
PHYSICAL REVIEW B VOLUME 27, NUMBER 10

Infrared absorption spectrum of 8-doped Si

R. S. Leigh and M. J. L. Sangster
J. J. Thomson Physical Laboratory, University ofReading, Reading, Berkshire, England

(Received 19 July 1982)

It is shown that the presence of a sharp resonance (quasilocal mode) at 227 cm ' in the

one-phonon absorption spectrum associated with isolated boron substitutional impurities in

silicon implies substantial stiffening of the bond-bending force constant at the impurity

atom. Previous interpretations, in terms of the mass defect only, rely upon artificial as-

sumptions concerning the host-lattice density of modes in the TA region. Changes in bond-

bending and bond-stretching force constants are found by fitting to the quasilocal- and

local-mode frequencies. Detailed calculations of the band absorption which include for the

first time elements of the apparent charge tensor associated with first and second neighbors

of the impurity (as well as the 8 impurity itself) are presented. These calculations illus-

trate the important effects of near-neighbor apparent charges on the strengths of the various

features in the absorption spectrum. Asymptotic expressions are invoked to assign second-

neighbor apparent-charge tensor elements, and the number of independent first-neighbor

elements is reduced from three to two by application af a sum rule. The remaining two ele-

ments are fitted to the strengths of the 227-cm ' quasilocal-mode absorption and the local-

mode absorption. These apparent charges are then used in the calculations for the entire

band. Parallels are drawn between the absorption peak around 330 cm ' and the 227-cm

resonance. In an appendix it is shown that the contribution to the absorption arising from

apparent charges on more distant neighbors (which are neglected in our calculations) is con-

centrated near the Raman frequency. In the band the integrated absorption from apparent

charges on third neighbors and beyond is comparable with that from the apparent charges

on the impurity and its first and second neighbors.

I. INTRODUCTION

The one-phonon absorption associated with sub-
stitutional boron in silicon has received considerable
attention, both experimental and theoretical. A
general discussion of the relevant experimental work
and its interpretation is contained in the review by
Newman. ' For observation of the absorption associ-
ated with the impurity the crystal must be rendered
transparent by removing free carriers through com-
pensation. Compensation is achieved either by Li
diffusion (e.g., Balkanski, Spitzer and Waldner,
Chrenko et al. , and more recently, Cardona, Shen,
and Varma ), or by the inclusion of group-V dopants
such as phosporus and the use of electron irradiation
to obtain complete transparency (e.g., Angress,
Goodwin, and Smith ). Only Angress et al. ' and
Cardona et a/. have measured the absorption over a
wide range of frequencies in the host-crystal band;
the measurements of other workers are confined to
local modes and frequencies near the top of the
band. The close proximity of an interstitial Li ion
to a large proportion of the substitutional B impuri-
ties in the Li-compensated crystals complicates the

interpretation of the absorption. Apart from some
comments in Appendix C we shall therefore confine
our attention to group-V —compensated crystals.

A feature of the band-mode absorption on which
we shall concentrate attention is a sharp resonance
(quasilocal mode) at 227 cm ' which appears in
both P- and As-compensated crystals ' and is there-
fore presumed to arise from B. Any isotopic split-
ting that may be present is not resolved.

Neutron scattering studies of normal-mode fre-
quencies in Si have been made by Dolling at 296 K
and by Nilsson and Nelin at 300 K. These
normal-mode frequencies are used in the next sec-
tion to fit two parameters of the simple Keating'
model which we adopt, namely nearest-neighbor
bond-stretching and (essentially) bond-bending force
constants. Our interest in the 227-cm ' quasilocal
mode was stimulated by observation of similar
modes in GaAs (Ref. 11) and GaP. '

The local-mode frequencies and band-mode ab-
sorption were calculated by Dawber and Elliott' on
the basis of a simple mass-defect model and a densi-

ty of vibrational modes for Si due to Johnson (un-
published, but displayed by Dawber and Elliott).
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Although this density of modes is considerably dif-
ferent from more recent calculations' ' based on
more flexible models and fitted to dispersion data
from the neutron scattering studies, the main
transverse-optical (TO) peak is at approximately the
right frequency. The overestimates of the local-
mode frequencies by Dawber and Elliott indicate
that changes in the force constants around the B im-

purities have to be considered. The Johnson density
of modes falls to a very low minimum at around 150
cm ' compared with around 225 cm ' in the
Weber' model. Dawber and Elliott find evidence of
a quasilocal mode for 8 in Si just above this fre-
quency (i.e., 150 cm '). It is tempting to consider
that a suitable correction of the density of modes
would lead to an accurate prediction of the 227-
cm ' resonance from simple mass-defect theory
without any changes in force constant. Cardona
et al. have made such a calculation, but for this
purpose they replace the density of transverse-
acoustic (TA) modes by a rectangle extending from
100 to 215 cm '. The artificially introduced abrupt
fall in the density of modes at the top of the TA re-
gion (which is also an incorrect feature of Johnson's
distribution) leads inevitably to a quasilocal mode
for any impurity mass lighter than the host mass.
In fact, Cardona et al. find it to be only 0.8 cm
above 215 cm '. Our dynamical model agrees with
Weber's in showing a considerably less abrupt fall in
the density of modes. We have carried out a mass-
defect calculation (with no changes in force con-
stants) using our dynamical model and making the
usual assumption that only the motion of the impur-
ity contributes to the dipole moment. As discussed
by Leigh and Szigeti' this assumption is incorrect
but corresponds to that made by Cardona et al. (and
by Dawber and Elliott). We find a broad peak just
above the peak in the density of modes, in complete
agreement with the result of Cardona et al. using
Weber's density of modes (actually for Ge with an
appropriate change in frequency scale). We feel that
it is misleading to describe this resonance as a quasi-
local mode when it occurs at a frequency (219 cm ')
at which the density of modes is still -70% of its
value at the 215-cm ' peak and the resonance is
correspondingly broad.

We also find, as in the work of Dawber and El-
liott, that the local-mode frequencies are too high.
In Sec. III it will be shown that around the 8 impur-
ity, in addition to a reduction in the 8-Si bond-
stretching force constant to lower the local-mode
frequencies, a stiffening of the Si-8-Si bond-bending
force constant is required to produce the quasilocal
mode. A similar conclusion was reached by Talwar
and Agrawal' in their explanation of the low-
frequency part of the infrared absorption of Be-

doped ZnS, although the resonance in this system (at
132 cm ', Ikuta et al. '

) which parallels the feature
under discussion here is explained, at least approxi-
mately, without a bond-angle force-constant change.
While the work of Talwar and Agrawal is in some
of its aspects similar in spirit to that presented here,
their assumption that only the apparent charge on
the impurity need be considered seems to us to in-
validate much of their discussion of the relative in-
tensities of features in the absorption spectrum.

