
general theory in the two-sphere —cluster case. In
particular, because bispherical coordinates can be
used' ' ' ' one can bypass the general transposition
of spherical wave-vector functions from one refer-
ence frame to another. ' Obviously, the number of
resonant (ir active or not) modes does not depend on
the formalism, but only varies with the number of
multipoles considered to describe the charge-density
fluctuations in each sphere.

As shown elsewhere (in the long-wavelength lim-
it ' ) the high-order multipoles strongly influence
the absorption modes. In principle, one obtains
l(1+3) resonant modes, where I is the exponent of 2
when the 2'—2'—polar-interaction terms taken into
account. However, depending on the light incidence
several of these modes are inactive or degenerate.
At arbitrary incidence, spectra become less easy to
disentangle due to the finite amplitude of various
competing modes. Furthermore, to keep high-
order —interaction terms would greatly burden the
calculation of the absorption spectrum without help-
ing much in the discussion process. It is also ob-
served that the "dipolar peak" has always the largest
amplitude and governs the overall shape of the spec-
trum, while the peak position trends are not marked-
ly influenced. Therefore in this section we have lim-
ited our study to l=1 and to the three simple
geometries (k~~,E~,H~~) shown on Fig. 1: (1) When
the wave vector k is parallel to the line joining the
spheres centers (aligned on the z axis), (2) when the
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wave vector is perpendicular to this line but the elec-
tric field E is parallel to z, and (3) when k and E are
perpendicular to z, but the magnetic field H is paral-
lel to z. It may immediately be said that geometries
(1) and (3) give spectra which do not markedly differ
from each other. Indeed in such cases, the influence

of the electric field on the sphere polarization will be
almost identical; the special differences are discussed
below.

The dipolar electrical susceptibility of one of the
spheres (say of radius R) in a matrix of dielectric
constant eM is in general given by

bq(R) =—

where

jq(kR) eM[jq(k R) fq(k—R)] e[j—q(kR) fq(k—R)]
&q"(kR) ssc[jq(k R) fq(k—R)] «—[h» (kR) fq(k—R)]

I

(M) lead to a resulting field

and

g(z) =g '(z) [zg(z)]
dz

f (z)=q(q+1)J'q(z) z jq(z)
d .
dz ' (3)

2

E~=Ep+Ep g g [cq &(i)mq»s(i)
i=1 qp

+dqp(i) n~i(i)],
2

HM ——Hp+Hp g g [dqp(i)m~s(i)

(4)

Here k, k are, respectively, the longitudinal and
transverse wave number inside the sphere, e" is the
transverse dielectric constant inside the sphere, and

jq(z) and hq "(z) are the usual sPherical Bessel func-
tions. The complex wave numbers k to be used are
solving the dispersion relations

k cz=c02e (k,co}p(k,co)

for transverse waves and e (k, co) =0 for longitudi-
nal waves in the appropriate medium; p(k, co) is the
magnetic permeability.

The general solution of Maxwell's equation for a
random system of homogeneous spheres can be
found in Ref. 6. The same notations are followed
here. The incident wave ( k, Ep, Hp) and the fields
diffracted by the cluster embedded in the matrix

i=1 q,p

+cqp(i}nqqi(i}],

where in the vicinity of one of the spheres (say j) the
incident wave is

E(j)=Ep g [aqz(j)m&(j)
qp

+bqp(J)nqpi(J)] (6a)

H(J) =IIJ.g [bqq(j }rn~i(j)
Sp

+a»~(j)n~, (j)] . (6b)

An extra term must be added to the right-hand side
of Eq. (6a) in order to take into account the ex-
istence of longitudinal plasmons in the spheres; this
additional term is

(2) (3)

eq~(j) 1~i(j) . (7)

The m~, , n~, , 1, functions are the usual spherical
wave-vector functions (which can be expressed in
terms of products of spherical Bessel functions with
either Legendre polynomials or spherical harmon-
ics ); the index i =1 or 3 indicates which Bessel
function to use: jq or Aq, respectively, depending
on the required asymptotic behavior at zero or infin-
ity.

The relation

k„(E,) Eil (kq) H[[ (E~) IIJ. ckj Ep l[i cop(k——j,pi) ]
FIG. 1. Geometry of the incident electromagnetic

plane wave ( k, E,H) with respect to the symmetry (z)
axis of the binary cluster: (1) k~(~(Ej,H&), (2) E~~(k&,H&),
and (3) H(r {kg,EJ ). E(j)X 1„=E~X 1, , (8a)

holds between the amplitudes in Eqs. (6) and (7).
The usual boundary conditions,
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H(j) X 1,=HM X 1„, (Sb)
2

I l (J)C1 (j)—g g [C™(1)& l (l,j)
E(j) I,=EM'1. (gc)

=bl (j ), (9)
I

hold on the surface of the sphere j of radius Rj.
Through them, one can relate the coefficients inside
the particle to that in the matrix. This can be done
for both spheres, and through Jeffreys' theorem
which relates spherical harmonics defined in dif-
ferent reference frames, one obtains a system of
linear equations for the unknown coefficients of in-
terest (i.e., those outside the spheres)

2

bl '(j)dim(j) —g'g [Cq,p()N'~1m(~'j)
i=1 qp

~dq p(i )&qplm (i&j)]

i=1 qp

+dq, p(l)&qplm(l j)]
(j)

where the interaction terms Ã~i (i,j } and

&~1 (i,j ) have a simple form when q =p = 1, and

pjq(kJ R) i2ijq—(kR)

pjq(kJ R) i2fhq —(kr)

is the 2q polar-order magnetic susceptibility of the
sphere. In those equations, the summations [usually
over q =(1, &x& ) and p =(—q, +q)] will thus be trun-
cated at q=1.

