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Larmor precession and the traversal time for tunneling
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Baz' and Rybachenko have proposed the use of the Larmor precession as a clock to mea-
sure the time it takes a particle to traverse a barrier. An applied magnetic field is confined
to the barrier. The spin of the incident particles is polarized perpendicular to this field.
The extent of the Larmor precession occurring during transmission is used as a measure-
ment of the time spent traversing the barrier. However, the particles tunneling through an
opaque barrier also acquire a spin component parallel to the field since particles with spin
parallel to the field have a higher transmission probability than particles with spin anti-
parallel to the field. Similar effects are actually used to polarize electrons and neutrons. An
interpretation of this experiment compares the results with an approach which determines
the traversal time by studying transmission of particles through a time-modulated barrier.
This leads to three characteristic times describing the interaction of particles with a barrier.
A dwell time measures the average time interval during which a particle interacts with the
barrier whether it is reflected or transmitted at the end of its stay, a traversal time measures
the time interval during which a particle interacts with the barrier if it is finally transmitted,
and a reflection time measures the interaction time of a reflected particle.

I. INTRODUCTION

In 1966, Baz' proposed the use of the Larmor
precession as a clock to measure the duration of
quantum-mechanical collision events. Rybachenko
applied this method to the simpler case of particles
in one dimension scattered at a barrier. .It is this
simpler case which we treat in this paper. We can-
sider particles with mass m and kinetic energy
E=A' k /2m moving along the y axis and interact-
ing with a rectangular barrier of height Vo and
width d, centered at y =0. The particles carry spin
s = —, and the incident particles are polarized in the
x direction [Fig. 1(a)]. A small magnetic field Bo,
pointing in the z direction, is confined to the barrier.
As particles enter the barrier they start a Larmor
precession with frequency coL, gpBO/A. Here——, g is
the gyromagnetic ratio and p the absolute value of
the magnetic moment. When the particles leave the
barrier the precession stops. The polarization of the
transmitted (and reflected) particles is compared
with the polarization of the incident particles.
References 1—3 consider only the component of the
polarization perpendicular to the field. The angle
between the initial and final polarization perpendic-
ular to the field is assumed to be given by the Lar-
rnor frequency multiplied with the time a particle
spends in the barrier. For energies E & Vo and an
opaque barrier, kod &&1, where ko ——(2m Vo)'~ /i',

ry ——erik/Vox . (1.4)

The precession angle in the x-y plane is col 7y and
Rybachenko concludes that ~y is the time a particle
takes to traverse the barrier. Since Eqs. (1.2) and
(1.3) also hold for the reflected particles Rybachen-
ko concludes that the time a reflected particle
spends in the barrier is equal to the time a transmit-
ted particle spends in the barrier.

A particle tunneling through a barrier in a mag-
netic field does not actually perform a Larmor pre-
cession. The main effect of the magnetic field is to
align the spin with the field. Thus incident particles
polarized in the x direction will acquire a polariza-
tion component parallel to the field while turineling
through the barrier [Fig. 1(b)]. Transmission and
reflection of neutrons on saturated ferromagnetic

the transmission probability, in the absence of a
field, is given by

T [16k2~2/( k 2+~2)2]e 2rd—
where ir=(kii —k )'~ . For this case, Rybachenko
finds for the spin of the transmitted particles to
lowest order in the field 80,

(1.2)

(1.3)

where we have introduced the time
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(b)

Bp

Bp

ponent in the polarization of the scattered waves. In
contrast to these practical applications, which re-
quire a strong magnetic field to be effective, Refs.
1—3 treat the case of a small magnetic field. Only
in the limit of a small field can we expect the time
determined by this method to be independent of the
field. However, as we will now show, a z component
in the polarization results even to first order in the
field.