The calculations presented here have two main
aims. First, we show that with a reasonably good
(albeit simple) model for the dynamics of the perfect
lattice the local-mode and quasilocal-mode frequen-
cies can be explained by force-constant changes
which, as will be argued in Sec. III, are physically
plausible. Second, we demonstrate in Sec. V that in
order to understand the intensities of features in the
band absorption it is essential to take into account
apparent charges on host atoms as well as the im-
purity. It was shown by Leigh and Szigeti' '
that the existence of these additional apparent
charges follows inescapably from macroscopic con-
siderations. We believe that the present calculations
are the first to examine this effect in detail. A pre-
liminary account of this work has recently ap-
peared.

II. LATTICE DYNAMICAL MODEL

For the dynamics of the Si lattice we use the sim-
ple Keating' model which has only two parameters,
a nearest-neighbor bond-stretching force constant o, ,
and a bond-angle force constant P. The correspond-
ing energy changes are

—,a ~ [5(r )]
4ra

per bond and

per bond pair, where r0 is the equilibrium nearest-
neighbor distance (ra =v 3a l4 with a the side of the
elementary face-centered cube). Although more so-
phisticated models are available, such as the bond-
charge model of Weber' which agrees well with all
measured phonon frequencies, the relevant charac-
teristics of the density of modes may be adequately
represented by the simpler two-parameter model.

The simplicity of the model has the consequence
that no particular choice of the two parameters will
reproduce all measured frequencies. Different
choices may be appropriate to different applications.
Thus Martin gives one choice which reproduces
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TABLE I. Force constants (in Nm ') for Keating
model for Si.

This work
Martin'
Baraff et al. b

'Reference 23.
"Reference 24.

46.05
48.50
51.51

7.10
13.81
4.70

the three elastic constants to within 1%, and Baraff
et al. give a rather different choice which is con-24

strained to fit the compressibility and reproduce
phonon frequencies in the part of the zone particu-
larly relevant to the vacancy problem which they
consider. In our case we have two essential require-
ments: To treat the local modes we need a good rep-
resentation of the highest-frequency peak in the den-
sity of modes and for the quasilocal mode we need,
as has been discussed in the Introduction, a faithful
reproduction of the falloff to the low minimum at
227 cm '. The first requirement is met by fitting to
the frequency of the TO phonon at the L point (L 3 )

which Dolling gives as 14.68+0.30 THz. Compar-
ison of the dispersion curves with the density of
modes suggests a correlation between the low
minimum in the density and the maximum in the
X3(A ) branch, which the interpolated measurements
of Nilsson and Nelin show to be at a wave vector of
(0.67, 0.67, 0)vr/a with a frequency of 6.80 (+0.06)
THz. We have forced the maximum in the X3(A)
branch of the model to equal 6.80 THz, and it then
occurs at (0.69, 0.69, 0)m /a. It is, of course, possible
that the edge to the low minimum arises from pho-
nons in lower symmetry directions, but our subse-
quent calculation of the density of modes rules this
out for the Keating model at least.

In Table I we list our force constants for silicon
together with those for the other applications of the
Keating model mentioned above. The density of
modes from our choice of parameters is shown in
Fig. 1 with the results of Weber for comparison.
(We take the Weber calculation to be the best avail-
able interpolation of the existing measurements
along high-symmetry directions. ) In addition to the
two fitted frequencies there is excellent agreement in
the edge to the low minimum (227 cm ') and in the
features at 215 cm ' and around 325 cm ', and
fairly good agreement around 400 cm '. The Keat-
ing model fails to give the characteristic flattening
of the TA branch and hence the associated sharp
peak in the spectrum. Also the splitting of the TO
peak and its tail to the Raman frequency are not
reproduced. These shortcomings are unlikely to
prove serious in our application.

(

(
1

I

I

I

500100 200 300 400

FREQUENCY (cm )
)

FIG. 1. Density of modes for Si, Solid curve is for the
Keating model with a=46.05 N/m and P=7. 10 N/m;
dashed curve is from Weber (Ref. 15).

III. FORCE CONSTANT CHANGES
AROUND THE IMPURITY

where the summations are over atomic sites and
Cartesian components of displacement. The func-
tions G„'~.„p(co) are the (Cartesian) Green's func-
tions for the lattice containing the defect and the
coefficients r)'„are the apparent charges (in the ter-
minology of Leigh and Szigeti' )

aM,
Dna (3.2)

Qna

with M, the z component of the total dipole moment
and u« the n component of the displacement of the
nth atom. The derivative is to be taken at constant
macroscopic electric field; this is equivalent to the
use of slab geometry in Ref. 16. Equation (3.1) fol-
lows from Eq. (1.15) of Maradudin with some
changes in notation and a simplification for the cu-
bic symmetry of the defect site. Equation (3.1) can
be written in a contracted matrix notation as

o.(co) = qG'(co)g
47lco

pc

with g the vector of apparent charges and transposi-
tion denoted by a tilde. Since only displacements of

The cross section for infrared absorption induced
by a defect at a site of cubic symmetry in a crystal
of refractive index p [3.414 at 296 K (Ref. 25)j can
be written as

41tcoo. co = g g g'„~q'„plmG„'~ „p(co), . (3.1)
na n'p
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I 5 symmetry are infrared active, reduction in the
number of terms to be considered results from pro-
jecting out these symmetry-adapted displacements.
Writing the vector of symmetry-adapted displace-
ments transforming as row z of the I 5 irreducible
representation as d(I 5) and the vector of atomic
Cartesian displacements as u (corresponding to g)
we have the transformations

are eight occurrences of I 5 in this subspace: one for
the impurity itself, two for the first neighbors, and
five for the second neighbors. The transformation
matrix S is then 51&8. The elements of S are ob-
tained by standard group-theoretical arguments and
depend on the choice made for the symmetry-
adapted displacements. Our choice is shown in Fig.
2.

and hence

with

(3.4)

(3.5)

The 8 X 8 (symmetric) Green's function matrix for
the defect lattice, G'(I 5.co), is obtained in the usual

way, e.g., Maradudin, from its counterpart for the
perfect lattice G(I &.co):

G'(I:co)=[I+G(1:co)D(l":ro)] 'G(I m)

and

G'(1 5.co) =S 6'(co)S (3.6)

(3.7)

We shall consider apparent charges on the impuri-
ty atom, its four first (111-type) neighbors and its
twelve second (220-type) neighbors. With this re-
striction g (or u) is a 51-component vector. There

I

with D(I 5.co) the symmetry-reduced defect matrix
which, with our assumptions, is nonzero only in the
subspace containing the impurity and its nearest
neighbors [leading to the usual simplifications in the
matrix inversion in Eq. (3.8)]. The nonzero part of
D(I 5m) is given in terms of the force-constant
changes 5a (for B—Si bonds) and 5P (for Si—B—Si
bond pairs) and the mass defect 5m = ma —ms; ..