The system of linear Eqs. (9) and (10) can be writ-
ten in matrix form, and reads M'~ ~'d=b, with

1

g(2)y( I
m

I )(k )11

0
+1'(2)gr( lm

I )(ka)

g(1)y( Im I )(k )11

1

(1)$y( I»&
I )(i a)

0

0

+ pr( Im I )(ka)g(2)

1

v( I
m

I )(J )1 (2)
11

+ W" "(k )5"'Q

0
V(lm I )(k )l-(1)

11

(12)

where the upper (lower) sign is used for m=+1
(1) (2) (1) (2)

( —1), d=(dl!m I, d)Im I,C1 Im I, C1 Im I

), and
b =(b1 Im I,b) Im

Ie'"'', a)
I I,a& Im

Ie'"''),
while

3 —m(
li m!z —iU(lm—I &( }11 l X U11 J

j=0

I

theory but are concisely rewritten here in the dipolar
order case, i.e.,

a&
———(3m')' [e 'rO(1, l, m —a)

+e'rO(1, —l, m, —a)]e

(16a)

2—m)
g( Im I )(~) ii Im l~ iw( —Im I &( )—

11 l X W11 J
j=0

(13)

(14)

TABLE I. Value of the coefficients v ~ ~ (j) and w
& ~ (j)

necessary to calculate the elements V'„'(a) and
W'» '(a) in Eqs. (13) and (14) for the various mode po-

larizations (m =0,+1).

v»(j)

with

3 e'" (fm /!} (1—/m /)!
(1+[m [}!

(15)

0
+1

2
0 0

The O'I I'(j) and w'I I'(j) coefficients are given
in Table I.

The inhomogeneous terms (right-hand side) of
Eqs. (9) and (10) are easily obtained from the general

0
+1
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b( ———(3m)'r [e 'rO( 1, l, m, —(2)

—e'rO(1, —l, m, —(z)]e

(16b)

where y is the angle between the Ho vector and the
I

intersection of the (x,y) plane with the (EO, HO)

plane as shown on Fig. 2, while n is the angle be-
tween the z axis, i.e., the line joining the sphere
centers, and the k vector. The O(n, m, l,a) coeffi-
cients are those which we have called the Jeffreys'
coefficients,

)r[ COS( &)]2r+m+I[ (
( )]2(n —r) —m —I

O(n, m, l,a)=(—)"+'[(n +rn)!(n —m)!(n +I)!(n —I)!]'r g r!(n —m r)!—(n —I r)—!(m +I +r)!

The integer r spans the interval bounded by

f= max(0, —m —I) and g= min(n I,n——m).
Since one of the spheres (say, 1) is placed at the ori-
gin and the other is located at a coordinate a on the
positive (negative) z axis, the above coefficients take
simple values, since then a=O(m), while

y=O, +m/2, +3m/2, depending on the experimental
geometries considered (Fig. 1). One easily finds that
only the m =0 term survives since a] +&

——b& +] ——0
in such cases. The resonant mode frequencies co„
are thus simply obtained by searching for the zeros
of det&=0.

Let us stress here the importance of keeping the
coupling between magnetic and electric interactions,
in particular in order to describe the so-called sha-
dow effect (Sec. V) and because we have not taken a
ion -wavelength limit. Indeed, if one would neglect
8'» ! '(x), the matrix equation would be separable
into purely magnetic and electric parts. The latter
would only give two resonant modes' when

R, =R2, i.e., if b ((1)=b, &(2), as in CEL.

III. NUMERICAL RESULTS

One can now display the various modes as a func-
tion of the size of the particles. In order to answer

z

FIG. 2. Arbitrary wave-incidence geometry on a binary
cluster, thereby defining the polarization angle y [Eq.
(16)]. {Seealso Appendix B.)

I

the questions listed in Sec. I, it seems better to
display the absorption spectrum and observe its evo-
lution as it would be done experimentally. The max-
ima in the spectrum will be supposed to occur at the
resonant-mode frequencies. The maxima are usually
very sharp. Their position on a co/~~& scale is accu-
rate within a +1.25% error due to the finite mesh
of our integration process,

The absorption coefficient which we calculate is
in fact the reduced "extinction cross section, "

+]

+ (2) M(2)
b (2)dM(2))~],m1, m + ],rn 1,m

(18)

with g =m.k (R +(R ).2
The results are separated into two groups accord-

ing to the size of one of the particles, e.g. , R ]
——10 A

or R& ——100 A. Three different light polarizations
have been studied (Fig. 1). The spectra correspond-
ing to noninteracting (or single) particles' are also
given. The logarithm of the extinction cross section
is plotted as a function of the reduced frequency
co=co/co&. As previously justified, only the portion
between 0.2 and 1.0 is shown. Let us recall that the
resonant Frohlich mode in the long-wavelength
limit for such sodium spheres occurs at
co, =co& /v 3=20.654 eV and is (then) radius in-
dependent.

