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Total energy of metallic lithium
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Procedures are presented for the accurate calculation of the total energy of a solid within

the framework of the local-density approximation. The starting point is a self-consistent

band calculation using a basis of localized orbitals. The method is applied to study the total

energy of metallic lithium as a function of lattice spacing. Good results are obtained for the

cohesive energy, equilibrium lattice constant, and bulk modulus. A transition to a magneti-

cally ordered state is predicted for large lattice spacings.

I. INTRODUCTION

Early studies of the cohesive energies of metals'
were based on serniempirical potentials fitted to
reproduce atomic spectra, and included an essential
assumption that each electron moves in the field of
an ion. In modern terms, this assumption is that the
exchange-correlation hole is restricted to the partic-
ular atomic cell in which the electron whose wave
function is being calculated is found. Rather good
results were obtained for the alkali metals. Compu-
tational complexities limited progress in regard to
more complicated systems.

Modern band calculations are generally based on
density-functional theory in a local-density approxi-
rnation. In these calculations an exchange-
correlation potential determined by the local charge
and spin densities is added to the electrostatic poten-
tial of the entire electron distribution (a neutral sys-
tem). In nearly-free-electron-like systems, results of
quality equivalent to the original Wigner-Seitz cal-
culations should be obtained. Moreover, it is possi-
ble to make rather accurate calculations of cohesive
properties for systems as complex as transition met-
als.

One purpose of this paper is to report the develop-
rnent of procedures whereby a total-energy calcula-
tion can be made accurately starting from a self-
consistent energy-band calculation using a local-

orbital basis (specifically, Gaussian orbitals are used
here). A persistent problem with studies of the total
energy, once one abandons the spherical approxima-
tions of Wigner-Seitz calculations, is that cornputa-
tions of the Coulomb energy become cumbersome.
We will discuss our method of handling this prob-
lem which, we believe, yields essentially exact results
for this contribution, and is a substantial irnprove-
ment over previous efforts of this group.

An example was needed to test our developments.
We chose lithium. Although this is a thoroughly
studied metal, we believe we have something worth
adding to recent results. We do obtain better
agreement with experiment in regard to the total en-

ergy, equiLibrium lattice constant, and bulk modulus
than other recent papers. In addition, we have in-
vestigated the behavior of the total energy for large
lattice constants. Since the free lithium atom has a
ground state with nonzero spin, we expect a transi-
tion from the normal paramagnetic state to some
spin-polarized state to occur for sufficiently large
atomic separations. While we do not know what
form of magnetic order may exist under these condi-
tions, we believe that the difference in energy be-
tween different forms should be quite small
(presumably decreasing exponentially with the dis-
tance between atoms). Our computer programs per-
mit calculations for a ferromagnetic state, and we
have investigated this case. Calais and Sperber
have considered possible antiferromagnetic order;
however, apparent calculational inadequacies make
it impossible to extract reliable conclusions from
that work. We find the ferromagnetic state to have
lower total energy than the paramagnetic state for
values of the lattice constant greater than about 10.5
a.u. as will be discussed in more detail below. A
similar result was obtained for vanadium by Hattox
et al.

II. PROCEDURES

We have presented elsewhere' the formulas em-

ployed in our calculation of the total energy. Only a
brief summary will be given here.

The total energy of a crystal is, in density-
functional theory, related to the sum of the one-
electron eigenvalues by
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where N is the number of atoms, Ez is the total en-

ergy per atom; E; is the energy of the ith occupied
state of spin o, p is the electron number density (p~
is the spin density), the atamic nuclei of charge Z&
are located at lattice sites R&, E„,is the exchange-
correlation energy, and V„, is the exchange-
correlation potential for electrons of spin 0.

The second and third terms in (1) are the
Coulomb terms. Each, separately, is divergent but
their sum converges. We evaluate these terms as
follows. We add and subtract a term representing
one-half of the interaction energy of the electrons
and nuclei. Let

a Fourier coefficient of the total electrostatic poten-
tial energy (electron plus nucleus), and V, and p,
refer to the electron distribution only. The quantity
Vr(0) is the K, ~O limit of Vz (K, ) as discussed,
for example, in Ref. 12. 0 is the volume of the unit
cell. Finally C is a finite constant given by

8 1
(5)

S S
(s&0)

The evaluation of this quantity is discussed by
Harris and Monkhorst, "but they do not give results
for the body-centered-cubic lattice. Our value for
this case is

C= —11.432877(2m. /a) .