That particles polarized in the x direction acquire
a z component when tunneling through the barrier
can be understood in the following way. A beam of
particles polarized in the x direction can be
represented as a mixture of particles which have a z
component i'/2 with probabilit~ —, and a z com-

ponent —A'/2 with probability —,. Outside the bar-

rier the particles have kinetic energy E independent
of the spin. But in the barrier the kinetic energy
differs by the Zeeman contribution +ficoL /2, giving
rise to a different exponential decay for the wave
functions within the barrier,

K+ ——(ko —k +mcoL, /vari)' (1.5)

where the sign indicates whether the z component of
the spin is parallel or antiparallel to the field. We
will primarily consider the case of a small field, so
that

K+=K+mcoL /25K . (1.6)

FIG. 1. (a) The quantum clock of Baz' and Rybachen-
ko: A particle entering the barrier starts a Larmor preces-
sion with frequency coL, in a magnetic field Bo confined to
the barrier. The precession angle 8 determines the time

8/coL, a particle spends in the barrier. (b) Figure 1(a) is
not correct: The spin of a particle tunneling through a
barrier in a field is turned into the direction of the field.

samples is thus used to polarize neutrons. In this
case, the potential Vo describes the interaction of the
neutrons with the nuclei of the sample whereas the
Bo field arises both from the magnetization of the
substrate and the externally applied field. Field
emission from metals coated with a thin film of a
ferromagnetic semiconductor is used to obtain high-

ly polarized electrons. The ferromagnetic ex-
change splitting of the conduction band of the semi-
conductor yields barriers of different height for elec-
trons with spin parallel or antiparallel to the mag-
netization tunneling from the metal into the semi-
conductor. Therefore, it is surprising that Refs.
1—3 do not consider the appearance of a z com-

Since K+ & K, particles with spin vari/2 will penetrate
the barrier more easily than particles with spin
—fi/2. The transmission probability for particles
with spin +R/2 in a field is found by replacing K in

Eq. (1.1) by K+ given by Eq. (1.6). Neglecting
corrections in the preexponential factors, this yields

+~~~
a transmission probability T+ ——Te ', where

r, =md /fuc, (1.7)

is the time a particle with real velocity v=kc/m
would take to traverse the barrier. The z component
of the spin of the transmitted particles is determined

by the imbalance of the flux of the transmitted par-
ticles with spin components I/2 and —i'/2, respec-
tively, divided by the total flux,

(S,) =— =—tanhcoLr, -=—coLr, .
2 T++T 2

' 2

(1.8)

To obtain the last expression in Eq. (1.8), we have
assumed a small field so that coi.r, «1. For ener-

gies E& Vo, the y component Eq. (1.3) is much
smaller than the z component Eq. (1.8). We have

r~ &&r, and, therefore, Eq. (1.8) describes the major
effect of the magnetic field on the spin of a
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transmitted particle.
The paper is organized in the following way. In

Sec. II, we calculate the polarization of the transmit-
ted particles and the reflected particles for all values
of the kinetic energy E of the incident particles.
This is a textbook calculation. ' We emphasize the
limit of a small magnetic field, as Baz' and others
do. ' In Sec. III, we reinterpret the Baz' clock
through comparison with other methods. We find
that the interaction of the particles with the barrier
is determined by three characteristic times; a dwell
time, a traversal time, and a reflection time. In Ap-
pendix A, we show that the magnetic field need not
necessarily be confined to the barrier as we will as-
sume for simplicity throughout the paper. In Ap-
pendix B, we consider particles with a spin s & —,

tunneling through a barrier in a magnetic field.

given by

D=Z

where

(2A)

g 1/2 —i m/2 i hP —ikd (2.7)

where R= 1 —T is the reflection probability. The
coefficients 8 and C, which determine the wave in
the barrier, are related to D by

T=I1+[(k +a ) /4k ic ]sinh (ad)I ', (2.5)

is the transmission probabihty and the phase in-
crease across the barrier, b,P, is determined by

k —K
tan(biIt) = tanh(ad) . (2.6)

2Kk

The coefficient multiplying the reflected wave is

II. TUNNELING THROUGH A BARRIER
IN A MAGNETIC FIELD

We have to solve the scattering problem for the
Hamiltonian

K+ ik iJQf /2 Kd/2De e
2K

~ 7
iu/2 Kd/2D

2K

(2.8)

(2.9)

(p /2m+ Vp)1 (ficor /—2)o, , Iy I
&d/2,

(2.1)
(p /2m)1, Iy I

)d/2,

This completes the solution of the scattering prob-
lem. We can now discuss the results in detail.

