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Energy profiles for light impurities in simple metals
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The self-consistent density-functional formalism has been used to calculate electronic den-

sities around light interstitial impurities in jellium. The resulting charge densities have been

fitted to a simple analytic expression and the fit parameters determined as functions of r,
for all metallic densities. Energy profiles have then been calculated in 17 simple metals with

the use of up to six different local pseudopotentials in first-order perturbation theory. The
dependence of the energy on the choice of pseudopotential is discussed. In some cases it was
possible to predict the stable interstitial site and the most probable diffusion paths. The
zero-point energy of positive muons and protons in the calculated potentials has been es-
timated and the problem of localization discussed. The effect of the zero-point motion of
the lattice ions is shown to be negligible. The modification of the energy profiles with lat-
tice relaxation has been studied in the case of Al.

I. INTRODUCTION

There is an increasing interest in the behavior of
hydrogen in metals which is due in part to the tech-
nological importance of hydrogen in metallurgy and
hydrogen storage inaterials and in part to the basic
solid-state physics problems involved. From the
theoretical point of view, the interaction of a single
proton with a metallic host is one of the simplest
impurity problems, since the proton is a point
charge with no complicating core electron structure.
However, it is precisely the absence of core electrons
which gives rise to a strong electrori-proton potential
which canriot be treated within a linearized screen-
ing approximation.

The behavior of particles with a unit positive
charge is also relevant to the positive muon (p+) and
pion (~+) which, in recent years, have been used as
probes in solids. As concerns the interactions with
the ions and electrons in metals, muons and pions
behave identically to the proton and its heavier
isotopes deuterium and tritium. However, the large
mass difference (m~—=6.7m -=8.9m„) implies very
different diffusion properties: The excitation ener-
gies for thermally activated diffusion and the tun-

neling matrix elements, which determine the rate of
bandlike diffusion at low temperatures, strongly de-

pend on the particle mass. Further, the amplitude
of the zero-point motion and the zero-point energy
also change considerably from one particle type to
the other, giving rise to a variety of interesting phe-
nomena that can be studied.

A microscopic-theoretical prediction of the dif-
fusion properties requires detailed knowledge of the
potential energy of the particle in the host lattice.
Various approaches have been developed to calculate
potentials for hydrogen in metals. Molecular-cluster
and band-structure calculations have been used to
investigate particular aspects of the electronic struc-
ture of point defects in metals. '

Two other approaches have been proposed which
simplify the interaction with the lattice ions by in-
troducirig pseudopotentials. In the spherical solid
model, the electron density is calculated in a
spherically averaged potential consisting of the bare
Coulomb potential of the impurity and the ion pseu-
dopotentials. This method has recently been suc-
cessfully used to explain Knight shifts at muons at
interstitial sites in almost all simple metals. To in-
vestigate energy profiles, however, another approach
which starts with the jellium model and takes into
account the anisotropy of the lattice as a perturba-
tiori, seems equally appropriate. We chose this
second approach, which was first used for protons
in Al and Mg by Popovic and Scott. The metal is
first approximated by a homogeneous interacting
electron gas with a positive background (consisting
of the smeared-out positive ions) of density

3 -3
no —— r,

4~

The jellium parameter r, is thus defined as the ra-
dius of the sphere occupied by one electron in the
jellium. For metallic densities, its value varies from
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1.87 (Be) up to 5.63 (Cs). The impurity is then im-
planted and the perturbed charge density calculated.
Finally, the positive background is replaced by a
pseudopotential at each lattice site. In first-order
perturbation theory, the energy of a muon or a pro-
ton at R& is given by the simple expression

E(Rq) =g
7 I

R„—R-,
f

+fd r bn(r —R&)W(r —R-, ) +ED,

(2)

where Eo contains all terms independent of R&,
4n(r)=n(r) —no is the displaced electron density,
and W(r) is the difference between the local un-

screened pseudopotential and the electrostatic poten-
tial of the positive background charge of the jellium.
Since we do not calculate the total heat of solution
but are only interested in energy differences at vari-
ous sites, we drop all constant terms.

Since the total displaced charge must be equal to
one, Eq. (2) can be rewritten as

around a point charge has been calculated in the
framework of the self-consistent density-functional
formalism for various jellium densities. We gave
particular attention to the self-consistency of b,n(r),
also in the long-range region. These calculations are
described in Sec. III. To allow further use of these
results for other calculations, we parametrized the
obtained An(r) in terms of a simple analytic func-
tion of r and r, (Sec. III). To get insight into the ac-
curacy of the use of pseudopotentials, we have cal-
culated the energy profiles for 17 simple metals us-

ing up to 6 different local pseudopotentials proposed
in the literature. These forms, as well as the calcula-
tion of the energy, are reported in Sec. IV. As ex-
pected, the energies obtained depend on the choice
of the pseudopotential. However, in many cases, it
is possible to make definite statements about the
possibility of localization of muons or protons and
to estimate the heights of diffusion barriers. In
some cases, the different pseudopotentials lead to
quite different energy profiles, since the contribu-
tions from the first few shells partially cancel or
correspond to r values where An is almost zero. In
Sec. V we discuss the results for the bcc, fcc, and
hcp metals investigated. In Sec. VI, the influence of
lattice relaxation of the first two shells around an
impurity at the octahedral and the tetrahedral inter-
stitial sites is discussed in the case of Al.

+ W(r —R
i +R„)

(3)

II. CALCULATION
OF THE PERTURBED CHARGE DENSITY

All pseudopotentials show a long-range behavior
W(r)= Z/r for r exceedi—ng some core radius r, .
Therefore the two terms in the large parentheses of
Eq. (3) cancel each other for r values smaller
than

~

R i
—R& ~

r, Th—is im. plies that the interac-

tion is weak if the screening of the point charge is
completed within a short distance. The smallest r
value which gives a contribution to the integral in
Eq. (3) is the one where the first overlap with the
pseudopotential core occurs. It is therefore of cru-
cial importance that the displaced charge density
hn(r) including its long-ranged Friedel oscillations
is calculated exactly.

Various authors ' ' have reported calculations of
the energy of protons in Al or Mg using this pro-
cedure. The results differ not only in the numerical
values of the barrier heights but also in the intersti-
tial site of minimum energy. These discrepancies
are due to the use of different pseudopotentials, or
to differently calculated charge densities.