45a+ 25p —5m co

—2v 25a+v 25P

—2v 25a+ ~25P
25a+ 5P

v 25a ——,v 25p

-25a —5P

v 25a ——,V 25P

5a+ —,5p

(3.9)

where the row and column ordering corresponds to
that of the (first three) displacements in Fig. 2.

G(I 5.co), being 8X8 and symmetric, is specified

by 36 functions of frequency which can be obtained
from a smaller number of independent G„.„p(~).
The eight classes of atom pairs which have to be
considered are identified in Table II by their typical
separation vectors (in units of a/4). Also listed are
the numbers of independent Green's-function com-
ponents for the eight classes. It may be noted that
the symmetry of the Green's functions is the same
as that of force constants required to specify general

27interactions between pairs of atoms. Herman de-
tails the symmetry transformations relating force-
constant matrices for different members of a class.
It can be seen from Table II that 26 perfect-lattice
functions G„.„p(co) are required.

The procedure then consists of the following
steps:

(a) calculate the 26 independent perfect lattice
functions,

(b) set up the full 51 X 51 matrix G(co) and project
out the symmetrized matrix G(I'q. co) as in Eq. (3.6),
and

(c) calculate the modified matrix for the defect
crystal using Eq. (3.8).

If the apparent charges are known, the absorption

~al2~

FIG. 2. Symmetry-adapted displacements for row z
(vertically upwards in the figure) of the I 5 representation.
Number 1 refers to the impurity, 2 and 3 to its first neigh-

bors and 4—8 to its second neighbors.
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TABLE II. Classes of atom pairs in a complex consist-

ing of an atom and its first and second neighbors.

Pair separation Number
vector of independent

Class (units of a/4) Green's functions

1

2 (1st NN)
3 (2nd NN)
4 (3rd NN)
5 (4th NN)
6 (5th NN)
7 (6th NN)
8 (9th NN)

0
1

2
—3

4
3
4
4

0
1

2
—1

0
3
2
4

0
1

0
—1

0
1

2
0

cross section is given by Eq. (3.5). The above steps
can be seen to follow the procedure of Talwar and
Agrawal with extensions to include apparent
charges on the first and second neighbors of the im-
purity.

The 26 perfect-lattice Green's functions G„~.„p(co)
are calculated from the eigenvectors at a sample of
q vectors by fairly standard methods which will be
outlined only briefly. The eigenvectors and frequen-
cies are calculated at 6336 regularly spaced points in
the symmetry-reduced zone (1/48th) corresponding
to 64 points in the full zone. The contributions at a
particular eigenfrequency to the imaginary parts of
the Green's functions are obtained from the corre-
sponding eigenvectors taking due account of phase
differences between cells and the summation over
the components of the star of the q vector. The im-
aginary parts are histogrammed in frequency with a
bin width of 1 crn ', and then each histogram rec-
tangle is replaced by a truncated quartic function of
the same area centered on the middle of the division
and set to zero with zero slope at +3 cm ' from the
center. In addition to providing smoother functions,
this last step allows analytic evaluation of the
principal-value integrals required for obtaining the
real parts of the Green's function by Hilbert
transformation. (This unpublished method was in-
troduced to us by J. Slater).

Step (c) requires values for the force-constant
changes 5a and 5P. The mass defect 5m is of course
known. We obtain values by fitting to the observed
local-made and quasilocal-mode frequencies for the
"B impurity. Outside the band (co &co~ ) G is real.
The local-mode frequency is therefore fitted exactly
if the force-constant changes are chosen so that the
determinant

~

I+G(I'5m)D(l 5m)
~

is zero at that frequency [cf. Eq. (3.8)]. In the band
(co &coz ) G is complex, but in the neighborhood of

the resonance frequency the imaginary parts of its
elements are small due to the low minimum in the
density of modes. We may therefore fit the reso-
nance frequency approximately be neglecting the
imaginary parts altogether and proceeding as for the
local mode. In subsequent calculations of the ab-
sorption spectrum [taking proper account of the im-
aginary parts (cf. Sec. V)] we find that the frequency
of the maximum of the resonance peak is -1 cm
higher than the frequency as fitted above. (A shift
upwards is to be expected when imaginary parts are.
decreasing. ) We therefore choose the force-constant
changes to make the determinant vanish at 226
cm '. (Identifying the frequency of the undamped
resonance with the vanishing of the above deter-
minant is only one of several alternative procedures.
This is discussed in Appendix A where we show that
at least in the present case the alternative identifica-
tions agree to within -0.1 cm ' for a given choice
of force-constant changes. )

As suggested by Angress et al. " the local-mode
frequency is relatively insensitive to changes in the
bond-bending force constant (5P) but the frequency
of the resonance depends more strongly on 5p than
on 5a. Fitting the frequencies of the "B local
mode (620.2 cm ') and the resonance requires the
following force-constant changes (in Nm '):

5a= —6.34, 5P=7.55, (3.10)
i.e., the bond-stetching force constant around the B
impurity is 0.86 of that in the host crystal, and the
corresponding ratio for bond bending is 2.1. With
these force-constant changes the ' 8 local-mode fre-
quency is 644.4 cm ', in satisfactory agreement
with the experimental value of 643.9 cm ' (Angress
et al. ). The frequency of the quasilocal mode (227
cm ') is practically independent (-0.2 cm ') of
which B isotope is substituted. Many atoms partici-
pate in the quasilocal mode, and the displacement of
the impurity itself is comparable with those of the
surrounding host atoms.

While the modest reduction in the force constant
a around the impurity is of reasonable magnitude
and the expected sign (since the boron atom is small-
er than the silicon atom which it replaces), the
enhancement of the bond-bending force constant by
a factor of 2.1 requires some discussion. Angress
et al. " have already pointed out from the tabula-
tions by Herzberg that the bend to stretch ratio in
XY4 molecules is markedly higher for a given Y
with X=C than with X=Si. The force-constant ra-
tios around 8 and C are likely to be similar since
both are second-row elements. The same conclusion
follows from a comparison of the Keating force
constants in diamond and Si. Martin finds p/a
ratios of 0.655 in diamond and 0.285 in Si. Our ra-
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tio in Si is 0.154 (since we adopt a lower value for P)
and around a B impurity 0.369. Thus it can be seen
that our large enhancement of P is roughly con-
sistent with the P/a ratio depending predominantly
on the row of the Periodic Table from which the
atom comes.