A. The strong-field limit

where 1 is the unit 2X2 matrix and o.„o.z, o.„are
the Pauli spin matrices. H acts on spinors

g+(y)

f (y)
(2.2)

Here
I g+(y)

I
dy is the probability of finding a par-

ticle with spin +iii/2 in the interval y,y+dy. The
incident beam is polarized in the x direction,

1
e iky

1
(2.3)

Since H is diagonal in this spinor basis, we solve the
scattering problem for particles with i'/2 and —A'/2

se arately. For each spinor component, we assume
e' +A+e 'Y to the left of the barrier, y & —d/2,
and transmitted waves D+ei" to the right of the
barrier, y )d/2. These waves are matched to

K+/' —K+/B+e —+C+e — in the barrier. Here, K+ is given
by Eq. (1.5). The effect of the magnetic field Bp is
to change the height Vo of the barrier to
Vp = Vp+f1cor /2. Thus, it is sufficient to solve the
scattering problem for the barrier in the absence of
the magnetic field. The coefficients A+, B+, C+,
and D+ are then found by replacing K in the field-
free problem by a+. For col ——0 (Bp ——0), the coeffi-
cient D multiplying e'@ of the transmitted wave is

The orientation of the spin of the transmitted par-
ticles is determined by the spinor

D+
D+ I'+ ID I')-'" D, (2.10)

2 ID+ I'+ ID- I'

(2.11c)

For D+ we now invoke Eq. (2.4) with a replaced by
K+. This yields

fg T+ —T"'=2 r.+r (2.12a)

where D+ and D are found by replacing a in Eqs.
(2.5)—(2.7) by a+ or a, respectively. We find for
the expectation values

&s.&=—&qI~, Iq&=-a ID+ I'—ID- I'

I D+ I

'+
I
D-

I

'

(2.11a)

D+D* —D*+D
&s, ) =—&yI~, Iy) =—i.

ID+ I'+ ID- I'

(2.11b)
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(T T )I/2

&S» ) = —irisin(b, ((I+—bP )+ T++T
(2.12b)

' 1/2

&s. &, =&s.)

(2.15c)
(T,T )'"

&S„)=leos(b, P+ —bP ) . (2 12c)+ — T pZ

A~
A=(l~+ I'+ l~- I'} '"

g (2.13)

We use an index R to distinguish the properties of
the reflected wave from the transmitted wave.
Proceeding as above, we find

g R+ —R"'"=2R, +R (2.14a)

(R,R )'"
&S» )s ———A'sin(h(()+ —b,P ) R~+R

Equations (2.12) are correct for arbitrary magnetic
field. T+ depends exponentially on the magnetic—2K~d —2K d
field, T+ —e + and T —e . Since
a & a+, we conclude that for a nonvanishing field
and a sufficiently opaque barrier T+ »T . There-
fore, &S, ) —=A/2 and &S» )=&S„)=-0. The
transmitted beam is completely polarized in the z
direction. T remains small as long as
E( Vp+fRi)L /2 and thus the transmitted wave is
polarized in the z direction up to this energy.

The orientation of the spin of the reflected wave
is determined by

B. Infinitesimal field

T~ —T =T(~~ )—T(a )

= —(mcoL /lac)dT/da, . (2.16)

where T is given by Eq. (2.5). In Eq. (2.16), the Lar-
mor frequency coI is multiplied by a time
(m /Sue)BT/Ba. This suggests the definition of
characteristic times v 'Ty and 7 such that

&S, ) =(fi/2)cur. r, ,

&S» ) = (fi/2)coI r»,—

&S„)=(R/2)(1 —coL, r„/2) .