We could have chosen to display particular cases,
but we feel that the evolution of the spectra would
not be so clearly demonstrated, although by present-
ing several small drawings we realize that we
demand a somewhat greater visual effort, but also
limit the length of this report.

The noninteracting- (NI-) sphere case is the super-
position of two single-particle-absorption spectra as
obtained from Ruppin's theory. Owing to the k
dependence of the dielectric function their absorp-
tion maximum occurs at different frequencies. The
strength of the maximum also depends on the sphere
dipole moment and thus differs for both spheres if
they have unequal volume. Such differences might
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appear minute on several spectra and are sometimes
only seen as shoulders. Finally, the NI-sphere ab-
sorption spectra are easily distinguishable from the
interacting-sphere spectra because the former are
drawn as dotted lines near their absorption maxima.
Notice that the vertical scale may differ from figure
to figure in order to insure some drawing clarity, but
in fact to respect relative sizes.

bQ
C) .

Qla
-2

Na spheres, R, =10k, a=R, + R2

A. R I ——10 A, R &
——(1,...,230 A), and a =R I+R2 -4

0.2 0.2

In Figs. 3 and 4, we show spectra for very-small-
to medium-size spheres (R2) in contact with a rath-
er small one (R ~ ). When the spheres have the same
10-A radius, the spectrtlm is very simple: a single
peak seems to be present only (see below, however).
When radii differ (e.g., RI ——10 A, Rq ——20 A) the
spectrum splits into two peaks on both sides of ro, ;
the E~~ peaks are further apart than the E& peaks.
This would lead to a more complicated peak struc-
ture at arbitrary incidence but only when R2/RI is
less than 5. When one of the spheres grows such
that R2/RI-8 as on Fig. 3, the light polarization
becomes irrelevant, and the spectrum has a simple
two-peak structure of quite different amplitudes.
The main peak is approximately located at co, .
When Rz/RI is about equal to 23 (undisplayed
case), the smaller peak at higher frequency appears
as a Uery small shoulder and would likely be undis-
tinguishable from the background. On Fig. 4, we
show the spectra for a small-sized sphere (R& ——10
A) in contact with a very small one. At first except
for the main-peak position, the spectra looks similar
to that of Fig. 3. However, when the ratio R2 /RI
becomes smaller than 0.5 the peak structure becomes
light incidence independent. The upper frequency
peak "rapidly" moves toward higher frequency with
decreasing R2 /R I. Furthermore, the latter peak in
the E~~ geometry disappears when R2/R~-0. 4,
while the lower peak becomes polarization indepen-
dent below such a value. Its position saturates at a
reduced frequency AM /co~ equa1 to that characteriz-
ing the surface mode of the R I

——10 A sphere when
the latter is in contact with a very large sphere.

B. RI ——100 A, R2 ——(1,..., 300 A), and a =R~+R2

At first somewhat surprisingly we found the spec-
trum of two equal-sized spheres of radius 100 A to
be rather different than that for the R I ——R2 ——10 A
spheres. Figure 5 shows the drastic effect of the
light polarization in the case RI ——R2 ——100 A. In
the E~I incidence, one observes a single peak at low
energy, while in the (Ez,H~~ ) configuration the ab-
sorption peak occurs above co, . However, when the
incident wave vector is parallel to the center to
center axis and both E and H are perpendicular to

-4
O2

-4
0.2 10

-3
0.2

-3
0.2

-3
0.2

FIG. 3. Logarithm of the dipolar extinction cross sec-
tion 0., for two touching and interacting sodium spheres
(of magnetic permeability p=1) in a vacuum matrix in
variously polarized (k~~, E~~, or H~~ ) plane waves. Radius

a 0

of one sphere is constant, R ~

——10 A, and R I & R2 & 230 A
as indicated. Noninteracting-sphere case is shown by
dashed lines in the vicinity of the absorption maxima;
8=co/co&.

this axis (i.e., k~~ geometry), an extra peak of lower
amplitude but very distinguishable occurs below co, .
Owing to this type of "experimental geometry" we
called such a behavior the shadow effect.

When the radius of one of the spheres grows, the
single-peak structure for E~~ and H~~ becomes a
two-peak structure as in the previous (RI ——10 A)
case, and the shadow effect in some sense disap-
pears.

When R2-5RI again the main peak is close to
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Na spheres, R, =10k, a=R, + Rz N~ mph«e~, R„=1OOA, a = R„R,

b
O

Ql
O

-2

0.

bo)

()0-

0.2 1D 0.2 10 0.2 1.0 0.2 10

0-

-2.

1.0 0.2 1.0
0.2 1.0 0,2

-2

0.2 1.0 0.2 1,0 -1
Q2 Q2

FIG. 4. Same as Fig. 3, but for R& ——10 A and R& &23
A as indicated.

the Frohlich mode and the light polarization be-
comes rather irrelevant leading to a double-peak
structure of not too different magnitude on a loga-
rithmic scale. When R2 increases further some
structure still occurs at higher frequency where the
experimental geometry has some moderate influence
but the main peak is close to that of an isolated
sphere. Such a small structure remains visible (but
is not shown) up to Rz /R~ ——23 on our expanded
scales.