IV. APPARENT CHARGES

A. Apparent charges on second neighbors

Macroscopic arguments' ' ' lead to the following
expressions which are asymptotically exact at large
distances from a charged impurity in the diamond
structure:

where E„z, etc., are elements of the static dielectric
tensor and u denotes the relative sublattice displace-
ment. If u is defined as the displacement of the A

sublattice relative to that of the B sublattice then the
upper or lower sign in front of the Pz terms in (4.1)
applies according as the nth atom is on the A or 8
sublattice. The Pz terms represent the apparent
charges induced by the electric field itself while the
photoelastic terms represent the apparent charges in-
duced by its gradient. The physics of the PR terms
is the same as that of the first-order infrared absorp-
tion observed in pure diamond-structure crystals in
the presence of a uniform electric field. ' ' The re-
lationship between p44 and the observed p44 is given
by

3
Zeeo a

INX

ZeEO a
Iny

327T r

p 3xz—V»2+p4~), +2P~y
r

p 3'—(p &2, +p44) +2Pzx
r

p~=p4~ (1~v—3)Pz&ok (4.2)

where g is the dimensionless quantity introduced by
Kleinman to describe the sublattice displacement
accompanying shear, i.e.,

3
ZeEo a p 3z
32K r r

(4 1)

Here Ze denotes the net static charge associated
with the impurity (Z= —1 for 8 in Si), eo (=p )

denotes the static dielectric constant of the host
crystal, and r (with components x,y, z) is the posi-
tion vector of the nth atom relative to the impurity.
The p coefficients are the conventional photoelastic
constants, except that p44 denotes the value that p44
would have if the relative displacement of the two
sublattices in the z direction were fixed during the
xy shear. The quantity P~ is proportional to the
only nonvanishing element of the Raman tensor, i.e.,

BE» BE&~ BE~
~OPR

BQ BQ BQ

v3 ' as„, as„as
where S„~,etc., are elements of the strain tensor.

We assume (cf. the discussion by Leigh and Szi-
geti ) that expressions (4.1) apply to all atoms
beyond nearest neighbors of the impurity. This as-
sumption is not unreasonable (as it would be for
nearest neighbors), and it serves to keep to a
minimum the number of apparent charges to be in-
ferred from analysis of the observed impurity ab-
sorption. In our calculations of the spectral depen-
dence of the absorption cross section we neglect ap-
parent charges on third neighbors and beyond so
that expressions (4.1) are used in these calculations
only for second neighbors. We can, however, calcu-
late the total integrated one-phonon absorption aris-
ing from third neighbors and beyond according to
(4.1) by using the result [see, for example, Leigh and
Szigeti' or Maradudin, Eq. (1.16a)]

f o(a))de=
2

g [(vP )'+(r)'„y)'+(g' )']
Pc Pl g

L

(4.3)

where the prime on the summation means that the
sum extends over all host atoms.

In Appendix 8 we discuss the available experi-
mental values for the photoelastic constants and the
Raman constant. We adopt the following values:

p) ) ———0.093,

p)2 ——+0.019,

p44 ———0.050,

and

pro= —0 1

The resulting values of the second neighbor apparent
charges are given in Table III.

B. Apparent charges on first neighbors

Macroscopic arguments' ' ' show that
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TABLE III. Apparent charges (in units of ~e ~) on
second neighbors of the impurity, calculated from (4.1)
with Z= —1, for the impurity on a site with a nearest
neighbor at —a(1, 1,1). Only symmetrically inequivalent

apparent charge elements are given.

the natural isotopic abundance, the integrated cross
section of "B (frequency in cm ') is 117X10
cm. Fitting the strength of the quasilocal mode re-
quires care for several reasons:

Site of atom n

-a(0, 2,2)

—a(2, 2,0)

r)o+ g'rI' =Sze,

g
'dna

+0.076
—0.033
—0.001

+0.076

+0.002

(4.4)

(a) the theoretical width turns out to be not much
more than half that observed;

(b) it is not known how much of the experimental
"background" arises from processes other than one-
phonon absorption (e.g. , the low-frequency tail of
the interband absorption, or residual free-carrier ab-
sorption);

(c) although both experimentally and theoretical-
ly the absorption on the high-frequency side of the
resonance is less than that on the low-frequency
side, the asymmetry of the calculated line shapes is
different for the four sets of apparent charges.

where

S=1+—,eo(p)&+2744) . (4.5)

C. Adjustment to experiment

We are left with two adjustable apparent charges,

go and qi. We choose these to make the integrated
absorption of the "B local mode and 227-cm
quasilocal mode agree with experiment. Since the
absorption is quadratic in the apparent charges there
are four alternative sets of values of go and g&. In
the next section we shall compare with experiment
the absorption over the entire band region; this is
different for the four sets.

For the local mode we use the room-temperature
result of Goodwin, viz. , 0.059 eVcm ' for a total
boron concentration of 5X10' cm . Assuming

With the values adopted in the preceding section we
find S=—0.03. To the level of accuracy represent-
ed by the uncertainties in p», p44, and Pz this
means that S is zero.

The summation on the left-hand side of (4.4) ex-
tends over all host atoms. It converges more rapidly
than might be expected because in tetrahedral sym-
metry the sum over a single shell of atoms becomes
zero when the g' are given by the asymptotic ex-
pressions (4.1).' The assumption made in the
preceding section that the apparent charges of all
atoms beyond first neighbors of the impurity are
given by (4.1) therefore implies that only first neigh-
bors contribute to the summation.

By symmetry rl~ is the same for all four nearest
neighbors, and so is equal to —

4 qo. We denote it
by rj(. The off-diagonal apparent charges of the
first neighbors are all the same except for sign. For
a (111)neighbor they are equal and we denote them
by +ni.

However, we find that for all four sets of apparent
charges the following procedure leads to agreement
between the observed and calculated integrated cross
sections to within —10% whatever truncations are
used. We treat the resonance as if it were a true lo-
cal mode, i.e., we neglect the imaginary part of the
Green's functions, (see Appendix A) and fit to a
value of 2.6)&10 ' cm for the strength of the 5
function in the cross section for "B. It is important
to note that this is not equal to any reasonable esti-
mate of the observed area of the peak above back-
ground: it is in fact more than double. In other
words, when the imaginary parts are included the
excess goes into the background.