(2.17a)

(2.17b)

(2.17c)

To find &S, ) we have, according to Eq. (2.12a), to
divide the result of Eq. (2.16) by T++T =2T.
This yields

We will now study the polarization of the
transmitted wave and the refiected wave in the limit
of an infinitesimal field. Consider &S, ) as given in
Eq. (2.12a). Invoking Eq. (1.6) we find for the im-
balance of the transmission coefficients

(R iR )'
&S, )x ——A'cos(b, P+ —b,P )+ R+gR

(2.14b)

(2.14c}

r, = —(m/irvc)B lnT' /Ba,

and similar calculations lead to

r» ———( m /fee) M,P/Ba,

(2.18a)

(2.18b)

&s, )„=—&s, )
+ + (2.15a)

which expresses the conservation of angular momen-
tum. The incident wave has &S,)=0 and Eq.
(2.15a) expresses the fact that the magnetic moment
carried by the reflected wave is opposite to the mo-
ment carried by the transmitted wave. For the other
two components we find

1/2

(2.15b}

We can express these results in terms of the spin of
the transmitted wave in the following way. For the
z component, we find

r, =(mlirsc)[(MQ/Ba) y(B lnT'~ /Ba) ]'~

=(m/fvc)
(
D 'dD/d~ [, (2.18c)

where D and b,p are given by Eqs. (2.4) and (2.6).
To obtain Eq. (2.18c) we must expand the terms in
Eq. (2.12c) to second order in Bp (to order co&).
Since

&s. )'~ &s, &'~ &s, &'=~'/4,

we must have

(2.19)

ln Eqs. (2.18) we have expressed the charateristic
times as derivatives of T and hP with respect to z.
Evaluating these derivatives from Eqs. (2.5) and
(2.6) we find for E( Vp,



6182 M. BUTTIKER

6 ~

~O
2

1

/I

I

II

I

I

) I

1/

and

r„st (g—yst+rzq)' =(ri, +r, T /R )'

(2.22c)

with r„,r given by Eqs. (2.20). These results will be
discussed in detail in the next section.

All the above calculations assume that the field is

confined to the barrier and that the particles carry
spin s= —,. In Appendixes A and B, we show that

these two assumptions are unnecessary and merely

simplified our calculations.

0 0.8

k/ko

1.2 1.6 2.0

mko (a —k )sinh (ad)+(adko/2)sinh(2ad)

kc 4k a +kcsinh (ad)

FIG. 2. ~, as a function of k =(2mE/A')' for a bar-

rier of strength kpd =3~, kp ——(2m Vp)' /A, 1 p=md/A'kp.

v, determines the expectation value of the z component of
the transmitted particles (S,) =(Ii/2)cot, r, . The broken

line is the transmission probability for this barrier (magni-

fied five times).

III. D%ELL, TRAVERSAL,
AND REFLECTION TIME

In this section, we give a physical interpretation
of the Gedanken experiment of Baz'. ' We do this

by a comparison with other attempts to find the in-

teraction time of particles with a barrier.

A. The phase-delay time

A time delay for scattering processes can be cal-
culated by following the peak of a wave packet via
the method of the stationary phase. "' The time it
takes for the peak of the transmitted wave packet
and of the reflected wave packet to appear, mea-
sured from the moment the peak of the incident
packet strikes the barrier at y = —d/2, is given by

(2.20a) fid hstp/dE ——=(m/haik )ddt/dk . (3.1)

and

mk 2ad(ir —k )+kosinh(2ird)
7 (2.20b)

4k a +kcsinh (ad)

(Sy )st
—— (A/2)(ros, ryst )—,

(S„)si
——(A'/2)(1 ros. r„st /2) . —

(2.21b)

(2.21c)

With the help of Eqs. (2.15a) and (2.15b) we find

i;st —— r, T/R, —

ay/ Vy

(2.22a)

(2.22b)

