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A set of simultaneous, nonlinear, differential equations involved in the kinetics of the
photoconductivity process has been solved analytically for the first time. On the basis of the
results obtained the relaxation curves were simulated with the help of a computer. It has
been found out that the experimentally observed relaxation curves agree very well with the
simulated curves. It is worth mentioning that the form of the decay curve is explained with
one single time constant rather than taking into account the sum of the reciprocals of vari-
ous time constants. The relaxation time constant is also considered independent of photoex-

cited charge carriers.

I. INTRODUCTION

It is well known!— that photoconductivity is one
of the techniques for studying optically active traps
in semiconductors and, in principal, transient curves
recorded in such investigations contain a wealth of
information about the kinetics of charge carriers to-
gether with the relevant parameters of the traps.
Such information, however, has never been revealed
experimentally in the true sense, simply because
transient curves are not easy to interpret. Several
models have been proposed®>%’ to explain the ob-
served curves. Because of the complexity in the
models and the presence of several simultaneous and
competitive processes (such as separate contribution
from surface and bulk time constants, undetermined
constants in the process of diffusion of excess of
charge carriers, etc.), meaningful analysis is really a
difficult task.

The existing literature on the effects of kinetics of
the charge carriers on the transient behavior of pho-
toconductivity is really extensive. To understand
the mechanism, it is necessary to set up the rate
equations for the relevant impurity levels. This set
of simultaneous equations turns out to be nonlinear,
and an analytical solution is not possible’ for a gen-
eral case. This is a second serious impediment in
realizing the form of the relaxation curves.

This problem is also treated with the help of
phenomenological models.*? In this case the rise
and decay curves are explained with the help of mul-
ticomponent exponentials. The decay curve can be
written as

M
In(h=3 Ae”", (1)

i=1

where I},(¢) is the photocurrent and 7; is a time
constant. Summation generally goes up to 3 or 4

27

components.

Similar results have been obtained by Tureck® in
semiconductors with M types of traps. It is worth
mentioning that, in this particular case, the simul-
taneous set of equations was solved for impurity
photoconductivity.

It is assumed that in Eq. (1), the various 7; are
considered as independents, such as surface and bulk
lifetime constants.

Analysis of multicomponent exponential curves is
a widely discussed problem, since it appears in a
variety of experimental situations and several tech-
niques have been suggested for analysis.®~!! In
sonllze %ases limited success have also been report-
ed.” "~

Recently, Fleming!® has developed a computer
program to solve numerically the equations which
govern transient photoconductivity in the presence
of a continuous distribution of traps.

Because of the presence of several unknown
parameters, complexity in the process, and difficul-
ties in analyzing the relaxation curves, it is thought®
that the solution of the set of nonlinear differential
equations is an unrewarding task and because of this
a rigorous attempt, probably, has not been carried
out. The purpose of the present paper is to solve
one aspect of the complicated phenomenon, namely,
the solution of the set of nonlinear differential equa-
tions, and to analyze the relaxation curves with the
help of an analytical solution. This might assist us
in understanding up to what degree and in what way
several competitive processes play a role in the re-
laxation phenomenon.

II. BACKGROUND

The basic theory for the time-dependence photo-
conductivity has been carried out in about thirty
years. When the radiation, with an energy greater
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than the band-gap energy of the semiconductor, is
incident, electron-hole pairs are continually generat-
ed and continually recombined. (Transport of the
charges through the impurity state is not considered
here.) The excess of charge carriers formed in this
process is transported to the electrode and the tran-
sient photocurrent is observed. The typical forms of
the time-dependent photocurrent are reported in the
literature.>* It is worth mentioning that only in an
ideal situation (such as the small contribution from
the traps, a negligible role of surface states in the
recombination process, etc.), the rise and decay

curves can be explained satisfactorily with the help
of

In(O)=1Ippx(1—e "7 (rise) ,

I (1) =T pace —/7 (decay) ,

where I,,, is a maximum photocurrent and 7 is a
lifetime of the majority charge carriers. (The word
“lifetime” is used in different sense by different au-
thors. Here we mean the time required to reduce the
value of the photocurrent to its 0.3679 maximum
value.) In practice, however, the experimentally ob-
served curves deviate from the exponential nature.