The present work gives a systematic attempt to
cope with these problems. The charge density

Hohenberg, Kohn, and Sham ' have put for-
ward a theory of the ground-state properties of the
electron gas in the presence of an external potential
V,„,(r). The ground-state energy is written as a
functional of the electron density n(r ):

E[n(r)]=fd r'V, „,(r ')n(r ')+To[n(r)]

3, n rn r'

+E„,[n(r )], (4)

where To[n(r)] is the kinetic energy of a system of
noninteracting electrons having density n(r), and

E„,[n(r)] is the exchange-correlation energy func-
tional of the interacting system. The true ground-
state density n(r) minimizes the energy functional
E[n(r)]. A variational principle then reduces the
S-body problem to a one-body problem within an
exact scheme. Thus, one is left with a set of one-
body Schrodinger equations with an effective poten-
tial
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I
—, b, +—Verr[r,n(r)]If;(r)=e;g;(r) .

Altho'ugh this point has already been widel'y dis-
cussed earlier (sm, e.g., Ref. 13), it should be recalled
that the f s are not electron wave functions, but
correspond to "pseudoparticles. "

The effective potential is a functional of the
charge density n(r) and consists of three parts: the
external potential V,„„the Coulomb-Hartree term,
and the exchange-correlation potential V„,:

The spherical symmetry can then be used to write
down the equation for the radial part of the single-
particle wave function Uk~(r) = rRk~(r):

d2 l(l+1) —2V,ff(r)+k U~~(r)=0
dr 2 r

(10)

V ff[n(r), r]= V,„,(r)+ fd r '

/r —r'/

+V„,[n(r)] .

and

dkg(21+ 1)— Uk((r)

7T T QI

The relevant quantity of the theory, the charge den-
sity, is then given by a sum of individual densities

up to the Fermi level:

n(r) =X
I & (r)

l

'e(~F (7)

5E„,[n(r)]
V„,[n(r)] =

5n(r)

While the kinetic and electrostatic parts are treat-
ed exactly, an approximation must be used for V„„
which is not known. The most commonly used ap-
proximation is the so-called local density approxi-
mation (LDA). ' The exchange-correlation energy is
approximated by

E„,[n(r)]= fdr e„,(n(r))n(r)

+0(
~
Vn(r)

~
), (8a)

where e„,(n ( r )) is the exchange-correlation energy
per electron in a homogeneous electron gas of densi-

ty n(r), thus

+nb, (r),

where a~ is a normalization constant. Here nb,
denotes the contribution of the bound state which
occurs for r, & 1.9. The corresponding energies are
shown in Fig. 1 as a function of r, . The bound
states are quite shallow close to r, =2 but they still
contribute in a non-negligible way to the total
charge density. For scattering states, one needs typi-
cally 7 or 8 partial waves and about 40 values of k.
This implies that the differential equation (10) has
to be solved nearly 300 times for each iteration, up
to a radius of five or six times r„where the poten-
tials can be set equal to zero and the solution
matched to that of the free-electron case.

To obtain a self-consistent solution, one iterates
the procedure by inserting the charge density n(r)
obtained from (7) into the equations determining the
effective potential (6). However, the direct iteration
does not converge.

The first approximate solution was proposed by
Popovic and Stott, ' who used a two-parameter po-
tential V~@ for V,ff.

nd E„,(n)
=e„,(n(r))+

dn n=n( r )

(gb)

0.02—

The approximation, being based on an expansion in
powers of

~

Vn(r) ~, therefore assumes that the
charge density does not vary too much over dis-
tances comparable to r, . Although this is not the
case near the impurity, the approximation remains
good since the potential close to the origin is largely
dominated by the Coulomb part.

Equations (5)—(7) need to be solved self-
consistently to determine the electron density.

In the following, we consider the external poten-
tial produced by a positive point charge located at
the origin:

O
y) 0.01—

UJ
I

0

ra {a.u.}

FIG. 1. Energy of the 1s bound state for a point charge
(Z=1) in jellium vs the parameter r, .
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(12)

b V,", (r) = 4n.n "(r),— (13)

~ 0.05

+
+

+
+

+ + =5.6a (Cs)
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FIG. 2. Comparison between the fully self-consistent

charge density (solid line) and the results obtained from

the method of Popovic and Stott (Ref. 7, crosses) for low

densities of the electron gas. r, =5.63 corresponds to Cs,
the metal with lowest electron density.

The solution was assumed to be self-consistent if o.
and P were chosen in such a way that the Friedel
sum rule was fulfilled with both the trial potential
V p and the effective potential Vd~ constructed after
one iteration.

Following Popovic and Stott, we have calculated
this two-parameter potential V p for various densi-
ties of the electron gas. This solution leads to
surprisingly good results for high densities of the
electron gas (e.g., in the case of Al or Mg), but fails
for higher values of r, where the absence of itera-
tions using the exchange-correlation potential gen-
erates errors which increase with r, . Further, in the
case of low densities of the electron gas, the lack of
electrons increases the screening distance and makes
of V p too poor an approximation for V,rr. As a re-
sult, the Friedel oscillations are out of phase and the
contact density is overestimated by a large amount.
This is illustrated in Fig. 2, where the fully self-
consistent result is compared to the approximate
solution obtained from the procedure of Popovic
and Stott in the extreme case of Cs (r, =5.63). Ad-
ditionally, it should be mentioned that for low densi-
ties of the electron gas it becomes very difficult to
find values of a and P which fulfill the requirement
of charge conservation with satisfactory precision.

The problem of convergence of the fully self-
consistent equations was solved by Manninen
et al. ' ' who proposed two tricks which assure the
convergence for all metallic densities. First, the
determination of the electrostatic part of V,ff re-
quires at each iteration (i).the solution of the Poisson
equation

which leads to the long-ranged integral

n(i) &i
V,', (r)= fd r'

/r —r'f (14)

(15)

It can be shown' that the best choice for q is the
Thomas-Fermi screening length

1/2

q =kTF —— (16)

The second trick uses a feedback technique, which
prevents too large oscillations of n "(r) around the
self-consistent solution n "(r) from occurring. In-
stead of writing for iteration (i)

(1&)

one uses the effective potential obtained from itera-
tion (i —1) and writes

V ff=a( V,",'+ V'„",)+(1—a)V', ff

With a reasonable choice of a(r, ), or even a(r„r),
the self-consistent procedure converges for all densi-
ties of the electron gas.