We give in Table IV the four sets of values of go,
g~, and g&. We recall that the apparent charges on
second neighbors are the same in all four sets (and
are given in Table III). The four sets are character-
ized by the signs (relative to the B displacement) of
(a) the dipole moment of the local mode and (b) the
dipole moment which is associated with the quasilo-
cal mode when the imaginary parts of the Green's
functions are neglected. These dipole moments are
sums of the products of apparent charges and the
corresponding displacements, the latter being given
by the mode eigenvectors. In Table V we show the
contributions to these sums from r)o, rlI, q|, and
second neighbors. The dipole moment of the local

TABLE IV. Alternative sets of apparent charges (in
units of

~

e
~

) on the impurity and its first neighbors.

A B C D

0 —0.938 —0.821 +0.827 +0.944
( = go) +0.235 +0.205 —0.207 —0.236

+0.013 +0.261 —0.272 —0.025
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gp

2nd NN

—1.336
—0.335
—0.165
+0.077
—0.010
+0.022
—0.009
+0.009

—1.170
—0.293
—0.144
+0.068
—0.197
+0.444
—0.009
+0.009

+1.178
+0.295

+0.145
—0.068

+0.205
—0.463
—0.009
+0.009

+ 1.345
+0.337

+0.166
—0.078

+0.019
—0.043
—0.009
+0.009

TABLE V. Contributions to mode dipole moments

BM/BQ (in units of
~

e
~

/V'ms;) from apparent charges
on the impurity ("B) and its first and second neighbors
for the alternative sets of apparent charges. (Q is a nor-

mal mode coordinate. ) The upper of each pair of numbers

refers to the local mode, the lower to the quasilocal mode
at 227 cm

Z:
C)

6

fJ)

D

0
O
V)
Q3 100 200 300 400

FREQUENCY (cm )

500

FIG. 3. Absorption cross section for substitutional "B
in Si on the assumption that only the impurity carries an
apparent charge (go). Solid curve is for 5a= —6.34
N/m, 5P=7.55 N/m, and t)o——+1.067

~

e ~; dotted curve
is for 5a = —4. 13 N/m, 5P=O, and go+1.084

~

e
~

.

mode is dominated by the contribution of qo and so
is negative for sets A and 8 and positive for sets C
and D. The dipole moment of the quasilocal mode
is negative in sets 2 and C and positive in sets B
and D.

We note that if go and g& are given values which
are the arithmetic means of sets A and 8 on the one
hand, or of sets C and D on the other, the quasilocal
mode does not absorb at all. Within the present
context the actual values of qo and g& in each of the
four sets are therefore determined rather well by the
strength of the quasilocal mode.

V. BAND ABSORPTION SPECTRUM

In this section we discuss the entire band spec-
trum. Results are given for "B,but there is no sig-
nificant change in going to ' B. We first present, in
Fig. 3, band-absorption spectra calculated on the as-
sumption that only the impurity atom carries an ap-
parent charge (gc). Although this assumption is
certainly false it serves to separate the effects of in-
creasing the Si-B-Si angle force constant from the
effects of including apparent charges on neighbors
of the impurity. The dotted curve in Fig. 3 shows
the absorption cross section calculated without any
change in the bond-angle forces (5@=0)but with a
decrease in the B-Si stretch constant from the pure
Si value (5a= —4. 13 Nm ') chosen to bring the

8 local-mode frequency into agreement with ex-
periment. biz ( =+1.084

~

e
~

) is chosen to give the
observed local-mode strength. There is a peak in the
cross section at 219 cm ', but this is significantly
lower than 227 crn ' and in fact only 4 cm ' higher
than the peak in the density of modes. There is also
a second peak of similar strength at 187 cm ', but
this is associated with the X3(TA) critical point
which is placed at 185 cm '

by our Keating model

instead of the observed 150 crn '. A simple rnass-
defect calculation (5a=5P=O) gives a spectrum
which is virtually indistinguishable in the band from
the dashed curve but has the "8 local mode at 645.8
cm

The solid curve in Fig. 3 shows the cross section
calculated with the force-constant changes (3.10),
i.e., with 5a and 5P fitted to the observed "B local-
mode frequency and the 227-cm ' peak, but still
with an apparent charge only on the impurity and
chosen (gc ——+1.067

~

e
~

) to give the observed
local-mode strength. Although there is now a peak
at 227 cm ' (because fitted) its strength above the
background is about 3 times that of the observed
peak. Also the absorption feature around 330 cm
is more prominent than that around 420 cm ', and
there is very little absorption just below the Raman
frequency, in marked disagreement in both cases
with the observed spectrum.

The solid curves in Fig. 4 show the band spectra
calculated with the four sets of apparent charges of
Table IV in conjunction with the force-constant
changes (3.10). The dashed curves show the spectra
calculated with the second-neighbor apparent
charges omitted but those of the impurity and its
first neighbors as in Table IV. It will be seen that
with sets 2 and C the main effect of the second
neighbors is to produce a large increase of absorp-
tion in the optical region, though there is also some
redistribution at lower frequencies. With sets B and
D, on the other hand, the main effect is an increase
in the acoustic region of the spectrum. With set B
this is actually accompanied by a decrease in the op-
tical region. In Table VI the integrated cross section
is broken down in two ways for each of the four sets
of apparent charges: first into the contributions
from the local mode (fitted) and from the band, then
into the contributions from the impurity and its first
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E
C)
CV

O

TABLE VI. Integrated absorption cross section broken

down in two ways for the alternative sets of apparent
charges. If frequency is in cm ' the units are
m'e /(pc ms;)=5. 065)(10 ' cm. Apparent charges on

third and further neighbors of the impurity are neglected.

Z',
0

o
LU
V)

4.
V)
O

2

Local mode
Band

Impurity ("B)
1st NN
2nd NN

2.31
0.26

2.25
0.22
0.10

2.31
0.23

1.72
0.71
0.10

2.31
0.30

1.75
0.76
0.10

2.31
0.29

2.28
0.23
0.10

0

O 6
CL
LYo
Kl

2

500

and second neighbors as given by terms of, the sum
in Eq. (4.3).

The complete absence of absorption by long-wave
acoustic modes for all four sets of apparent charges
(see Fig. 4 and compare with Fig. 3) follows from
the zero value of S in Eq. (4.4), since in these modes
each B impurity is moving rigidly with its Si neigh-
bars. This is in contrast to the situation in the opti-
cal part of the spectrum, and the local mode, where
the Si neighbors move against the B impurity and sa
increase the dipole moment (cf. Table V).