Toward the understanding of the origin of this de-
viation, several models are proposed.>~* The basic
fundamental principles are, nevertheless, the same
and involve the existence of active traps where the
charged particles spend some time either before
recombination or before returning to the conduction
band. Details of the mechanism depend on the na-
ture of interaction but the basic principle is well
known.

In a real system, there exist several types of traps
and/or recombination centers available for both
electrons and holes. This means that, in practice, a
wide variety of situations occur depending upon re-
lated parameters of traps and recombination centers.
We, however, assume that the system has only one
type of predominant traps and the density of the
luminescence centers is negligible. Further we con-
sider that the recombination takes place through
those traps. These assumptions are made only for
simplicity in the calculations; however, they can be
generalized to a system with more trap systems and
with presence of recombination centers also.

The mechanisms of the formation of photoexcited
charge carriers are well understood.” When the in-
cident radiation with an energy greater than the en-
ergy of the band gap is incident, the electrons n ()
are ejected in the conduction band and holes p (¢) are
formed in the valence band. Fractions of the excess
of electrons from the conduction band are then cap-
tured by the traps; the probability of the capture is
given by a,(N,—n,), where (N, —n,) is the number

of unoccupied traps. Some of the electrons are re-
ejected to the conduction band by thermal agitation
with probability r; while others are captured
through nonradiative recombination. The well-
known rate equations under non-steady-state condi-
tions are therefore given by’

dn

—E;=G—a1ﬂ(N,—nc)+r1nc ’ (la)
dn,

at =a1n(N,——nc)—80ncp—r1nc ’ (1b)
dp

—— = —8 , 1
d G olc P (1c)

where G is a rate of electron-hole pairs per unit time
produced by the flux of incident photons of energy
(hv) greater than the band-gap energy. N, is a total
number of traps per unit volume, n.(¢) is a number
of occupied traps per unit volume, and §, is a nonra-
diative recombination time constant. Equations
(la)—(1c) are valid if we assume that the traps are
not distributed near the valence band and, hence,
holes are not captured. According to the different
experimental conditions, similar sets of differential
equations appeared in the literature dealing with the
kinetics of the charge carriers in the photoconduc-
tivity process and they are solved in the restricted
domain with certain assumptions.

Very recently Chen et al.'® have solved a similar
set of differential equations with a numerical tech-
nique using a Runge-Kutta sixth-order predictor-
corrector method for a given set of relevant parame-
ters. But no attempt has been made so far to solve
these equations in a more general form, permitting
us to take into account a variety of experimental de-
tails.

The transient photocurrent originated from the
diffusion process is small and hence is neglected at
present. Moreover, it is also necessary to consider
that the whole plane is uniformally illuminated and
the contacts are Ohmic.

In fact, all the details of the transient phenomena
are -explicitly explained with the help of a set of
first-order-differential equations [(la)—(1c)]. The
system carries all the information not only about the
variation of the photocurrent as a function of time
but also about important parameters involving traps
in the kinetics processes. In spite of this impor-
tance, the present system of differential equations
was never completely solved. More attempts in this
direction are not carried out, as one of the models
proposed by Rose® always explains the form of the
relaxation curves, or in limited approximated situa-
tions, where the initial conditions are known, the
form can be simulated with numerical methods.!>%°
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III. AN ANALYTICAL APPROACH
TOWARDS TRANSIENT BEHAVIOR

It is clear that basic aspects of transient behavior
are hidden in Eqs. (1a)—(1c) and it is important to
solve this system of equations. The present system
of nonlinear differential equations can be solved by
series solutions. Let

n=ag+at+ayti+asti+ -, (2a)
ne=bo+bit +byt>+bst3+ - | (2b)
p=co+cit +cptP et . (2¢)

The coefficients ag,ay,a,, ...,4a,, bo,bi,-..,b,,
and c¢g,cq,¢y, . . .,C, can be obtained by the usual
method and the expressions for a, are given below,

a1=G—alao(Nt—bo)+r1b0 »
2a2=—alal(N,—bo)+a100b1+rlbl ’

na,=—aa, _(N,—bgy)
(n—1)
+ar X @b y_i+riby_yc .
i=0

The values of ay,bg,c, are determined by the initial

conditions. Meanwhile the constants b, . . ., b, and
Cy,...,c, are determined in a similar way as
a,, ...,a,. However, they are not of importance

for the time being.