We used these techniques to calculate the per-
turbed charge densities for r, =2, 2.2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5, and 6. Equation (10) was solved up to a
radius R larger than 6r, using the Numerov
method' for partial waves up to l =8. The density
n (r) was calculated using about 50 values of k. The
calculations were performed within the local density
approximation for V„„and we used the
parametrized form of the result of Singwi et al. '

proposed by Hedin and Lundqvist. Thanks to the

computing facilities available, we could iterate the
solution a very large number of times (more than
one hundred iterations for large r, values) to make
sure that convergence was achieved at every point.

The iteration procedure was started by assuming
some screened Coulomb potential as an initial V,ff.
After a few iterations the values of the charge densi-

In Eqs. (13) and (14), n (r) contains all the charge
density (impurity, electrons, and background). By
subtracting from both sides of (13) the term
q~V~)(r) (where q is a real constant) and replacing
on the right-hand side (rhs) V,",' by V~ ', Eq. (13)
is transformed into a Helmholtz-type equation, the
solution to which is nicely convergent:

ql r —r'I
V,",'(r)= fd r'

/

r —r'/

&(i)( i) 2V(i —))(1

4 es
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III. PARAMETRIZATION
OF THE SELF-CONSISTENT DENSITY

It is known that the charge density b n (r)
=n (r) no fu—lfills three conditions.

Charge conservation:

Jd rbn(r)=1.
Asymptotic behavior:

cos(2kzr +P )hn(r~ 0o ) =A
r 3

Cusp condition:

(19)

(20)

ty at the origin as well as of the first maximum of
r n(r) were already within a few percent of their fi-
nal values. Further iterations then changed the ex-
trema of the first and second Friedel oscillations,
and the self-consistency of n (r) was built up gradu-
ally from 0 to larger r values. To achieve conver-
gence also at the extrema of the further oscillations,
a large number of iterations was needed for r, & 3.5.
This is due to the more pronounced influence of the
exchange and correlation potential as compared to
the high-density region where the rapidly oscillating
densities n (r) could be determined fully self-
consistently already after 20 to 30 iteractions. In or-
der to allow easier use for further applications, we
found it convenient to parametrize ' the resulting
self-consistent densities, using a simple analytic ex-
pression which depends only on r, .

Riccati-Bessel functions jq(x)=xjI(x), where j~ are
the usual spherical Bessel functions. We exploited
the fact that the zeros of f are strictly linear func-
tions of r, to parametrize separately the regions
r &Z2 and r &Z2, Zq being the second zero of f
given by

Z2 ——1.52r, +0.462 . (23)

1 3

+ 3 g AIJ((x), r &Zzx +1(
5

f(»=, g BIj~(x),
x +1 I

(24)

We are left with a number of parameters which have
to be expressed as functions of r, : the contact densi-
ty hn(0) and the amplitudes A~ and BI.

The behavior of the contact density is shown in
Fig. 3. Since one expects that for large values of r,
the contact density approaches that of hydrogen, it
is natural to parametrize bn(0) by a function that
tends asymptotically to 1/m. An inspection of a
log-log plot of hn(0) —I/~ vs r, indicates that a
very good parametrization in the range 2 & r, &6 is
given by

b n(0) =—+exp( —0.72 —1.28 lnr,
1

7r

The parametrized form was chosen as (with x stand-
ing for 2I Fr):

Apf(x)=, jo(x)(1—e ")
x4+1

bn(r)
d
dr

= —2bn(0) . (21) —0.385ln r, ) . (25)

The last condition is a direct consequence of the
Schrodinger equation (5), and is valid for each indi-
vidual partial wave if the potential behaves as —1/r
close to the origin; this is the case in the local densi-
ty approximation.

A convenient parametrization of hn(r) can be ob-
tained using the function

The amplitudes AI and BI are smooth functions of r,
(see Ref. 21). Their values, in the range 2&r, &6,
have been fitted to a power series in 1/r„which is
given in Table I.

The precision of the fit is illustrated in Fig. 4

0.6

b,n(r) =—e "+ b n(0) ——e "+'1 —zr
m'

0.5

+f(2k~r), (22)

which consists of the hydrogen 1s charge density, a
contribution giving the correct contact density and
slope at the origin, and a function f which accounts
for the oscillations. Equations (20) and (21) imply
that f must be chosen in such a way that

f(0)=f'(0) =0 and f(r~ ao ) =2 cos(2kzr + P)/r 3

A possible choice for f is a linear combination of

0.4-
a

K
0.5—

I I I I I I

0 ~ 2 3 4 5 6
rs(a.u.)

FIG. 3. Contact density hn(0)=n(0) —no at the im-
purity vs the jellium parameter r, .
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TABLE I. Amplitudes of the parametric form for the perturbed charge density as func-
tions of r, .

a

—9.879
0.347

14.900
—15.040

CI

{a) r &Z2. AI =aI/'r, +b~/r, '+ci/r. +dh/r. +e
10.795 —4.422 0.696
2.257 —1.711 0.927

—20.780 10.200 —2.769
17.681 —8.380 1.946

—0.018
—0.103

0.233
—0.156

—6.197
—4.056

2.388
—16.430

{b) r )Z2. B~——ai/r, +bi/r, +cilr +di/r, +ei
5.882 —1.256 —0.379
6.326 —6.186 1.631

—6.313 6.083 —1.688
19.463 —9.391 1.820

0.047
—0.120

0.122
—0.114

which shows the self-consistent curve and the
parametrized function on the same graph in the case
of Au (r, =3). The electron densities obtained from
the parametrized form have been compared to the
results of other authors' ' ' and good agreement
has always been found. Excellent agreement exists
also between the Fourier transform of the calculated
b,n (r) and that of the parametrized expression.
Furthermore, the total displaced charge Eq. (19) cal-
culated with the values from Table I was found to
be very close to 1 for all values of r, from 1.8 to 6.0.
We also investigated the effect on the charge density
of the choice of the parametrized form for the
exchange-correlation potential V„. We repeated the
calculations using the Wigner formula" for V„, at
r, =4 and found a small difference in the amplitude

I

of the first two oscillations of r b,n(r). This differ-
ence was in all cases larger than that existing be-
tween the self-consistent result and the parametrized
form.