The total contribution to the integrated cross sec-

0 t00 200 300 400
FREQUENCY (cm ' )

FIG. 4. Absorption cross section for substitutional "B
in Si with apparent charges on the impurity and its first
and second neighbors. Solid curves are for the four alter-

native sets of apparent charges given in Table IV (impuri-

ty and first neighbors) together with those of Table III
(second neighbors). Dashed curves are for the apparent
charge sets of Table IV with second-neighbor appajent
charges neglected.

tion from third neighbors and beyond may be calcu-
lated from Eq. (4.3) using the asymptotic values of
the apparent charges given by Eqs. (4.1). We have
carried out summations for the first few shells ex-

actly, the remainder being estimated by an integral.
We find 0.24 in the units of Table VI (12&&10
cm). Since the photoelastic parts of the apparent
charges fall off as the field gradient and the Raman
parts as the field, the latter predominate, and in Ap-
pendix C we show that their contribution to the ab-
sorption is expected to appear just below the Raman
frequency. It will be noted that the contribution to
the integrated cross section from third neighbors
and beyond is as large as the entire band absorption
provided by the impurity and its first and second
neighbors. Moreover, since the effect depends only
on the presence of a charged center, there is an equal
contribution from the compensating impurity.
Therefore only half the observed absorption should
be compared with 0.24. Referring to the boron-
arsenic spectrum of Angress et al. , the total in-
tegrated one-phonon absorption between the
minimum around 450 cm ' (56 meV) and the Ra-
man frequency is, with a reasonable assumption
about the sloping background, -0.3 (again in the
units of Table VI). This suggests that our choice of
0.1 for ~Pttro ~

is too high (its square by a factor of
between 2 and 3 depending on which set of apparent
charges is taken). We note that although the wide
range of possible values for

~
Pttro

~

(see Appendix
B) does extend below 0.1, it also extends to more
than twice this. It is of course possible that the im-

purity concentration in the sample has been overes-
timated. Alternatively the theoretically predicted
cross sectian may be too large because of the effects
of correlations between the positions of impurity
atoms. This is discussed in Appendix C.

Is it possible to choose between the four sets by a
detailed comparison of the calculated and observed
spectra? It must be recalled that' a feature common
to the observed spectra of crystals doped with
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boron-phosphorus and boron-arsenic could be due to
(i) isolated substitutional boron atoms,
(ii) isolated interstitial boron atoms,
(iii) boron pairs, or
(iv) defects (e.g., divacancies) produced by the

electron irradiation used to render the specimens
transparent.

For all four sets of apparent charges there is an
absorption feature around 330 cm ' (4l meV) asso-
ciated with a strong peak in the density of modes.
The experimental spectra for boron-phosphorus and
boron-arsenic both show a feature at this frequency
which to judge from a comparison of the two spec-
tra is very minor, certainly much weaker than the
227-cm ' resonance. This seems sufficient reason
to reject sets A and D. The experimental spectra
also show a common feature at 423 cm ' (52 meV).
This is largely masked by the main "phosphorus"
peak in the boron-phosphorus spectrum, but shows

up clearly in the boron-arsenic spectrum. Only set C
gives a clear feature in this region (which is again
associated with a density of modes peak) but this is
much weaker than the observed feature.

We therefore favor sets B and C but cannot
choose between them. It will be noted that the most
striking difference between them is the sign of v)0,
which has the same sign as the static charge in set B
but the opposite sign in set C. Either sign is possible
since there is no simple relation between apparent
and static charges, as is evidenced by the large ap-
parent charge on the neutral carbon impurity in sil-
icon.

VI. CONCLUSIONS

We have confirmed the suggestion by Angress
et al. " that the presence of the sharp resonance
(quasilocal mode) at 227 cm ' in the absorption due
to substitutional 8 in Si implies that the bond-
bending force constant at the impurity is stronger
than in the host. This is in disagreement with the
claim by Cardona et al. that this feature may be
understood in terms of the mass defect alone. We
find that although there is a peak in this region of
the calculated absorption spectrum when force-
constant changes are neglected (and only the impuri-
ty carries an apparent charge, as assumed by Cardo-
na et al. ) it is lower in frequency (219 cm ') and
broader than the experimental peak. Cardona et al.
base their claim on a belief that the falloff in the
density of TA modes is sufficiently sudden to be ap-
proximated by a step function. This would lead, in
the usual way, to a logarithmic singularity in the
real part of the perfect-lattice self-Green's-function
and so to a "gap" mode for any impurity with
lighter mass than the host. This gap mode would

then be broadened by interaction with the weak LA
background. (See also Shen et al. ) However, we
have shown (see Appendix A) that with a realistic
density of modes this does not happen. Instead it is
the strengthening of the bond-bending force con-
stant which is responsible for pushing the absorption
peak up to a frequency where the density of modes
is low and so the peak is sharp.

There are some interesting parallels between the
227-cm ' resonance and the absorption peak around
330 cm '. In the calculated absorption the frequen-
cy of the latter is again significantly higher than the
frequency of the associated density of modes peak; it
may therefore also be described as a resonance. For
our model there is a peak in the density of modes at
327 cm '. For "8and no change in force constants
(or with 5P=O and 5a= —4. 13 N/m, see Sec. V)
the peak in the absorption, calculated with an ap-
parent charge on the impurity only, lies at 333
cm '. With our final values of 5a and 5P [Eq.
(3.10)] the peak moves up to 335 cm '. Although
the increase 5P in the bond-bending force constant
leads in this case to a rather small frequency shift, it
does lead to a reduction in the left-hand side of the
resonance criterion (Al) very similar to that for the
lower-frequency peak. (See Fig. 5.) The resonance
criterion is not quite satisfied, but a further increase
in 5P (and corresponding decrease in 5a to keep the
local mode at its observed frequency) sufficient to
bring the left-hand side (lhf) of (Al) below zero
raises the frequencies of both the 335-cm ' peak
and the 227-cm ' peak by only —1 cm '. The
higher peak remains relatively wide because the den-
sity of modes is relatively high. The difference be-
tween the absorption and the density of modes ap-
pears just as a shift in peak position because the
peak in the density of modes is itself rather narrow.

We turn now to the strengths of the various
features in the absorption spectrum. We have illus-
trated for the first time the effects on these of the
apparent charges on neighbors of the impurity, mak-
ing detailed calculations which include first and
second neighbors. By making use of the sum rule
(4.4) and assigning to the second neighbors apparent
charges given by the asymptotic expressions (4.1) the
number of unknown apparent charges was reduced
to two. These were fitted to the strength of the local
mode and the 227-cm ' resonance. From the re-
sulting four sets of apparent charges we eliminated
two because they made the peak around 330 cm
much stronger than is observed, but we are unable to
choose between the rem. aining two. These differ
mainly in the signs of the apparent charges of the
impurity itself and its nearest neighbors; there is as
yet no reliable theoretical prediction for this sign.