For E& Vo, we have to replace ~ by iK, where
K=[2m(E Vo)]'s /I—i. r, is shown in Fig. 2 as a
function of k in units of ko ——(2m Vo)'s /A' for a bar-
rier with strength kod =3m.. A detailed discussion
of Eqs. (2.20) which are the central results of this

paper will be given in Sec. III.
Consider the reflected wave. We define times

7 zg TyR 'Tzg such that

(S,)st ——(A'/2)(ras. r st ) (2.21a)

r~ = (2m /Piker) tanlld (3.3)

diverges as the kinetic energy of the incident parti-
cles tends to zero. This is in contrast to the charac-
teristic times ~z ~yp&z ~zp &yp 7zp found in the pre-
vious section which all remain finite as k tends to
zero. Also note that for an opaque barrier, kod »1,
the time r~ becomes independent of the width d of
the barrier. The strong deformation of a wave pack-
et when it interacts with the barrier makes the pro-
cedure of following the peak of the packet not mean-
ingful. "'4

Equations (3.1)—(3.3) are correct for a wave pack-
et characterized by a narrow momentum distribu-

Taking into account that a is a function of k, we
find from Eq. (2.6)

2adk (a. —k )+kosinh(2ird)

4k a +kosinh (ad)

for E& Vo, respectively, k&ko. For E& Vo we
have to replace a. in Eq. (3.2) by iK. For small k, we
find that
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tion. ' If a wave packet with a wide momentum dis-
tribution strikes a barrier, the transmitted wave
packet will exhibit a distribution displaced to higher
rnornenta. Thus the transmitted packet moves faster
than the incident packet. Since momentum is con-
served the reflected wave packet exhibits a distribu-
tion which is shifted to lower momenta.

B. The dwell time

An approach by Smith' and others' ' yields a
collision time r~ for scattering events. r~ is defined
as the ratio of the number of particles within the
barrier to the incident flux j=irik/m,

(3.4)

This approach does not distinguish whether, at the
end of their stay, particles are reflected or transmit-
ted. This time is the average dwell time of the parti-
cles in the barrier. The wave function in the barrier
is given by Be""+Ce "", where B and C are given
by Eqs. (2.8) and (2.9). We find for the number of
particles in the barrier,

k2 21'(a —k )+kpsinh(2zd)
(3.5)

4k s' +k psinh (ad )

Dividing N by the incoming flux, we find

B .
(

)

I

'I

6

(

I

O 4. 1

I

I

l

0
0 04 0.8

k/ko

l. 2 1.6 2.0

FIG. 3. The dwell time v~ ——~~ (full line), and the phase
time v~ (broken line) as a function of k for a barrier with
strength kod =3~, as in Fig. 2. The dwell time measures
the average time a particle spends in the barrier, whether
it is reflected or transmitted at the end of its stay.

neling is unimportant, that is if the barrier is almost
transparent, are the time 7~ and the dwell time 7~
comparable.

7' —'Ty (3.6)

E„=A' E„/2m+ Vp

for which the barrier is transparent, T=1. For
E=E„we find from Eqs. (3.2) and (2.20b),

md +
7p 7g 22'„ (3.7)

In summary, we have shown that the extent to
which the spin undergoes a Larmor precession is
determined by the dwell time of a paNicle in the
barrier. The dwell time is not related to the phase
delay as often claimed in the literature. Only if tun-

where r~ is given by Eq. (2.20b). Therefore, the ex-
tent to which a spin precesses around the z axis is
determined by the average dwell time of the particle
in the barrier.