IV. CALCULATION OF THE ENERGY
AND PSEUDOPOTENTIALS

A. Theoretical formulation

Equation (2) can be written as the sum of two
terms.

(a) The first term, depending only on the lattice
structure, is evaluated using Ewald's method for lat-
tice sums:

Est, (Rq)=Z g erfc(G ~Rq —R7~ )+ g' "e
/R„—R7

/

Qp g' OpG
X(Rq) .

a

(26)

The constant G can be chosen in such a way that
both sums converge rapidly. g is a reciprocal-lattice
vector, a the lattice constant, and Qp the atomic
volume. X(R„) is related to the Madelung energy
M(R&) defined as

1.0

~ 05

0.10
= &.0 (AU)

O.O
6.0

z 2/3

E„,(R„)= M(Rq) .
r

(27)
0.0

Since a=re (3/4m. n) '~ (n=2 for bcc, n=4
for fcc), X(R&) and M(R&) differ only by a constant.
X(R&) is plotted in Fig. 5 for R„moving on a
straight line from the octahedral (0) to the
tetrahedral (T) sites for bcc, fcc, and hcp lattices. It
can be seen that the emptiest lattice (bcc) is the one
where E„,is the smallest.

Another feature should be mentioned: We have

-0.5 I I I

5 10 15
r(a. u. )

FIG. 4. Plots of the fully self-consistent charge density
around a positive muon or a proton in jellium with

r, =3.0 {Au) and of the density obtained from the
parametrized form [Eqs. (22)—(25)]. Both curves can be

distinguished in the inset.
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08-
0.7

0.6

0.5
le

0,4
hJ

I

0.5

0.2

UJ~ 0.1
N

0,0

-0.1-

Rq
FIG. S. The part of the energy which depends only on

the structure [Eq. (26)j for bcc, fcc, aud hcp (ideal e/a)
lattices.

B. Pseudopotentials

As mentioned in Sec. I the different values pub-
lished for the energies of protons or muons in Al
suggest that in addition to the exact form of the per-
turbed electron density bn(r), the choice of the
pseudopotential could be crucially important. In the
latter case one has to regard all results for the ener-

gy profiles with great caution since it is possible that
the description of the electron-core interaction by a
local pseudopotential is too crude to reliably predict
the interaction energies of point charges. In order to
obtain a general feeling, we investigated the results
obtained from six different local pseudopotentials
commonly used in the literature. Five of them are
one- or two-parameter potentials obtained either
from the Ashcroft empty-core pseudopotential or
from the simplified Heine-Abarenkov pseudopoten-
tial. They differ by an exponential screening in q
space, as q". We denote therefore the pseudopoten-
tials with an upper index n. In Fourier space, these
pseudopotentials are

0 —4~
W~(q) =

2
Z cosqr, , (29)

calculated the volume of a sphere that fits into the
space left at various sites by touching spheres cen-
tered on the lattice points. In the fcc lattice, the
volume V, at the octahedral site is 6.2 times larger
than the volume V„, at the tetrahedral site. In the
hcp case (with ideal c/a ratio), V~, =6.3 V«, . But in
the bcc lattice, V~, =(1/6.7)V„,. It follows from
these simple considerations that the structural part
of the energy is always a minimum where the max-
imum space is available.

(b) The second term of Eq. (2), which also de-
pends on the structure, contains all interactions be-
tween electrons. We therefore called it the interac-
tion part of the energy:

Em, (R&)=Z g'cos(g. R&)bn(g)W(g) .
0 ~g

(28)

bn(g) and W(g) are the Fourier transforms at
reciprocal-lattice vectors of the perturbed charge
density and of the pseudopotential. As has been
mentioned in the introduction, E;„, largely compen-
sates E„, if the impurity is screened over distances
short compared to the nearest-neighbor distance.

This is the case in metals with small r, values,
which happen to crystallize in the fcc or hcp struc-
ture. On the other hand, in metals with low density
of the electron gas (large r, values), which are the
bcc metals, the main part of the energy is given by
E„,. Examples will be mentioned in Sec. V.

which is the bare Ashcroft empty-core pseudopoten-
tial, with a screened form

—4m. —(q/5. SkF )2

Wz(q)= 2 Zcosqr, e
q

(30)

The bare simplified Heine-Abarenkov pseudopoten-
tial is

sinqr,
WHA —— Z A. +(1—A, )cosqr,

q qrc

(31)

with the two screened forms

4~ sinqr,
WHA(q)= 2

Z A, +(1—A, )cosqr,
q2 qrc

—(q/5, 5kF)2
Xe (32)

and

4 4~ sinqr,
W„A(q)=, Z A. +(1—A, )cosqr,

q qrc

—g(k /2kF )
Xe (33)

with (=0.03 for alkali metals and 0.15 for Al. Fi-
nally, a pseudopotential was computed by Borchi
and De Qennaro for noble metals using four
parameters:
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p —4n Vp
WBG(q) =

2
Z cosqr2+ —(slnqr2 —sinqr 1

—qr2cosqr2+qrlcosqr1) — (sinqr1 —qrlcosqr1) . (34)
q

r& has been set equal to 1 a.u. for Cu, Ag, and Au,
and r2 chosen in such a way that r~+r2 ——r;, the
Pauling ionic radius.

The parameters r, and A, can be calculated from a
large number of experimental properties of the pure
solid (transport properties, phonon spectrum, bulk
modulus, lattice constant, . . .}. Fixing the parame-
ters for one given pseudopotential to different prop-
erties of the metal leads of course to different num-
bers for these parameters. A complete list of experi-
mental properties used by various authors would be
too long: The parameters used in our calculations as
well as the references to the authors who determined
them for bcc, fcc, and hcp simple metals, respective-
ly, are given in Sec. V. The interest of the screening
in q space lies in the fact that all sums over recipro-
cal lattice vectors converge nicely. However, it
should be noticed that in direct space this corre-
sponds to making the pseudopotential a continuous
function with continuous derivatives. This can be
seen in Fig. 6 where 8'„(r), 8'z(r), %HA(r), and
WHA(r) are plotted in r space in the case of Al.