The last two terms in (1) came from the
exchange-correlation function. We combine them in
the form

E„,g fp V—„,(r)d r

= —g fp~(r) 8' (r)d r, (7)
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and e„,is the exchange-correlation energy per parti-
cle.

We have obtained an explicit result for an
exchange-correlation potential having the functional
form used by von Barth and Hedin. ' This result is
given in Ref. 10.

III. METHODS OF CALCULATION

ZpZ~
2N ~~ IR„—Rvl
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in which K, is a reciprocal-lattice vector, Vz (K, ) is

These quantities are evaluated by the Fourier-
transform method of Harris and Monkhorst. " This
calculation leads to the results (here we specialize to
a monatomic cubic lattice),

D =— —Vr(0) —g V, (K,), (4a)
2 2K2—

U = ——g Vr(K, )p, (Kg ),
S

TABLE I. Orbital exponents for the s,p, d-type orbitals
used in the Gaussian basis set.

s-type

10000.0
800.0
90.0
16.0
4.0
1.4
0.46
0.24
0.13

p-type

100.0
11.0
2.5
0.7
0.29
0.15

d-type

2.5
0.36
0.14

We have carried out the procedure described
above for metallic lithium. The exchange-
correlation potential employed was that of Rajago-
pal, Singhal, and Kimball, ' which has the same
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EStolll
T

SLD
LD

Present

—14.787
—14.768

JMW

—14.709
—14.682

GLW

—14.766
—14.741

Expt.

—14.956

TABLE II. Total energy of lithium atom in the local-

density approximation (SLD is the spin-unpolarized
local-density calculation; LD is the spin-unpolarized
local-density calculation; JMW are Janak, Moruzzi, and
Williams, Ref. 16; GLW are Gunnarson, Lundquist and
Wilkins, Ref. 17; Expt. is as quoted in Ref. 18).
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functional form as used by von Barth and Hedin, '

but with slightly different parameters. The basic
band calculation was carried out using the linear
combination of Gaussian orbitals (LCGO) method. '

The basis set consisted of 42 independent Gaussian
orbitals including angular dependences. There are
nine s-like Gaussians, six p-like functions, and three
d-like functions. The parameters of this set are
those used in Ref. 15, and are contained in Table I.
It seems to yield well-converged results.

It would be necessary to extend this basis in order
to make calculations for other than first-row atoms.
As the atomic number increases, it is necessary to

TABLE III. Total energies of solid lithium for non-
magnetic and magnetic states as a function of lattice spac-
ing. Above 11.3 a.u. the magnetic insulator state prevails.

-14.950 I I

8.0 9.0 . 10.0 11.0 12.0 13.0 14.0 Atom

a (a.u.)

IV. RESULTS: COHESIVE PROPERTIES

FIG. 1. Total energy as a function of lattice spacing
for lithium. The solid lines result from fits to Eq. (9).
For the atom, LD and SLD refer, respectively, to spin-
unpolarized and spin-polarized results.

add additional rapidly decaying Gaussians to
describe the variation of the wave function near the
nuclear site. We estimate that 60 functions would
be needed to achieve equivalent accuracy for sodium
and perhaps 75 for potassium.

A separate calculation was made using the same
basis set to obtain the total energy of the free lithi-
um atom in the configuration (ls) (2s). Both spin-
polarized and -unpolarized states were considered.
The results of this calculation are given in Table II.

a (a.u.)

5.8
6.0
6.2
6.3
6.4
6.45
6.5
6.55
6.597
6.7
6.8
6.9
7.0
7.5
8.0
8.5

10.0
10.5
10.7
11.0
11.3
12.0
13.0
13.5
14.0

~solid
ET,nonmag

(Ry per atom)

—14.905 07
—14.909 74
—14.91263
—14.91350
—14.91402
—14.914 17
—14.91425
—14.91424
—14.914 17
—14.91382
—14.91325
—14.91244
—14.91144
—14.90404
—14.893 69
—14.88100
—14.81121
—14.789 75
—14.7854
—14.7772
—14.7715
—14.7653
—14.7664
—14.7665
—14.7667

solid
T,mag

(Ry per atom)

—14.7857
—14.7853
—14.7859
—14.7896
—14.7916
—14.7912
—14.7908

The total energy was calculated for lattice spac-
ings from 5.8 to 14.0 a.u. For lattice constants
greater than 10.5 a.u. we were able to obtain a self-
consistent ferromagnetic solution which had lower
total energy. This solution will be discussed subse-
quently. Numerical values for the total energy are
listed in Table III and shown in Fig. 1.