Spectra for a medium-size sphere (R ~

——100 A) in
contact with a small- or a medium-size sphere
are shown in Fig. 6. The scattering-
geometry —dependent peak structure reduces to a
geometry-independent structure below p=R2 /R ~

about equal to 0.1. The low- and high-frequency
peaks, respectively, stabilize at co, /co& and co~ /co&.

C. R) ——E2, a =R)+82, and R) ——(15,..., 1000 A)

Because of the previously noted shadow effect
when R& ——R2 it seems interesting to observe the
behavior of the binary equal-sized —sphere cluster in
greater detail as a function of both sphere radius. In

0.5
0.5

-as
Q2

R2= 1000

FIG. 5. Logarithm of the dipolar extinction cross sec-
tion o., for two touching and interacting sodium spheres
(with magnetic permeability @=1)in a vacuum matrix in
variously polarized plane waves (Eli kll or Hll )

Radius of one particle is constant, R~ ——100 A, while
the other R& is such that R& &R2&1300 A. Axes and
lines as on Fig. 2.

Fig. 7 we show how the shadow effect develops. In
the case of rather small spheres (R~ Rz 10 A), —— ——
we recall that no such effect was seen (Fig. 3). How-
ever, when R& ——R2 ——15 A, an acute observer can
notice a shoulder developing on the

klan
curve slight-

ly below the "noninteracting-sphere peak" (Fig. 7),
becoming more pronounced as soon as R

&

——R2 ——30
A and leading to a three-peak equal-height structure
for R) ——R2 ——200 A.

To let the spheres grow further is also of interest
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Na spheres, R, =100k, a=R, +Rz

0
b"
O

-2 -2

Q2

-2

0.2 02

0

-2 -2

0.2 02 io!

-2

0.2 1.0 0.2 1.oJ
-2

0.2 1.0

FIG. 6. Same as Fig 5, but for 0 (R2 (230 A as indicated.

in order to observe the trends of the resonant modes,
e.g., toward characteristic bulk frequencies. We
have calculated, but not shown, the spectra for large
spheres (as large as 5000 A); but for R ~

——R2 & 1000
A, the spectrum reduces to a large bump plus a
small but distinguishable structure at high co.

D. Single-particle limit (R ~ or R2~0)

It seems of interest to consider the modes both
near R ~

-0 or R j &&R2. In order to obtain precisely
quantities like coM /co&, we thus examine the special
case of a "point dipole" (R&~0) in contact with a
sphere of radius R2, and observe the position varia-
tion of the pure surface mode. In Eq. (12) we let
a=R2, b, &(R&~0) and I'~(R&~0); this is

equivalent to making the long-wavelength limit ap-
proximation for one of the spheres only. The
resonant-mode position is shown on Fig. 8 when R2
grows from 1 to 1000 A. Thus, we show the evolu-
tion of the single- (isolated-) particle surface mode
as a function of the particle radius due to the k
dependence of the dielectric constant.

E. Arbitrary incidence

When the electromagnetic wave incident upon
the binary cluster does not have any of the k, E, or
H vectors parallel to the z axis, the absorption spec-.
trum becomes a linear superposition of the above
spectra. The weighting factors for the amplitude de-
pend on the (square of the) cosine between E and z,
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Na spheres, R, =R2=R, a = R, +R2

O

O
-2.

0.2 0.2 0.2
I

10
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FIG. '7. Logarithm of the dipolar extinction cross section of two interacting equal-sized sodium spheres (with magnetic
permeability p =1) in contact. Electromagnetic wave polarization is indicated (k~~, E~~, or

H
). Sphere radii vary between

0

15 and 600 A as indicated.

of course, but the positions of the absorption peaks
remain unchanged. In Fig. 9, we have for the sake
of illustration singled our four characteristic cases
previously examined under symmetrical light in-
cidence geometry: (a) R& ——10 A and R2 ——20 A
(Fig. 3), (b) R~ ——100 A and R2 ——200 A (Fig. 5), (c)
R~ ——R2 ——300 A, and (d) R, =Rz 150 A (both——
treated in Fig. 7). The "symmetrical-geometry
cases" (1)—(3) as defined in Fig. (2) have been repro-
duced anew, but all have been drawn as dotted lines
in order to make more apparent the effect of an ob-
lique k vector with respect to the cluster symmetry

axis. Two angles have been considered and are
called geometries (4) and (5), respectively, i.e.,
y=m/4 and y=2~/3. In both cases, a (as defined
in Sec. II) is equal to n/4 It is notic.able. from ob-
servation of the lowest-frequency absorption peak
that the amplitude decreases when y changes in such
a way that the E-vector component along the z axis
decreases. The amplitude of the higher-frequency
peaks are modified accordingly.

This observation holds true whether the spheres
have equal sizes or not. In the former case, even it
is worth noticing that the spectrum is composed of a
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nevertheless some smooth structure. If the density
of clusters is not too large, such that cluster-cluster
interactions can be neglected, and if the size distri-
bution is not too broad (as usually expected in labo-
ratory situations) the above observations could be
usefully taken in order to analyze spectra and derive
the distribution of cluster orientations in a matrix.
It would be sufficient to shine some light at various
incidences indeed. If one of these conditions is not
fulfilled, some spectrum analysis would rather have
to follow from applications of the theory sketched in
Ref. 2.