V. RESULTS

A. bcc metals

The bcc lattice with all possible symmetric inter-
stitial sites is shown in Fig. 7; the hexagons denote

I

the octahedral sites (0), the triangles the tetrahedral
sites (T), and the small circles some of the triangu-
lar sites (Tr).

The sites of interest for an interstitial impurity are
along the following directions: from the T site,

(1) (100): T-0 T, wi-th distance d = —,a

between the two T sites

(2) (110): T Tr T, -d =-a,v2

(3) (111): T T, d = a,2''
and from the 0 site,

(1) (110): 0-0, d = a,2''
(2) (111): 0-0, d = a .2'

We have calculated the potentials along all of
these directions using the available pseudopotentials
(see Table II}for all alkali metals and for Ba.

As an example, Fig. 8 shows the energy profiles in
the case of K. Only the curves corresponding to the
pseudopotentials predicting the lowest and highest
barriers are indicated. The dotted line shows the
structural part of the energy [Eq. (26)].

The potentials look very similar for all alkali met-

TABLE II. Pseudopotential parameters for the simple metals crystallizing in the bcc structure with references to the
authors who determined them. The table also contains the value of the jellium parameter r„ the valence Z, and the lattice
constant a. All quantities are in atomic units.

Element Z
a

Wg

(Refs. 28—35)
rc

Wg

(Refs. 4 and 5)

rc

WHA
0

(Refs. 7, 36, and 42)
WHA

2

(Ref. 4)
'c

WHA
4

(Refs. 39—41)
rc

Li
3.253

Na
3.941

K
4.834

Rb
5.187

Cs
5.628

Ba
3.698

1 1 038
6.592 1.40

2
9.496

1 1.61
7.984 1.69
1 2.047
9.874 2.135
1 2.02

10.554 2.256
1 2.104

11.423 2.425
2.93
2.55

1.06
1.678

1.663
1.758
2.107
2.226
2.125
2.40
2.16
2.62

1.29

1.53

2.10

1.559
1.562

2.081
2.173
3.016
3.099
3.486
3.545
3.997
4.114

0.408
0.373

0.308
0.480
0.572
0.624
0.697
0.727
0.768
0.808

1.26 —0.070 1.512
1.32 0.081 1.531

1.534
1.50 —0.075 2.071
1.56 0.063 2.1 I6
2.30 0.300 2.972

3.010
3.384
3.360
3.795
3.863

0.334
0.367
0.371
0.363
0.422
0.540
0.570
0.640
0.631
0.680
0.709
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als: The same site (T) corresponds to a minimum of
the energy. The heights of the barriers are of the
same order of magnitude for all elements from Li
down to Cs. It should be noted that the lowest bar-
riers always coincide with the bare Ashcroft pseudo-
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FIG. 6. Comparison between the behaviors of various

pseudopotentials in r space. The introduction of screen-

ing in q space modifies the hard-core picture and makes
the pseudopotential a continuous function with continu-

ous derivative.

FIG. 7. bcc lattice with all octahedral (hexagons), all
tetrahedral (triangles), and some triangular sites (small
circles).

3 2p
2 m

(35)

potential Wz, while the highest barriers correspond
to the most screened pseudopotential (WH~). How-
ever, for Ba with Z=2 (where the only pseudopo-
tential published is Wz) the barriers are much larger
than those in alkali metals.

The small heights of the barriers between T sites
which are of the order of 0.1—0.2 eV raise the ques-
tion whether light impurities can be localized at all.
The exact calculation of the zero-point motion of
muons or protons requires a detailed consideration
of the impurity wave function in the real three-
dimensional anharmonic potential. This point will
be discussed elsewhere.

In order to get a rough estimate of the zero-point
energy Eo of a muon or a proton, we have approxi-
mated the potentials by a parabola going through
the minimum and the inflection point, and have
determined Eo in the harmonic potential V(r) =pr,
which is

' 1/2

I

1.5 -'
O
(D

~ 1.O-

LLI
I

CL os-
LLI

aL

W„

0.0 0
&100&

Tr
&110&

To
&110&

FIG. 8. Energy profiles calculated for an impurity in K along a straight line in different directions from a T site or an
0 site. Only the curves corresponding to pseudopotentials predicting the highest and the lowest barriers are plotted (solid
lines): the upper curve always corresponds to 8'«and the lower to 8'&. The dotted line shows the structural part of the
energy E„„and al the lattice constant.
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TABLE III. Minimal (H;„) and maximal (H,„)heights of the barriers predicted by various pseudopotentials between

equivalent adjacent sites in the bcc lattice along various directions (see Fig. 8) in K, which is a representative of alkali met-

als, and Ba. An estimate of the zero-point energy of a muon and a proton is given in each case. All energies are in eV.

Direction Hmin Ep(p+ ) Ep(p+ ) Hmax Ep{p+) Ep(p+)
Ba

Ep(p+) Ep(p+)

T 0 T,-(-100)
T-Tr-T, (110)
T T, (111)
O-o, ( 110)
o-o, ( 111)

0.045
0.016
0.672
0.627
0.195

0.06
0.09
0,15
0.35
0.13

0.02
0.03
0.05
0.12
0.05

0.160
0.070
1.630
1.468
0.713

0.14
0.18
0.28
0.21
0.25

0.05
0.06
0.09
0.07
0.08

0.296
0.116
3.262
2.966
1.083

0.13
0.145
0.17
0.26
0.19

0.04
0.05
0.06
0.09
0.06

where m=m& or m~ is the mass of the impurity in
a.u. and p the curvature of the parabola. This rough
estimate makes sense when the obtained values of
Eo are either much smaller or much larger than the
height H of the barrier, indicating the existence or
nonexistence of an obstacle for diffusion.

Table III gives the height H and the values of
Eo(p) and Eo(p) in the cases of K (representative of
alkali metals) and Ba. This table indicates that a

proton could be trapped at the T site in Ba, but not
in any alkali metal at least when effects of lattice re-

laxation are neglected (see Sec. VI). On the other
hand, a muon cannot be localized in any of these bcc
metals.