We need to mention a possible source of error in
the calculation for the ferromagnetic state. This
state tends to be completely polarized: The 2s elec-
tron and a 1s electron have spin "up," a single 1s
electron has spin "down. " So throughout most of
the atomic volume the down-spin density is quite
small. This complicates the self-consistency calcula-
tion in the following way. Our "band package" pro-
grams require us to calculate matrices representing
derivatives of the potentials. As discussed by von
Barth and Hedin, ' the derivative of the
parametrized exchange-correlation potential with
respect to x (x =p /p) becomes singular for
x~ —+0 as x~, whereas the potential resulting
from the "two-bubble'* approximation goes to infini-

ty as x~' . This large derivative has no effect in
principle on the calculation since its contribution to
the total energy would involve multiplication by fac-
tors of 5p and p . However, in our method, we
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—35.01945/a +131.7412/a (9)

We find the following results. The minimum total
energy occurs at 6.52 a.u. and has the value
—14.914 Ry. The bulk modulus is obtained by dif-
ferentiating ET

1 dET8=—
~ d'0,

We find from this 8 =0.138 Mbar. Our results are
summarized in Table IV. Results of other recent
calculations are presented. The occupied bandwidth
at the equilibrium lattice spacing is 3.55 eV. Our re-
sults seem to be quite satisfactory, and are an im-
provement over both previous calculations using a
local-density potential and a limited-basis Hartree-
Fock calculation. No minimum of the total-energy
curve was reported in the Hartree-Fock calculation
of Pack et al. ; their results for the total energy and
bulk modulus given in Table IV refer to the experi-
mental lattice constant. Those authors found an oc-
cupied bandwidth of 9.87 eV. The experimental
value is about 4.0 eV. This exaggeration of the
bandwidth is one of the characteristic defects of the
Hartree-Fock approximation.

In order to calculate the cohesive energy, we add a
small contribution

9
Ep ———,kg8D

must calculate matrix elements of the derivative po-
tential, and must cut off the singularity. For
x~ & 0.2, we replace the derivatives of the minority-
spin exchange-correlation potential by their values at
x =0.2. So it is riot surprising that the uncertainty
in the calculations for the ferromagnetic state is
larger than for the nonmagnetic state. The estimate
of the uncertainty in the total-energy calculation is
0.0005 Ry for lattice constants less than 10 a.u.
This error increases to about 0.002 Ry in the
magnetic-state calculations for lattice spacings
larger than 10 a.u. due iri part to the above-
mentioned cutoff. These difficulties related to the
large magnitude of x~ are particularly pro-
nounced for metallic lithium due to the small num-
ber of electrons atomic lithium possesses. Similar
problems may arise for other light materials. The
divergence problem is so far absent from ongoing
computations for iron and nickel. The above
described cutoff in x is not needed in those cases.

To determine the equilibrium lattice constant,
minimum total energy, and bulk modulus, we fit the
calculated total energies of Table III in the region
from 6.2 to 6.9 a.u. by a formula proposed by Bar-
deen. ' Our fitting formula is

ET —14.786 —8—0+ 1.441 043/a

0.138
0.15

Present work 6.52
MJW 6.42
PMF
Expt. 6.597 0.123

—14.914
—14.832
—14.831
—15.072

0.124
(0.121)
0.121

0.122

from the zero-point energy of the lattice vibration to
the total energy. (8D is Debye temperature and ks
is Boltzmann's constant. ) The Debye temperature
for lithium is 334 K at the experimental lattice con-
stant (6.597 a.u.). The Debye temperature varies
with the crystal volume. At a =6.52 a.u. , we find

Ep ——0.0026 Ry .