IV. LONG-WAVELENGTH LIMIT

In the long-wavelength limit (k~0), the plasmon
dispersion relation does not influence much the
dielectric constant of the particles. In fact e (,co)

and e (k, co) reduce to the Drude dielectric constant.
When only dipolar terms are included as here, our
theory reduces to that of CEL, ' hence leading to
the usual peak positions for the Clippe modes. The
spectra have been calculated for all cases considered

I

above, but are not displayed. Nevertheless the mode
positions are somewhat different from those found
in the general theory as discussed in Sec. V, where
the numerical comparison will be found.

Let us warn the reader about a slight change in
normalization between the usual dipolar electrical
resistivity in the long-wavelength limit, i.e.,

b'i '(R)=(e esr—)R (e+2eM) (19a)

where
b„(i)e— ', (20)

and the k~0 value of the general definition (1),
which is here,

limni(R)=(2i/3)(e —eM)R (e+2esr) ', (19b)
k —+0

where we have also taken the plasmonless limit, i.e.,
fq(k& R ) =0 in geometry (1).

In the long-wavelength limit, the system of linear
equations for the unknown field coefficients is sim-

ply written

(6„'(i) d„~(i)+ gdqz(j)h~„~(i j)e
CPJ

' 1/2
~; p „(q+n)! 2q+1 + r O(q,p, l, a)O(n, m, l,a)

'r+" +' 2n +1 '
& ~ [(n+ l)~(n —i)!(q+l)&(q —/)~]i~i

(21)

and the O(n, m, l,a) coefficients have been defined in
(17). Their values in the dipolar case are given in
Table II for an arbitrary angle of incidence (a) be-

tween k and the z axis, and d = min(q, n).
In this limiting case, the kR &&1 assumption

leads to an enormous simplification indeed since
electric and magnetic multipole terms uncouple, in
contrast to the general case worked out in Sec. II.
In the latter case it was necessary to display the
magnetic multipole terms in, e.g. , Eq. (12). In the
long-wavelength limit, such terms are negligible
since they are, in general, a factor (kR) smaller
than their corresponding electrical equivalent. No-
tice, however, that in the long-wavelength limit,
high-order electric multipoles are produced by the
mere effect of multiparticle interactions in particu-
lar at small-sphere separations. Such effects are fur-
ther analyzed in Appendix A.

V. DISCUSSION

I

center separation a is about 5R. For unequal-sized
small spheres their mutual influence was found to be
rather negligible when their separation was also
about 5 times the larger radius. Notice that if both
spheres are rather /arge (e.g., R i

——35—500 A), the
small sphere spectrum is totally washed out by that
of the large one at a much shorter distance, e.g.,
a=2R2 when Ri/Ri ——10 (Fig. 10). When the
spheres are very close to each other, their mutual in-
fluence becomes more important, even in the dipolar
approximation. In this case, as soon as the particles
have a radius equal to 15 A, the Frohlich mode of
the upper frequency resonance splits into a double
structure in the k!!geometry (Figs. 3 and 7).

On the other hand, we have seen in Figs. 3 and 5

TABLE II. Jeffreys' coefficients limited to the dipolar
order. C= cosa/2, S= sina/2.

The question on the closest distance of approach
for which a particle can be said to be isolated was al-
ready answered in Ref. 6. For small metal particles
in vacuum with an equal radius of the order of 15
A, two particles can be said to be isolated when their

—1

0
+1

C2

V 2CS

S

—V 2CS

V 2CS

S
—V 2CS

C2
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FIG. 10. Logarithm of the dipolar extinction cross section for two unequal-sized riontouching but interacting sodium

spheres (with magnetic permeability @=1)for variously polarized incident electromagnetic waves. The distance between

the centers of the particles is ci =2R q, where R2 is the radius of the larger particle as indicated. Smaller particle has a ra-
dius R~ ——R2 /10.

that the critical size for which the larger particle
masks the smaller one is reached when R ~ /R2 ——23,
when both spheres are in contact.

Besides this experimentally useful information,
very interesting other features can be inferred from
the spectra evolution, in particular concerning the
mode positions. Furthermore, this allows us some

comparison to other pertinent theoretical results.
The second and third questions asked in the Intro-

duction concern the effect of a neighboring particle
on the absorption peaks. Let us recall the seemingly
contradictory experimental results of Smithard and
co-workers2s'z6 on sodium particles on one hand,
and of Genzel, Martin, and Kreibig, ~ on the other
hand, on silver particles. The first group has found

a shift of the resonance toward longer wavelengths
(or smaller frequencies), in particular for particles
with a radius greater than 40 A, in agreement with
model calculations based on a classical mean-free-
path (or dielectric-constant) approach. In such a
theory, the absorption hardly shifts for smaller-size
particles, as was also found by Smithard and Tran. 2

However, a shift of the "optical plasma resonance"
toward lower wavelengths (higher frequencies) was
observed in Ref. 27, when the particle size is de-

creasing as predicted by quantum-mechanical calcu-
lations (see Ref. 28 for an excellent and very recent
review). As recalled in the latter reference, several
attempts have been made in order to reconcile these
contradictory results. One of them was the in-
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elusion of plasmon contributions in the dielectric
constant. It revealed secondary structures above cu&

(thus at lower wavelengths) which could not be seen
on the data of Ref. 27, while the main resonance
was systematically shifted toward lower frequencies
with respect to the classical Mie prediction ap-
parently whatever the particle size.