We have also shown that the absorption due to
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the electric field indvced apparent charges of more
distant neighbors is concentrated near the top of the
band and is responsible for the sharp step in absorp-
tion observed there in crystals compensated with a
group-V impurity. The contribution of these distant
neighbor apparent charges to the integrated absorp-
tion is comparable in magnitude with the in-band
contribution of the apparent charges of the impurity
and its first and second neighbors.

There is a need for further calculations to deter-
mine the detailed effects of the apparent charges of
third and further neighbors on the spectral form of
the absorption. It will, of course, be essential to em-

ploy a better model than we have used for the lattice
dynamics of the host crystal since in our simple
model the dispersion of the optical branches is poor-
ly represented. Because of the large number of dis-
tant neighbors whose apparent charges make an im-

portant contribution to the absorption it will almost
certainly be necessary to extend conventional tech-
niques to allow for a continuum approximation of
the Green's functions connecting well-separated
atoms.
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vanishing of the real part of the determinant of this
matrix. We have used in Sec. III the vanishing of
the determinant of the real part of the matrix, i.e.,

~

I+ReG(I &.
.co)D(I 5m)

~

=0 .

The smaller the imaginary parts of the perfect-
lattice Green's functions, the closer are the three cri-
teria. In the present problem we find no significant
difference between them, i.e., no more than 0.1

cm ' in the position of the quasilocal mode. In Fig.
5 we show the lhs of Eq. (Al), as a function of co in
the band, for "Band our final values of 5a and 5p
[Eq. (3.10)], and also for the pure mass defect (when
all three criteria. are the same because only one ele-
ment of D is nonzero). We note that although in the
latter case there is a minimum at 219 cm ', which
is the position of a maximum in the absorption (see
Sec. V), it comes nowhere near zero. The same is
true for 5p=0 and 5a= —4. 13 Nm ' (see Sec. V).

It is of some interest that for the final values of
5a and 5p the curve falls nearly to zero at 332 cm
which is close to the frequency of a feature in the
calculated absorption (see Figs. 3 and 4) and signifi-
cantly higher than the frequency of the associated
density of modes peak. This is discussed further in
Sec. VI.

The eigenvector of a true local mode is obtained
from the behavior of the modified Green's functions
in the neighborhood of the frequency coo of the
mode, since these have a pole there with residue
[coefficient of 1/(co —coo)]

APPENDIX A: APPROXIMATE FREQUENCY
AND EIGENVECTOR FOR THE QUASILOCAL

MODE

Maradudin gives as a criterion for the oc-
currence of an in-band resonance at frequency co the
vanishing of the real part of an eigenvalue of the
matrix (in our notation and in the defect subspace
for I, symmetry)

I+G(I:co)D(I:~) .

Talwar and Agrawal' ' use for this purpose the

a

—1

LL
UJ

1000 200 500 400 500
FREQUENCY (cm )

FIG. 5. Left-hand side of resonance condition (A1).
Solid curve is for 5a= —6.34 N/m and 5P=7.55 N/m;
dotted curve is for 5a =5P=0.
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unuun p/'( ~0)

for G„' „p(co). u„ is the a component of the dis-
placement in the mode of the nth atom, normalized
in the usual way so that

gm„u„' =1.

TABLE VII. Values of
~
pro

~

obtained from various
combinations of experiment and theory. See text for an
explanation of methods I and II and the significance of
the references for method I. The infinite wavelength
values quoted rely on the dispersion of the Raman tensor
calculated by Swanson and Maradudin (Ref. 48, column
headed SM) and Wendel (Ref. 49, column headed W).

In our calculations we have of course used the I 5

symmetry-adapted Green's functions and displace-
ments [see Eqs. (3.4) and (3.6)]. We have obtained
an "eigenvector" for the quasilocal mode in the
same way by using the rea/ parts of the perfect-
lattice Green's functions when determining the
modified Green's functions [Eq. (3.8)]. The latter
have a pole at the frequency given by (Al). Al-
though strictly the quasilocal mode does not have an
eigenvector, the eigenvector obtained in this way is
obviously a useful construct provided the resonance
is sufficiently sharp. It is this eigenvector which has
been used to calculate the quasilocal mode dipole
moments (Table V).

Method Refs. SM

a,b,c
d,b,c

0.10
0.07

'Reference 43.
Reference 50.

'Reference 51.
"Reference 42.
'Reference 47.

0.18 (+0.06)

p11 —p12
———0. 127, p44 ———0.050 .

0. 14
0. 10

0.23 (+0.08)

APPENDIX 8: EXPERIMENTAL VALUES
FOR PHOTOELASTIC AND RAMAN CONSTANTS

The most recent values of the photoelastic con-
stants of silicon below the absorption edge are those
of Biegelson, ' who measured p» and p&2 at wave-
lengths of 3.39 and 1.15 pm, and p44 at 3.39 pm, by
diffraction from acoustic waves. Extrapolation to
infinite wavelength gave

p11 ———0.093, p12
——+0.019 .

These values are considerably different from the old-
er values used by Leigh and Szigeti, ' but are in ex-
cellent agreement with a very recent measurement at
helium temperature and 3 kHz by Tan and Castner
of

1 B6~ FP P11+2P12 P11 —P12

~0 +110 C11 + C12 C11 12

(B1)

where o»o is a tensile stress in the [110] direction
and C11, etc., are the usual elastic constants. The
measured value is —3.37&&10 cm /kg while the
value of the right-hand side (using the elastic con-
stants of McSkimin and Andreatch ) is
—3.54)& 10 cm /dyn, i.e., —3.48& 10 cm /kg.
Higginbotham et a/. ' have made the most recent
measurements of the static stress-induced birefrin-
gence for [001] and [111]stress between 2.5 pm and
the absorption edge. Extrapolation to infinite wave-
length gave values which, when combined with the
elastic constants, yield

This extrapolated value of p44 agrees well with
Biegelson's value at 3.39 pm ( —0.051), and we shall

use it. The value of p11 —p12 is in only fair agree-
ment with Biegelson, and if used, for example, in

conjunction with Biegelson's p11 to determine p12
(+0.034), leads to —4.43X10 cm /kg for the
right-hand side of (Bl). We shall therefore use
Biegelson's values of p11 and p 12.