However, we have neglected the small contribution
from this term in calculating the equilibrium lattice
constant and the bulk modulus. Then if we compare
the total energy of the solid including Ep with the
spin-polarized local-density calculation (SLD) total
energy of the atom from Table II we find a cohesive
energy of 0.124 Ry per atom.

There are small differences in the total energy of
the lithium atom which is used in the determination
of the cohesive energy as obtained by the different
calculations quoted in Table II. These are apparent-
ly due to different parametrizations of the
exchange-correlation potential.

There is another way in which the cohesive energy
may be calculated. We may use the atomic limit of
the total energy of the solid in place of the calculat-
ed total energy of the atom. From Table III we see
that this is —14.791 Ry, 0.004 Ry below the atomic
calculations. The difference between these two cal-
culatioris, small but not quite negligible, may be a
basis-set effect associated with the influence of the
tails of wave functions on neighboring atoms on the
energy of a "central" atom. In any case, we regard
this agreement as relatively satisfactory. If the
cohesive energy is calculated in this way, the result
is 0.121 Ry per atom.

The good agreement of calculation and experi-
mental cohesive energies is probably the result in
part of cancelation of errors. The energy of the
atom is too large probably due in most part to the
neglect of a needed self-interaction correction.
Such a correction, which current theory predicts to
be zero for extended wave functions in a solid,

TABLE IV. Equilibrium lattice constant a, bulk
modulus B, total energy ET"' and cohesive energy E, for
lithium (MJW are Moruzzi, Janak, and Williams Ref. 3;
PMF are Pack, Monkhorst, and Freeman Ref. 8; Expt.
are a, B, and ET"' values as quoted in Ref. 8. E, value is

as quoted in Ref. 16).

Esolid ET C

(a.u. ) (Mbar) (Ry per atom) (Ry)
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would lead to too small a cohesive energy. On the
other hand, it is not unlikely that the current
exchange-correlation functional underestimates the
correlation energy of a solid, and the use of a more
adequate exchange-correlation potential would tend
to lower the total energy.

V. MAGNETIZATION OF EXPANDED
LITHIUM

For lattice constants up to 10.5 a.u. , we were un-
able to obtain a self-consistent solution to the
energy-band problem corresponding to a ferromag-
netic state. The self-consistent iterations converged
to a state of negligible magneton number. At
a =10.7 or 11 a.u. , a ferromagnetic state was found
which has a lower total energy than the paramagnet-
ic state. The magneton numbers at 10.7 and 11 a.u. ,
were, respectively, found to be 0.907 and 0.969, indi-

cating unsaturated ferromagnetism. In this region,
our calculation describes a ferromagnetic metal. For
a =11.3 a.u. and greater, a saturated ferromagnetic
state is stable. At this separation a gap appears, and
persists for large separations, indicating that the sys-
tem has become a (ferromagnetic) insulator. The
calculation predicts a metal-insulator transition at
this spacing. Moreover, we find an indication of a
shallow minimum in the energy of this state (near
a =13 a.u. ) indicating that this state is stable with
respect to dissociation into separate neutral atoms.

Our calculations have not considered the possibili-
ty of other forms of magnetic order. In fact, we be-
lieve on the basis of general arguments, such as
those of Herring, ' that an antiferromagnetic state

should have lower energy than a ferromagnetic state
at large lattice constants.

This calculation indicates clearly a characteristic
property of calculation based on density-functional
theory; the system dissociates correctly at large in-
teratomic spacing to separated, neutral atoms. This
contrasts clearly with the situation in ordinary
Hartree-Fock theory where the state found at large
separations can contain a mixture of ionic configu-
rations leading to an unacceptably high total energy.
It will be seen that proper behavior at large separa-
tions is obtained for both the nonmagnetic and fer-
romagnetic states: The nonmagnetic state ap-
proaches the limit for non-spin-polarized atoms, the
ferromagnetic state for spin-polarized atoms.

VI. CONCLUSIONS

This calculation furnishes another example of the
ability of local-density theory to account for
cohesive properties of metals. The total energy,
equilibrium lattice constant, bulk modulus, and
cohesive energy obtained are in good agreement with
experiment, with values somewhat improved with
respect to previous studies. Calculations made for
large atomic separation show that a magnetically or-
dered state becomes stable in the neighborhood of a
lattice constant of 10.5 a.u. The magnetic insulator
state prevails above 11.3 a.u.
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