Now let us consider for simplicity the decay of
the photocurrent. This also helps in understanding
the importance of the various terms involved in the
present discussion. The photoconductor is il-
luminated and after reaching a steady state of pho-
tocurrent, the radiation is turned off, i.e., G, the rate
of photogeneration of charge carriers, is 0. Then,
using Eqs. (2a)—(2c) one can obtain ay=~N,,y,
bozncmx, and ¢o=P .y, and hence for these initial
conditions the solution n(t) takes the following
form (see the Appendix):

n(t)=[Nmax—rlncmaxr+(a,Nmaxb1+r1b1)7'2]e —tr
+rine,  T—(aiNmaxb1+71b1)
XTP1—t/T)+ 4)

where

-t

r=[ay(Ny—n,__
Generally, the lifetime 7 is small, i.e., of the order
of milliseconds or microseconds, and hence the con-
tribution arising from higher powers of 7 is not tak-
en into account in Eq. (4).
The present analytical approach gives a new signi-

ficant result. Even in the presence of optically ac-
tive traps, the decay curves can be explained satis-
factorily with the help of only one time constant.
Deviation from the exponential nature is easily un-
derstood from the last terms of Eq. (4).

IV. COMPARISON WITH EARLIER THEORIES

Equation (4) is a solution of a set of differential
equations given by (la)—(lc) and shows how the
number of excess charge carriers varies with time as
the radiation is cut off. If 7 is reasonably small, Eq.
(4) is reduced to the well-known decay equation*

n()=Npae """, (5

which, in fact, is a solution of Eq. (1a) in the case
when electrons are not reinjected in the conduction
band through the traps, and is generally known as a
simple classical form of transient photocurrent. It
can be understood from Eq. (4) that when the life-
time is not small, the relaxation curves should devi-
ate from the exponential nature which is also an ob-
served fact. In large energy-band-gap semiconduct-
ors, the dominating mechanism for electron-hole
recombination is carried out via traps or flaws, and
a time constant for electrons is given by?!

(Tn)—lz(N;_Nc)<cn> )

where (c,) is the average capture coefficient. It is
worth mentioning that with our present analysis the
same expression for the time constant is obtained.

Zitter’ has analyzed the behavior of the traps in
the photoconduction process and has classified the
effects in two distinct ways. Electrons from the
conduction band are captured by the traps and im-
mediately recombine with holes from the valence
band. Since the electrons do not spend much time
in the traps, the population of occupied traps
remains constant and it is concluded that the decay
will be exponential. In the second case, electrons
remain a reasonable time in the traps and, naturally,
the decay will not be exponential. In this case the
decay curves are explained by taking the sum of the
exponential components. The first conclusion is a
direct consequence of Eq. (4). Since the number of
occupied traps is constant, by, b,, b3, etc., =0, and
electrons are not thermally ejected, therefore r; =0,
and so Eq. (4) reduces to the well-known classical
equation (5). In the second case the number of occu-
pied traps is a function of time, by, b,, b3, etc., are
nonzero terms, and the deviation of the exponential
nature will be explained by (4). Moreover, the above
equation suggests in what way the form of the relax-
tion curves depend on the relative values of by, b5,
bs, etc., and ry.

The majority of the decay curves are satisfactorily
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explained with the help of three or four prominent
decay modes. However, the present analysis ex-
plains the same form for the curves with a single
time constant. Thus, it is very difficult to distin-
guish between the higher-order decay modes and the
deviation caused by the second and third terms of
Eq. (4). It is, therefore, suggested that the deviation
from the exponential nature could be due to the
simultaneous nature of the differential equations
and this possibility should be considered before car-
rying out any analysis.

As the shape of the relaxation curve depends on
several parameters, the form of the curve cannot be
understood easily and therefore the shape is simulat-
ed from Eq. (4). Figure 1 shows such simulated de-
cay curves. Physical parameters used for simulation
purposes are given in Tables I and II. In order to
maintain generality in the discussion, the form of

Intensity — — &

Relative

the relaxation curve is not compared with any par-
ticular experimental result.