Reported determinations of the magnitude of the
Raman tensor for silicon have employed two
methods, referred to as I and II in Table VII. In
method I (Refs. 42 and 43) the ratio of the Raman-
scattering intensities of silicon and diamond is mea-
sured. The magnitude of the Raman tensor for dia-
mond has been determined in various ways, "
the most recent of which relies on the relative inten-
sity of Raman and Brillouin scattering from the
same crystal. " ' The intensity of Brillouin scatter-
ing depends in turn on the photoelastic constants
which have to be measured independently. In
method II the relative intensity of Raman and Bril-
louin scattering is measured in silicon itself.
Both methods have been carried out at several wave-

lengths, all well above the indirect absorption edge
of silicon. , To obtain a value at infinite wavelength
some assumption must be made about the disper-
sion. Swanson and Maradudin and Wendel have
calculated the Raman tensor of silicon as a function
of frequency using pseudopotential energy bands
and matrix elements. They disagree on both disper-
sion and absolute magnitude. Their infinite wave-
length results correspond to

~ pro ~

=0.04 and
0.13, respectively, although because of the slightly
too small theoretical band gap Wendel estimates
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that his magnitude should perhaps be reduced by up
to 20%.

The infinite wavelength values in Table VII have
been obtained using the dispersion (but not the mag-
nitude) calculated in Refs. 48 and 49. The values in
the first line of the table use the following.

(i) The ratio of Raman-scattering intensities of sil-

icon and diamond measured at 1.92 eV and deduced
from Fig. 1 of Ref. 43 knowing the value used there
for the Raman tensor of diamond.

(ii) The value for the Raman tensor of diamond at
1.92 eV obtained from the value at 2.41 eV recom-
mended by Cardona with a small correction for
dispersion following the simplified Eo edge calcula-
tion of Calleja et al. ' (see also Ref. 50).

The values in the second line come from using, in-
stead of (i) above, the early determination by
Russell of the silicon-diamond ratio at 1.96 eV.
Taking into account the results of methods I and II
Cardona recommends a value for silicon at 1.9 eV
which is equivalent to

~
Pzro

~

=0.12+0.04 using
the dispersion of Ref. 48 and 0.16+0.05 using that
of Ref. 49.

The sign of the Raman tensor in silicon has been
determined by Cardona et al. from an analysis of
the observed antiresonance in the Raman spectrum
of heavily doped p-type silicon caused by interfer-
ence between phonon scattering and inter-valence-
band electronic scattering. If an A sublattice atom
has a B sublattice neighbor at (a/4)(1, 1,1), Pii is
found to be negative. (This agrees with the sign
found in both theoretical calculations. ' )

In the calculations of this paper we have used

Priro= —0.1, which is supported by the values in
Table VII for method I but not by the surprisingly
high values for method II.

APPENDIX C: ABSORPTION DUE
TO LONG-RANGE ELECTRIC FIELD

1 Q

2 ~sIV

' 1/2

QJ(k)ej(k)sink r,

where V is the volume of the crystal. The Raman
contribution to the z component of the mode dipole
moment from one atom pair at r is then

Apparent charges induced on distant neighbors of
a charged impurity (or of any charged defect) via
the Raman tensor of the host lattice and the electric
field of the impurity [see Eq. (4.1)] activate the
long-wave optical modes of the host in the same way
as does an external electric field. We now consider
the spectral dependence of this absorption. In the
long-wavelength limit the optical modes of the host
may be described in terms of spatially slowly vary-
ing sublattice displacements, equal and opposite on
the two sublattices, and we are free to choose this
spatial dependence to be sink. r or cosk r with
respect to an arbitrary origin of r. With the posi-
tion of the impurity chosen as origin it follows from
the proportionality of the apparent charges to the
Coulomb field of the impurity that only the sink r
modes are activated. Moreover, since the impurity
and its nearest neighbors are essentially stationary,
these modes are unaffected by the presence of the
impurity.

Let eJ(k ) (j= 1,2, 3) denote orthogonal unit vec-
tors in the directions of sublattice displacement

for the optical modes with wave vector k; as indi-
cated these depend, in the small-k limit, on the
direction of k but not its magnitude. If QJ(k) is the
normal coordinate of the jth mode at k, the dis-
placement at r of one sublattice in this mode is
equal to

Mg~(k) =
16m.

We sum this over
tegral. Since

' 1/2 3

QJ(k)Zee, Pz — [ye„(k)+xerj(k)]sink r .
~s~ r

all atom pairs at a distance from the impurity greater than r„and replace the sum by an in-

(and similarly for the y component) we find

BMJ( k )

aQi(k)
(eeoP~ro)2 2 [kre~(k)+ k erj(k)]0 R 0 k62 y

The dispersion of the long-wave optical modes is given by

a~j(k)=cori[1 ——,AJ(k)(ak/2m) ],

(C2)

(C3)

where cori denotes the Raman frequency and AJ(k) is a dimensionless parameter that depends on j and the
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direction of k. Denoting by k (k, co) the magnitude of k corresponding to a given frequency co for the jth
branch in direction k we find finally for the cross section near cott

t)M~( k )
tr(co) = —, g g . 5(co —&(k))

pc
' „,. gg~(k)

4 (eeoPRro)

3v 2 pcmsi
g f dk[A,I(k)]

sin(kI(k, co)r, )
[kYeJ (k )+k„eyj(k ) ]

kt(k, co)r,
(C4)

where the summation over k and corresponding in-
tegration over k are over all directions (rather than
half). This integral tends to a constant as co—scott.
The infinity in tr(to) at co=cott will of course be re-
moved by anharmonic broadening, leading to a peak
slightly below m~ and a sharp falloff on the high-
frequency side as is observed.

It is straightforward to show that for this contri-
bution to the cross section

g~ (eeo13tt ro) a
2

0'(co)dco =
9 pcm si pc

(C5)

First the integration over to is performed by convert-
ing it to an integration over k, which is then extend-
ed to infinity as is appropriate in a macroscopic ap-
proximation. The integration over k is then possible
using the orthonormality of the ej(k). About 80%
of the total is contributed by k values up to a third
of the way to the Brillouin zone boundary. The
various approximations we have made are not un-
reasonable for these values of k. The result for

J o(to)dco agrees, as it must, with the result of Eq.
(4.3) if we replace the sum by an integral from r, to
infinity and include only the Raman contributions
to the apparent charges. The numerical value of the
integral, if r, is equal to the radius of a sphere
whose volume is that of 17 atoms (impurity plus two
shells of neighbors), is 12)&10 ' cm (frequency in
cm '). That this value is exactly equal (to the quot-
ed accuracy, and in fact to 1%) to that taken in Sec.
V for the integrated cross section from third neigh-
bors and beyond is fortuitous. The calculation of

I

Sec, V included photoelastic contributions to the ap-
parent charges and, for the first few shells, the sum-
mation in Eq. (4.3) was not replaced by an integral.
In addition, it would be wrong to conclude that pho-
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