Figure 3 compares the dwell time 7~ ——7z and the
time 7~. Whereas 7~ ——7„ tends to zero as k tends to
zero [Eq. (1.4)], r& diverges. This is in contrast to
statements in Refs. 15—17, claiming that 7~ and 7&
differ only by small oscillations. A simple calcula-
tion shows that rt, & rq, for all k and r& rq only for——
E=E„,where K„d=n m determines the energies

C. Traversal time

To determine the time 7T a particle takes to
traverse the barrier Buttiker and Landauer' have
considermi a time-modulated barrier, V (t) = Vp

+V~ cosset, with V~ a small perturbatron. For a
slowly varying potential, co(&1/rT, the tunneling
particle sees an effectively static barrier of height
V(t) The time .dependence of the transmitted wave
can be found by replacing a. for the static barrier in
Eq. (2.4) by a.,= [2m [V(t) —E]I

'~ /A' for the oscil-
lating barrier. For a slowly varying potential, the
additional time dependence of the transmitted wave
is caused by the variation of the transmission proba-
bility with the height of the barrier. If the potential
oscillates fast compared to the traversal time
co»1/7T, the particles see a barrier of average
height Vo. Particles absorb or emit modulation
quanta Rcu. The absorption of a modulation quan-
tum is more likely because a particle of higher ener-

gy has a higher probability of transmission through
the barrier. Thus, we can identify a characteristic
behavior both at frequencies small and large com-
pared to the reciprocal traversal time. The crossover
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between these two types of behavior yields the
traversal time rT F. or an opaque barrier and for
E & Vo, %co«E, the intensity of the transmitted
particles which have absorbed or emitted a modula-
tion quantum is given by'

ing to effective interaction times ~z. and ~~, where

r——„=(~@+vs)'2 M 1/2 (3.12)

is the interaction time with the barrier of a particle
which finally is transmitted, and

Tg+~/Tg ——(VirT/2A') [(e 1—) /a) sr ] wR=r~~ (vy——+riT /R )' (3.13)

(3.8)

with a traversal time ~r m——d/Sue I.n the limit of
small frequencies Eq. (3.8) reduces to

TE+~/T =( VirT/2A') (3.9)

In this limit the intensities of particles which have
emitted or absorbed a quantum is independent of the
modulation frequency. From Eq. (3.8) we find for
the relative imbalance of the intensities of the side-

bands,

TE+%co TE—Eau
=tanh(co&T) .

TE+hco+ TE —fix

(3.10)

Equation (3.10) shows that rT determines the cross-
over from the low-frequency behavior, where

Tz+~=-Tz ~, to the high-frequency behavior,
where TE+~ &&TE ~. It is ~„ in the Baz'-
Rybachenko experiment which has the same low-

energy and high-energy limit as ~T.
For the reflected intensities, we find for E & Vo

and %co «E,
REp~/R =( Viz g /2A') (3.11)

where rii ——(A'/Vo)k/~ is the time a reflected parti-
cle interacts with the barrier. Note that Eq. (3.13) is
independent of co, so we have not had to assume
co «1/ra This is so. since A'/ra » Vo for E & Vo,
i.e., ~~ is very short.

The low-frequency results Eqs. (3.9) and (3.11}are
reminiscent of a two-level system' with states

I
1)

and
I
2) and energies E and E+fau driven at reso-

nance by an off-diagonal perturbation Vi coscot. If
the whole population is in state

I
1) at r =0, then

the population in level
I
2) grows initially as

( Vit/2A') . Thus rrand rz, in Eqs. . (3.9) and (3.11),
play the role of an effective interaction time. Simi-
larly, for a two-level system with states

I
1) and

I
2) at the same energy, an off-diagonal perturba-

tion Vi, switched on at t =0, causes the population
of level 2 to grow as (V&t/2A') if the whole popula-
tion was initially in level 1. We show now that the
Baz' experiment can be considered in this way lead-

D. Reinterpretation of the Baz'-Rybachenko experiment

is the interaction time of a particle with the barrier
which is finally reflected. r, and r~ are given by
Eqs. (2.20).