A large number of experimental data shows that,
usually, photocurrent does not decay exponentially.*
The general trend of the observed shape agrees very
well with the curves obtained by simulation. Figure
2 shows a plot of log,g I, vs time for the simulated
curves which appear in Fig. 1. Such types of curves
are generally plotted to separate time constants
which are involved in a multiexponential model.
The deviation of the photocurrent obtained from the
second and third terms of Eq. (4) is reflected in the
latter part of the curves. The logarithm’s scale
reduces the magnitude of the deviation and hence
the latter part of the curves look nearly like a
straight line with different slopes. When consider-
ing the experimental results, displacement of the
points from the straight line is attributed to the ex-

e 32 48

Time (102sec)

FIG. 1. Relaxation curves simulated using Eq. (5) and with only one time constant. Other parameters used here are

given in Table L.
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TABLE 1. Physical parameters used for simulation

TABLE II. Variable parameters used for different

purposes. simulated relaxation curves. Even though b is related to
- . 3 the other constants in the expansion, it is considered as a
Photoexcited _ 6.5X 10" em”/sec parameter for the present model.
electron-hole pairs
(low-level photo Curve r b,
injection) 4 0.4 2.367x10°
Capture cross sec- 1.5%107° cm?/sec B 0.4 1.183%10°
tion for a partic- C 0.4 9x10°
ular type of traps D 0.5 7x10°
at a given tem- E 0.2 7% 10°

perature

Total number of 10" cm?
traps

Total number of
occupied traps
when the photo-
current reached
its saturated value

0.33% 10" cm?

Lifetime ‘r=[a|(N,~n¢max)]‘1 =0.1 sec

perimental error. Thus again, this is a confusing sit-
uation for supporting the multicomponent model.

The shape of the relaxation curve is used>'®
several times for rapid determination of the type of
recombination (linear, quadratic, etc.) and/or type of
traps (a or B type), the variation of traps, etc., but
the present analysis suggests a word of caution be-
fore using the form of the relaxation curve for fur-
ther information.

V. CONCLUDING REMARKS

A simultaneous set of nonlinear differential equa-
tions is solved in a series form. This gives a new
outlook towards understanding the form of the re-
laxation curves and at the same time takes into ac-
count earlier established theories. The new ap-
proach might help to separate the contributions of
the different mechanisms. For further conclusions
and for getting more information from relaxation
curves, more experimental work is being carried out
in this direction.
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FIG. 2. A plot of log of photocurrent vs time for the simulated curves which appear in Fig. 1.
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APPENDIX the maximum number of occupied traps during the

. hotoexcitation;
The values of ag, by, and ¢y are evaluated using P ’

initial conditions; at ¢ =0, Eq. (2) gives Co=Prax »
a0 =MNmnax =Nmax s

. the number of photoexcited holes. The behavior of
the number of photoexcited electrons;

n (t) can be understood if the constants a, * - - a, are
b0=”cmax ’ evaluated and this can be done by using Eq. (3),

a; ="‘aINmax(Nt_ncmax)""rlncmax ’
2‘12=_al(Nt_ncmax)[_aleax(Nt_ncmax)+rlncmax]+aleaxbl +r1b1

2 2
1N max (N _ncmax) ay(N, ——ncmax )rlncmax aiNpaxbi 4710y

2! 2! 2 ’
2 2
al(Nt—ncmax) al(Nt_ncmax) alN b +71b
3ay=—ay(N;—n,_) [N,,,ax 5 - 5 Fine + —mz‘—L
+a1a1by+aNpaxby +71b;, ,
aiNy—n. P ai(Ny—n, ) (1N maxby +71b1)ory(Ny—ne )
43== \Nmax 3l - 3l M1y T 3.2
a1a1by +aiNpaxbs +71b;
+ ’
3
and so on. Equation (2.1), therefore, can be written as
n(8)=N max +[ —Nmaxa1(N; _ncmax)+r1ncmax]t
Nmax(Nt _ncmax)za% al(N' _—ncmax )rlncmax aleaxbl +rlb1 2
+ 2 - 2 2 !
—Npax(N; e )3a:1; a%(Nt _ncmax)zrlncmax (a1 N pmaxb 1 +71b1 ) (N, “ncmx)
+ 3l + 3 % 3.2
(111 + o Naxb1 +7103) |
+ t
3
ryng

=Nmax CXp[ —al(N, ——n‘.max)t] — ﬁ
MYy —The

max

exp[ —a; (N, — ne il

Q1N paxb i +71by Filfle o

expl —ay(N;,—n, M]+——m—
af(N,—ncm)2 pl—ai(N; Cmax ]+a1(N,—ncmax)

aleaxb1+r1bl
— (It /) -
A(N,—n, P i
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