From our displayed results on (very) small parti-
cles we propose that a plausible explanation of the
discrepancy lies in the fact that the absorption spec-
trum is due to a combination of resonances strongly
depending on the proximity of neighboring particles,
and the maximum-absorption position thus depends
on the particle distribution in the sample. (In other
words, a particle-distribution function might be
necessary before a definite conclusion is made).
However, we will observe next that the main absorp-
tion peak shifts toward higher frequencies when the
particle size decreases, even when proximity effects
are taken into account (see also Fig. 8).

First consider again the case of a R
&
——10 A parti-

cle next to another of radius R2 growing from 0 to
"infinity. " For an arbitrary experimental light in-
cidence, two (small-amplitude) modes originate from
co& and tend toward the value co~/co~=0. 6475
which they reach at about p=13. The other two (de-
generate) surface modes originating from this

to~ /to& value at p=0 fall steadily (Fig. 11) toward
cog'=-co~ ——0.6124@)p and coE' ——0.583')p at p=1.

II II ~ II

The former modes (dashed line) have some smooth
decreasing behavior, but the latter (solid line) goes
through a minimum at p=2 below the co, /u& value,
rises above the Frohlich-mode value between p=5
and 10, and finally merges into the noninteracting-
mode (dotted) line like the Ej modes. It seems in-
teresting to notice that this isolated-particle surface
mode is radius dependent (due to the k dependence
of the dielectric constant), and is continuously but
slowly decreasing. On the same figure, we have
shown the variation (CA line) of the resonant-mode

f(p)=1 —8p i (1+p) =f(1/p) . (23)

In order to draw the CA lines, we have used the
Drude k-independent dielectric constant e(to) = 1

—co~/to2. In such a case, one predicts four types of
modes, two of them correspond to the Clippe modes
(at p= 1 thus), i.e., a high-amplitude low-frequency
m =0 mode, and a doubly degenerate m =+1 mode
of smaller amplitude at high co. The former goes
through a minimum when a+3=0 at to&/co~ =0.5,
while the latter goes through a maximum as a func-
tion of p at to&/to~ =0.6124 when a+1.666=0. In
fact, this can be directly obtained from our expres-
sion

(a+2)/(e 1)=+a-
with

a =j (R,R2/a ) =j p (1+p)

(24)

with j = —1 or 2 for m =+1 or 0 and j =0 for
noninteracting particles. This shows that the
resonant modes (for k~0) occur at

(co„/co~ )'= (&+a )/3 (25)

(Table III). Notice that the negative sign in (24) is
important: two other resonances are indeed predict-
ed to be at @+2.428=0 (for m=+1) and at
@+1.4=0 for m =0 leading to absorption peaks (ir
active when R»R2) at 0.54to~ and 0.6455coz,
respectively. The m =+1 peaks are degenerate and

position of a recent extension of the CEL theory by
Clippe and Ausloos (CA). ' Such a work takes into
account the dipole-dipole coupling between spheres
of unequal radii, but in the long-wavelength limit,
and thus leads to a symmetrical relation in p and

ep, 1.e.,

to„'(p)A)p [t——o„'(1)/to~][1 f(p—)]+f(p)/3,
(22)

where

TABLE III. Mode positions of an equal-sized —sphere binary cluster in the long-wavelength
limit and the dipolar (l =1)approximation. Column NI refers to the noninteracting case.

a =j R1R2/a =j p /(1+p)

NI

0
0
2

2+am

1%a

cd 1+a
COp

CO~/COp

—1.6666

( ——)
15

9

0.375

0.61237

—2.4286

( ——)
17

7

0.29166

0.54006

—2.0

1

3

0.57735

—3.0

0.25

0.5

—1.4

( ——)
7

5

0.4166

0.6455
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can be observed only when the Ej component has a
finite value. Notice also from Figs. 11 and 12 how
incorrect the k~0 limit is in predicting the peak
positions (except at p= 1).

It is also extremely important in our opinion to
stress the fact that the numerical values hereby ob-
tained are for a vacuum matrix. In a polarizable
matrix (e.g. , water, for which e~-80), it is easy to
see that the resonance modes would drastically shift
toward lower frequencies and pile up at the lower
end of the spectrum.

The size influence on the mode positions can be
compared in Figs. 11 and 12. On the latter the
constant-size particle has a 100-A radius. The CA
lines are identical to that of Fig. 11 and the symbols
to the approximation of Sec. IV. Our calculated
high-frequency modes tend toward the
co, /co& ——0.577 value (for e+2=0), and their varia-
tion is not as smooth as in the case R2 ——10 A, in
particular at small p. The low-frequency modes, on
the other hand, start from co, icoz, steadily merge to-
ward the noninteracting-sphere "bulk mode" (after a
plateau like region between p=l and p=3), and
markedly decrease toward a zero value. A visual ex-
trapolation gives the critical radius R=4500 A for
the recovery of the "bulk value. "

The overall picture is in this case (R~ ——100 A)

more sensible than in the previous one. Indeed when
a "large-" (1000-A) and a "medium-" size particle
(100-A) are in contact, one expects to recover two
modes characterizing the fact that the bulk and the
surface properties have to appear in the problem
solution. Notice that the surface mode of the isolat-
ed 100-A-radius sphere has some curvature as a
function of p near p= 1.