Another rough estimate has been made to account
for the effect of lattice vibrations at T=O K. The
Fourier transform of the second term in the rhs of
Eq. (2) is

g Jd r bn(r —R&) W(r —R7)= fd3qe "bn(q) p'(q)ge(2')' (36)

TABLE IV. Pseudopotential parameters for the simple metals crystallizing in the fcc structure with references to the

authors who determined them. The table also contains the value of the jellium parameter r„ the valence Z, and the lattice

constant a. All quantities are in atomic units.

Element Z

Wg Wg

(Refs. 28, 29, 31 (Refs. 4
32, and 34) and 5)

rc r,

W0

(Refs. 7, 37,
38, and 42)

r,

WHA
2

(Ref. 5)

rc

WHA
4

{Ref. 41)
rc

Wgo, r) ——1
0

(Refs. 26 and 27)
r2 A, VP

CU 1

2.664 6.831
Ag 1

3.023 7.721
AU 1

3.005 7.708
Ca 2

3.269 10.548
Sr 2

3.554 11.499
Al 3

2.072 7.653

0.813

1.039

0.813

1.905

2.13

1.115
1.131

1.09

2.42 1.125

2.73 1.160

2.72 1.398

1.388 0.397
1.394 0.389
2.20 1.188
2.20 1.159

1.23 0.398 1.247 0.350
1.247 0.361
1.269 0.332
1.273 0.542
2.457 1.211

1.815 0.50 1.90

2.38 0.68 2.95

2.60 0.50 2.66

Pb
2.304

4
9.356

1.077
1.12
1.474

1.020
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where
+ —+O

R7(r}=R7+u7(r),

with

(37}

(38)

Since we are interested only in an order of magni-
tude of the effect of u7(t), we used the Debye-

%aller approximation for the time-dependent ex-
ponential

e
—i q u (t) & —q (u )/6 (39)

( 2) 64 546
g Pe+

(40)

Thus, the net effect of zero-point lattice vibration is
to screen the pseudopotential by the factor

&u2&/6e " . In the Debye approximation, for T=O
K and in atomic units,

where A is the atomic number of the ion and 8D is
the Debye temperature. The product A 8& being al-
ways large, we are left with small numbers for (u )
(0.14as for Li, 0.07as for Cs) and the effect of this
additional screening is small. As a result, the poten-
tial barriers are lowered or raised by amounts which
are never larger than 0.007 eV. Numbers of this or-
der of magnitude are much smaller than the barriers
themselves and out of proportion with the precision
expected from calculations in first-order perturba-
tion theory. We therefore neglected this contribu-
tion in the following.

B. fcc metals

The fcc lattice and all octahedral and tetrahedral
sites are shown in Fig. 9. The sites of interest are
along the following directions:

(1) (100): T T, with d-istance d = —,a between two adjacent T sites .

(2) (111): T 0 T, alon-g -the body diagonal of the cube, both T sites being at the distance(v 3/2)a .

(3) (110): O-O, with d =—(v 2/2)a .

%e calculated the energy profiles along these direc-
tions for all pseudopotentials (see Table IV).

Figure 10 shows the profiles obtained in the case
of Al in these directions. For the (100) and (110)
directions, we represented only the highest and
lowest barriers as well as the structural part of the
energy E«, (dotted line). Along the (111)direction
the results corresponding to various choices for the
pseudopotential differ from each other and five typi-
cal curves are represented. The results for this
T-0-T barrier obtained by other authors are also
shown and fit rather well with our own calculations.

The problem of deciding whether a proton prefers

to sit at the 0 or T site in Al can obviously not to be
solved with the present model, since the results de-
pend too strongly on the pseudopotential. However,
it seems probable that a muon will not see a signifi-
cant potential barrier in the (111) direction from
the T to 0 site, no matter what pseudopotential is
used to determine its diffusion properties.

In contrast to the bcc case, the structural part of
the energy always differs from E(R&) by a large
amount. As mentioned in Sec. I, this is related to
the small r, values characterizing fcc (and hcp) met-
als. It should also be noticed that the highest bar-
riers coincide with 8'HA and not with the most
screened pseudopotential O'HA, as in the bcc case.
However, the smallest barriers are still those calcu-

TABLE V. Height H of the potential barriers along
the (100) (T T) and the (111)-(T 0 T) directions in -Sr-

and Ca. The zero-point energies of a muon and a proton
are indicated. Both a p+ and a p+ seem to be strongly lo-
calized at the T site. All energies are in eV.

r

P
\ I Direction E,(I +) E,(q+)

-- r
g ~

W' ~

FIG. 9. fcc lattice containing octahedral (hexagons)
and tetrahedral (triangles) sites.

Sr

Ca

(1OO), T-T
(111), T 0T--
(1OO), TT-
(111), T 0T--0.84

1.17
0.93
1.02

0.34
0.24
0.37
0.24

0.11
0.08
0.12
0.08
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FIG. 10. Potentials seen by an impurity along various directions in Al. Along the (100) and (110) directions, only the
curves corresponding to pseudopotentials predicting the highest and lowest barriers are plotted. In the case of the (111)
direction, five curves are shown, and the triangles indicate the results obtained by other authors: Larsen and Norskov (1),
Ref. 8, Manninen and Nieminen (2), Ref. 2, and Popovic and Stott (3), Ref. 7.

lated with 8'z.
The situation in other fcc metals differs from one

element to the other.
(a) In Pb, all three pseudopotentials lead to very

different results as concerns the site of lowest ener-

gy. However, the barrier heights are always quite
small in at least one of the three directions: 8'z
(with r, =1.474) gives the lowest barrier along the
( 100) direction, 8'z with r, = 1.077 along the
(110) direction, and O'HA along the (111) direc-
tion. Thus, neither a proton nor a muon is expected
to be localized.

(b) The situation is different in Ca and Sr. The
bare Ashcroft pseudopotential (which in all previous
cases predicted the lowest barriers when compared
to other pseudopotentials) predicts a strong localiza-
tion of both muons and protons at the T site (see
Table V).

(c) The potentials along all directions are shown in
Fig. 11 for the noble metals, using the bare simpli-
fied Heine-Abarenkov pseudopotential which is
called the "Nikulin pseudopotential" by some au-
thors.

In the (100) direction (T T), the height o-f the po-

TABLE VI. Pseudopotential parameters for the simple metals crystallizing in the hcp
structure with references to the authors who determined them. The table also contains the
value of the jellium parameter r„ the valence Z, and the lattice constant a. All quantities are
in atomic units.

Element

rs

Z
c/a

8'q (Refs. 28, 29, and 32)

r,
O'HA (Ref. 7)

r,

Be
1.874
Mg

2.642
Zn

2.304
Cd

2.590

2
4.318
2
6.064
2
5.025
2
5.629

1.567

1.624

1.856

1.886

1.055

1.358
1.39
1.11
1.272
1.247

1.69 0.451
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tential barrier decreases rapidly as one goes from Cu
to Au. This is even more pronounced along the
(110) direction (O-O). The difference is still more
marked along the (111)direction: in Cu, the 0-site
has lowest energy (Eo Ez -———0.6 eV, Teichler
predicted some —0.8 eV) where a proton and even a
muon could be localized. In Ag, the proton could
still be localized at the 0 site, whereas more detailed
calculations are needed in order to determine wheth-
er a muon could be localized or not. In Au, the
minimum in the T-0-T direction corresponds to the
T site with Eo-Er 0.48 ——eV. Therefore, in Au, the
lowest barrier is along the (100) direction between
two T sites. The potential of Borchi and Gennaro
8'HG also predicts a strong localization of muons
and protons at the 0-sites in Cu (with

Eo Er —1.-6 eV——), much less localized in Ag (Eo-
Er —0.3 e——V) and again strongly localized in Au

l

(Eo Er-———0.85 eV). These results are in contradic-
tion with those obtained from the bare Ashcroft
pseudopotential 8'q which gives in general much
smaller barriers and wells, preventing any localiza-
tion.

C. hcp metals

The hcp structure with the 0 and T sites is shown
in Fig. 12. The 0 sites lie in the Z =

4 c and Z =
4 c

planes, while the T sites lie in slightly displaced
planes. This is due to the presence of an ion nearby
in the Z = —,c plane. Thus, in the c direction the se-
quence for symmetric sites is the following: O-O-
0 - . . or T-ion-T-T-ion-T

The sites of interest lie along the following direc-
tions:

(1) (001):O-O, with distance d = —,c between two neighboring 0 sites .

(2) (110):O-O, with d =a, in the Z =
~ c plane .

(3) (10-0):O-&, with dor ———,[3+a /c ]' a when going from an 0 site to the nearest p site.

(4) (001):T with d = —————a .
1c 2a
2Q 3C

eV). The heights of the barriers as well as zero-
point energies of muons and protons are given in
Table VII. It seems that protons and muons are
strongly localized at 0 sites in Be. There is some ex-
perimental evidence for muons being localized in
Be 45

VI. EFFECT OF LATTICE RELAXATION

We have calculated the effect of lattice expansion
or contraction of the first two shells in the case of
Al. We supposed that the lattice ions are dis-
placed around a given interstitial site R, =R„, or
R„,in the radial direction:

(Rg —R
) )~(1+5; )(Rg —R7), (41)

TABLE VII. Height H of the potential barriers along
the (001), ( 110),and (10-0) directions in Be and esti-
mates of the zero-point energies of muons and protons in
these potentials. Both particles might well be localized at
the 0 site in Be.

&p(p+)Eo(p+ )Direction

(OO1), O-0
(1iO), O-O
(10-0), 0T- 0.24

0.27
0.24

1.27
3.25
1.18

0.70
0.80
0.73

In the (110) direction joining two T sites lying in
the same plane (d =a) a high barrier always exists
(2.3 &H & 4.9 eV) for all elements and all pseudopo-
tentials (see Table VI).

The energy profiles in Mg are shown in Fig. 13
for two pseudopotentials. The structural part of the
energy (dotted line) differs, as for fcc metals, by an
order of magnitude from the full energy E(R&).
The results published by Popovic et al. ' are
represented by triangles. The curves indicate a
slight minimum at the T sites, which is too shallow
to localize a muon or even a proton.

In Zn, the barriers are quite high between 0 sites
(0.8 eV for O-O in the (001) direction and 1.11 eV
for O-O in the (110) direction) as well as between T
sites along the (001) direction (0.42 eV). The
lowest barrier corresponds to the 0-Tjump (0.36 eV)
with a slight minimum at the T site (Eo—Er——0.1

eV). Because of the very short distances between
nearest 0 and T sites this is not sufficient to localize
ap+

For Ca, all barriers are extremely flat. As in the
cases of Mg and Zn, the tetrahedral site has lowest
energy (Eo Er =0.36 eV). —

The situation is different in the case of Be, where
all barriers are very high and where the T site has a
much larger energy than the 0 site (Er Eo 0.7———
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FIG. 12. hcp lattice with its octahedral (hexagons) and
tetrahedral (triangles) sites.

E"'(R&) for the relaxed one, the change in the ener-

gy is

E""(R ) —E (Rq)= g [E(X'i')—E(X i )],
.7

i I I I-0.5 T 0 TIO&100& &111& &111& &110&0'
0)

0.5-
0)

4J
I

a.

LLJ

0.0 0 TIO&100& &111& &111& &110&

R„

where i numbers the shells. We fixed the displace-
ment of the second shell to be

1

52 ——+-, 5( . (42)

If E (Rz) stands for the unperturbed energy and

FIG. 11. Energy profiles in noble metals obtained with
W . The zero-point energies of a proton and a muon
are indicated. The potentials are similar to those predic-
ed b the four-parameter potential WqG (see Table IV) in

tthe case of Cu and Ag, but not in Au where WqG predic s
a deep well ( —0.85 eV) at the 0 site.

(43)

where the sum goes over the ions 1 which are re-
laxed, and where

X'-, =
I
R„—R-,

I
(44)

and

X"i ——
I Rq —R

i +5;(R,—R
i )

I
. (45)

The function E(X) has been calculated in the Ap-
pendix [see (A 1 1)].