The "critical size" for bulk properties can be also
recovered by examining the variation of the mode
positions as a function of one of the particle sizes
when both have equal radii, i.e., p= 1 (Fig. 13). As
previously noticed (Fig. 7), only three modes exist:
One for the E~~ and H~~ geometries, but two for the
Ez, one of them being approximately at the same
frequency as that of the H~~ mode. The three
characteristic modes co„co' ', and cu'-+" obtained
when a Drude dielectric constant is used are also
shown on the figure. The characteristic isolated-
sphere surface mode always falls between the
interacting-sphere modes. However, all tend toward
low-frequency values in a very similar manner.
For R (10 A, a dashed line indicates the approxi-
mate position of the shadow-effect mode. It falls
exactly in the middle of the interval spanned by the

Ell and all. modes. Furthermore an extrapolation at
high R indicates that co„=0near R =4500 A.

L
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3
1
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I
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~sag~
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FIG. 11. Trends of the various ir resonant modes of a binary cluster of two touching and interacting sodium spheres in

a vacuum matrix and for various incident polarized electromagnetic plane waves as a function of the radius ratio
p=R & /R2. —0—line is for the noninteracting case. The CA lines correspond to the CEL theory (Ref. 13) extended in
Ref. 15 with a Drude dielectric constant, but with R &&R2, or to our k =0 limit (Sec. IV). One of the spheres has always a
radius R2 ——10 A.
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FIG. 13. Trends of the various ir resonant modes co& of
a binary cluster of two touching equal-sized sodium

spheres of radius R in a vacuum matrix, and for various
incident polarized electromagnetic plane waves as a func-
tion of R on a log scale. Noninteracting-sphere case is
shown by a discontinuous line. Shadow effect precludes
the observation of one peak in the k~~ geometry below

R =15 A as indicated by the dashed line.

I
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elusion of higher polar-interaction terms will quanti-
tatively change the peak positions. We briefly
present in Appendix A a quantitative evaluation of
such effects when the dielectric constant has a very
simple form, and the long-wavelength —limit ap-
proximation is used.

FIG. 12. Same as Fig. 11 but when the radius of the
constant size sphere is R2 ——100 A.

This value is very reasonable as it characterizes
bulky spheres and gives further confidence for the
theory. Indeed it has the order of magnitude of the
characteristic irradiation wavelength above which an
assumption of constant electric polarization field in
the particles (hence the neglect of high-order polar
fluctuations) becomes unrealistic. Notice that the
characteristic plasmon wavelength in bulk Na is
about 2179 A while that of the surface plasmon is
3770 A. However, this also shows that the notion of
"bulk" depends on the experimental investigation
process.

Even though we cannot directly compare to ex-
perimental results, we expect our theory to be useful
in connection with the more controllable techniques
of particle distribution (like the "jet technique" )

and the wave-guide transmission measurements. '

A final warning is in order: We do not want to
mislead the reader on the definite values of the par-
ticular frequencies predicted here. We stress again
that they are obtained in a dipolar approximation.
It is most likely that several of the quantitative con-
clusions will be only weakly changed when other
geometries, other clusters, etc., are considered.
Nevertheless, there is no doubt for us that the in-

e= —(l+ 1)esrF(p)il, (Al)

where F(0)=F( oo ) = 1, in either case.
For future reference we will call co~ and coo the

solution of (Al) when p —+ oo or 0 and l =2 and =3,

APPENDIX A

In this appendix, we use the k~ limit of our
general theory in order to estimate the qualitative
and quantitative changes on the mode positions, and
hence on the spectra of metallic spheres interacting
not only through the dipolar fluctuations but also
through higher-order polar fluctuations (viz. , here
the quadrupolar and octupolar modes). Such
changes are of course the greatest when the spheres
are in contact. We thus let a=RI+Rq. Notice that
in Ref. 3 we had already shown the effect of
quadrupolar-order interactions on two MgO spheres
in contact, and the effect of quadrupolar- and
octupolar-order interactions on the tetrahedron and
on a planar five-sphere cluster in Refs. 7 and 4,
respectively (long before the appearance of Ref. 16).
Owing to the difference in the dielectric functions
the exact mode positions and the associated absorp-
tion spectra are slightly different in the case of
dielectric and metallic spheres. However, the mode
positions are all implicit solutions of the relation



27 ABSORPTION SPECTRUM OF CLUSTERS OF. . . . IV. . . . 6461

TABLE IV. Infrared-active —mode positions of the equal-sized —sphere binary cluster in
the long-wavelength limit in the dipolar (D, l=1), quadrupolar (Q;1=2), and octupolar
(0;1=3) approximations). Asymptotic values for p~ ao are given in the last column. The
modes underlined by a continuous (dashed) line are infrared absorbing when the light in-

cidence is parallel (perpendicular) to the symmetry axis passing through the sphere centers.