The resulting change in energy is shown in Fig. 14
for R, =R~, and 52 ——+0.25). 5) was varied from
—0.06 to 0.06, and its value is indicated on each
curve. The curves in Fig. 14 have been calculated
using the bare Ashcroft pseudopotential 8'z with
r, =1.115. An expansion of the first shell together
with an expansion of the second shell lowers the en-
ergy at the T site, but does not significantly perturb
the energy at the neighboring 0 site. We have also

).0—

o 05-0
UJ

0.0 '

0 &001& 0 (110& &;10-0&

Mg, hcp

I

&001)
~ 0 l' ) d S' (full line) in Mg along various directions. The tnanglesFIG. 13. Potentials obtained with W& (dashed ine) an HA u

show the results calculated by Popovic and Stott (Ref. 7) using WH~.
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calculated the effect of lattice relaxation for
R, =R„, and found that even a large expansion or
contraction about the 0 site does not render it more
stable.

It should be mentioned that the influence of the
second shell is rather small in Al as has been
checked by changing the sign of 5&/52 in both cases.

Perrot and Rasolt have calculated anisotropic lat-
tice relaxation effects for a proton in Al, using 8'z
and 8'HA. They found a relaxation energy of —0.06
eV corresponding to 5~ ——2—3 %%uo in magnitude.

As can be seen from Eq. (2), the change in energy
upon relaxation will depend on the sign and magni-
tude of bn (r) at the first few neighboring shells. A
more detailed study will be published elsewhere.

VII. SUMMARY AND CONCLUSIONS

With the use of the self-consistent density-
functional method, the electron density around a
unit positive point charge in jellium has been calcu-
lated and parametrized for 2.0&r, g6.0. These re-
sults have then been used to compute energy profiles
in 17 simple metals using many different pseudopo-
tentials in first-order perturbation theory. The
dependence of the energies on the choice of the
pseudopotential, which in some cases is strong, exhi-
bits the relative weakness of this approach.
Nevertheless, a good physical insight can be gained
on the behavior of hydrogenlike impurities in most
simple metals. The heights of potential barriers can
often be estimated within some 20%. Additionally,
the sites of lowest energy and the easiest diffusion
paths can be predicted in many cases, The question
whether the impurity can be localized or not has
been investigated.

Hydrogen-diffusion experiments show a much
smaller activation energy in bcc metals than in hcp
and fcc lattices. We observed the same trends in our
calculations. In alkali metals with the bcc structure,
the barriers along the (100) (T 0 T-) -as well as
along the (110) (T Tr T-) -directions never exceed
0.2 eV, favoring an easy diffusion of light impuri-
ties. In bcc Ba, only a proton or one of its heavier
isotopes could be localized at the T site.

The situation is different in fcc and hcp simple
metals: In Al and Pb, muons and protons see al-
most no barrier along the body diagonal of the cube
((111),T-0-T direction). However, a strong locali-
zation at the T site is predicted for both Ca and Sr.
In Cu, two pseudopotentials predict a localization of
muons and protons at the 0 site, and all our calcula-
tions indicate a much weaker localization in Ag.
For Au, the results obtained using different pseudo-
potentials are in contradiction. Muon spin reso-
nance experiments in Cu show a localization of
muons below 100 K at the octahedral site. Blocking
experiments on the localization of pions in Au are
in preparation. The muon diffusion rate at high
temperatures decreases when going from Au to Ag
and to Cu.

In hcp Mg, Zn, and Cd no high barriers are
present, whereas light interstitials may easily be
trapped at the 0 sites in Be.

Since a small lattice relaxation (&3% in magni-
tude), does not too strongly affect these results, a
more detailed study seems necessary only in the
cases where the zero-point energy of the impurity is
of the same order of magnitude as the barrier
heights. A full treatment of lattice relaxation and of
the zero-point motion (including a calculation of the

o
Al NA Rs= Rtet0)
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FIG. 14. Effect on the energy profile along the (111) direction in Al when the lattice is relaxed about one of the T
sites. The first shell is relaxed in the radial direction by 5~ ———6% up to 5~ ——+ 6%, and the second shell by 52 ——+0.25~.
The value of 5~ is indicated on each curve. The full line corresponds to the rigid lattice.
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impurity wave function in the anharmonic three-
dimensional potential) is then needed to give reliable
results. This is the case in Au, Al, and Zn. More
details about these effects will be published elswhere.

one can split (A2) into two parts:

E(X)=Z f d sbn(s)
i

s —Xi

ACKNOWLEDGMENTS +Z J d sbn(s)
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=E„(X)+E,.„(X). (A5)

With the use of the expansion of I!
i

s —X
i

into
Legendre polynomial and the orthonopnality rela-
tion of the Pi's, E is easily reduced to

APPENDIX: EVALUATION OF THE ENERGY
FOR A SINGLE ION

For a single ion at R, the energy [Eq. (2}] is given

by

E(Rq) =
i
R—R„ i

+ f d rhn(r —R&)W(r —R) . (Al)

Z QO

E„(X)= 4n—f .dr An (r)(r —X)
X

Z=—[F(X)—XG (X)],X
where

F(X)=4m. J dr r hn (r)
X

and

(A6)

With X=R—R& and since J d rhn(r)=1, (Al)
reduces to

W(s —X)=— Z

i
s —Xi

Z e(r, —
i

s —Xi),
is —X

(A3)

E(X)= f d shn(s) —+8'(s —X) . (A2)
X

In the case of the Ashcroft empty-core pseudopoten-
tial:

G(X)=4~ f dr rb, n(r) . (A7)

One returns to r space by taking the inverse Fourier
transform of b,n(q}, and calculating the integral
over q,

It is also easy to write E„„(X)as a linear com-
bination of the functions F and G: If one renames
t = s —X and takes the Fourier transform of
hn( t+X), the integral over t can be calculated
with the result

Z 2 sinqX ( 1 cosqr,)—
E„„(X)= dq b—,n (—q)

0

(A8)

dr r~hn(r) —(X r, ) f d—r rb, nr
C

=Z 2
00 X+r

E„„(X)= 4n f d—r r An (r)+X f dr rb, n (r)——, f dr r An(r)

00 X—r

, (X+r, ) f dr—rb,n (r) ——, f
C

(A9)

Since

J drr hn(r)=F(0) —F(X), (A 10)

(A 1 1)

the sum E„(X)+E„„(X)can be done and one obtains

E(X)= [F(X+r,)+F(X r, ) —X(G(X+r, )+G(X r, )) r, (G—(X+r—, ) —G(X—r, ))] . —Z
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