/Hp X 10

/m
/

0
1

2

3
3

.0

1=3
7674

7259

6734

6602
6490

6438

6478

6535

coo /cop =0 654 65
(I=&)

0

2

1

0

7213

6834

6434

6213

6082

6094

6408

6419

6437

6161

5977

6093

coo /cop ——0.632 46
(1=2)

0 6455

6124

5401

5000

6046

5983

5213

4576

5891

5957

5034

4229

D /p ——0.577 35
(1=1)

co „=roz/re~ =[1+(I +.1)eM /l ] (A2)

respectively. The corresponding Frohlich mode (c0, )

will be relabeled coD. Thus,
Q7- m=0 =

-+1y---

when p= ao',p=D, Q, O. —
The total number of nondegenerate resonant

modes for N spheres (in contact and forming a
linear chain) is easily found from the size S of
the interaction matrix for a given m, i.e.,
S =Nl, Nl, N(l l),N(l —2), . . . , fo—r m =0, 1,2,
3, . . . . A simple summation of the various S im-
plies that such a number is Nl(1+3)/2. The num-
ber of active modes (i.e., all those for m =0, +1) is
2M. This shows that there are, respectively, four,
six and eight modes collapsing on coD, ~~, and coo
when p~ ~. The mode values at p=1 and oo are
given in Table IV, while their position variation as a
function of p=R ~/Rz is given in Figs. 14 and 15.
(Notice that such results do not depend on the exact
sizes of the particles due to the k~ limit. ) The

0.6-
CL

3
E

3
05-

I

10

I

15 20

FIG. 14. ir absorption modes of a binary cluster of two
touching interacting spheres in vacuum in the dipolar
(1=1) and quadrupolar (1=2) approximations for the
various polarizations (m) as a function of the sphere ra-
dius p in the long-wavelength limit.
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sorption spectrum, and request a new analysis of ex-
perimental data as those reviewed in Ref. 28. Notice
the broadness of the spectrum (sometimes as large as
200 nm) and the double-peak structure observed for
the largest (R &40 A) particles obviously similar to
those shown on the preceding figures.

Secondly, attempts to deduce single-particle prop-
erties from dipolar approximation formulas are like-

ly incorrect when the spectral bounds are used as in-

puts, in particular if the particle density is not low
nor the distribution homogeneous.

The mode-position variation as a function of p
also shows how important the knowledge of the
particle-size distribution may be with respect to data
analysis pertaining to "isolated" (or single) particles.

0.50-

0.45-

10

=0
—+ t
=+2 ~

+3 ~ o ~ o

I

15

FIG. 15. ir absorption modes of a binary cluster of two

touching interacting spheres in vacuum in the octupolar
approximation (1=3) in the long-wavelength limit and for
various polarization modes (m =0, +1,+2, +3) as a func-

tion of the sphere radius ratio p. Inset shows the p=1 vi-

cinity.

spectra are not displayed here. The order of magni-
tude of the main peaks does not vary much. It can
be noticed from Table IV (or from the spectra) that
an accumulation of peaks occurs between 0.60 and
0.64. Such an accumulation would be further rein-
forced when l increases. On the other hand, the
lower-frequency and upper-frequency resonant
modes (which are m =0 modes) continuously (and
rapidly) move away from the spectrum's central re-

gion.
Such an analysis thus reinforces two main con-

clusions of Sec. V. On one hand, the peak accumu-
lation in the central region might be seriously
misleading those attempting to identify the m =0
most important mode near co/co&-0. 6. Indeed the
position of the maximum in the absorption spec-
trum might not be at the value of the dipolar mode,
since such a maximum rather represents a combina-
tion of absorption amplitudes due to binary clusters
(or more generally to pairs of particles), oriented
more or less randomly in the matrix. In so doing
one might again wonder about conclusions drawn
for so-called "single-particle" properties, like the ab-

APPENDIX 8

In this appendix we explicitly define the k, E0,80
vectors of the incident magnetic wave upon a cluster
centered at the origin of a reference frame (x,y, z)
characterized by unit vectors 1~, 1„,1,. Three Euler
angles define the k, Ep, Hp system, i.e., a,P, y. The
angles a and y have been defined in Sec. II and in
Fig. 2. They are, respectively, the angle between the
k and the 1, vector and the polarization angle of
the electromagnetic wave. The angle p is the usual
longitudinal angle, between the projection of the k
vector on the (x,y) plane and the x axis. Such an
angle is irrelevant in the case of a binary cluster due
to the cylindrical symmetry (around the z axis). It
can be thus taken equal to zero, thereby assuming
that the k vector is always in the (x,z) plane.
Nevertheless the following formulas are written in
terms of P as well:

k =
~

k
~

( —sina cosp 1„+sina sinp 1
Y

+ cosa 1,),

Ep=
~

Ep
~
[( cosa cosPcosy —sinP siny) 1„

—( cosa sinp cosy+ cospsiny) 1

+ sina cosy 1,],

Hp ——
~

Hp
~
[( cosa cosPsiny+ sinP cosy) 1„
—( cosa sinP siny —cosP cosy) 1»

+ sinu siny 1,] .
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