Consider, for a moment, a new coordinate frame
x,y, z, in which the quantization direction z is paral-
lel to the old x axis. The magnetic field Bo points
along the minus x direction, and y =y. The polari-
zation of the incident beam, is then described by

1
(3.14)

In the new frame all incoming particles have spin
up. The spins of the transmitted particles are then
found from Eq. (2.10) through a m./2 rotation
around the y axis. This yields

D++D
&=2 '"( ID+ I'+ ID- I') D +

(3.15)

where D+ and D are defined as in Sec. II. There-
fore,

I
C

I

=—
q i ——, cur, r„, (3.1—6)

1 ID~ D-
2

I D+ I

'+
I
D-

I

'

is the fraction of particles whose spin has flipped
from +A/2 to —A/2 along the z direction (the old x
direction). In Eq. (3.16) we have taken the small-
field limit so that

I
C

I
i=(1/4)

I
(I/D)dD/der

I
'(coL m/kcP

and have used Eq. (2.18c). Equation (3.16) has the
same form as Eq. (3.9} and shows that rgives the
interaction time for transmitted particles. We can,
in a similar way, consider the fraction of reflected
particles whose spin is flipped while interacting with
the field and obtain

I
ca

I
'=(1/4)i'rid

with r„z determined by Eq. (2.22c).
Figure 4 shows the traversal time ~z(=r, ) [Eq.

(2.19)] in comparison to the dwell time rd (=~~)
[Eq. (2.20b}] for a barrier with strength, kod =3m..
The traversal time vz is much longer than the dwell
time for E & Vo. On the other hand for E & Vo and
increasing energy, the traversal time ~T approaches
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O
4

0 0.4 0.8
k/kp

1.2 1,6 2.0 0
0 0.4 0.8

k/kp

1.2 1.6

FIG. 4. The traversal time ~T (=~„) (full line) com-
ared to the dwell time ~q (=v~), (broken line) for the

same barrier as in Fig. 2. The traversal time measures the
time a particle spends in the barrier if its finally transmit-
ted.

FIG. 5. The reflection time ~~ (full line) in comparison
with the dwell time rd (broken line) for the same barrier
as in Fig. 2. The reflection time measures the time a par-
ticle interacts with the barrier if it is finally reflected.

2 Vo tanh(kod)
(3.17)

For a wide barrier Eq. (3.17) yields rT=ind/ftkp,
proportional to the width of the barrier. For a very

"f 1minimal energy a particle has to "borrow' for clas-
sical barrier traversal. For an opaque barrier and

range of k, rT ——md/Sue, as found by Buttiker and
Landauer. 1&

Figure 5 shows the reflection time ra in compar-
ison with the dwell time ~d for a barrier of strength
kpd =3m. For the reflection time 7g =7
—( +HT /R )' we find for small k to lowestp z
order in k

2kod +sinh(2kod)

2Voko sjnh (kod)
(3.18)

since T tends to zero proportional to the energy

rapidly the dwell time v~ since the barrier is now in-
creasing y rans1 transparent. In the limit that the kinetic

1energy en s ot d to zero z vanishes and the traversa
time

2 2 1/27.T 'rz ——{1;+rz—)

is determined by r, . We find from Eq. (2.20a) for
k=o,

(3.19)

Thus if T = 1, we have ~, =0 and hence the traversal
time ~T is equal to the dwell time ~~ ——v~. This has
to be so since at this energy no particles are reflect-
ed. The reflection probability tends to zero like

R=ko(K K„) d /4k„K„. — (3.20)

Now using Eqs. (3.19) and (3.20) we find that near
energies for which the barrier is completely tran-
sparent, the z component of the reflected beam
determined by

m

eK(K —K) ' (3.21)

E-k The ref. lection time becomes equal to the
dwell time since, for small k, almost all particles are
reflected. For a wide barrier ra =A'k/Vokp and for
a thin barrier rg =26k/Voko d. For an opaque bar-
rier and E & Vo, we find from Eq. (3.13) that over a
wide range of k &ko, rz ——A'k/Vpl~. Consider now
the singularities of v~ for E & Vp. At the energies
of complete transparency of the barrier
E =E„=RK„/2m+ Vo, where K„d =nw, the z
component of the transmitted particles changes
from the positive direction in the negative direction
(see Fig. 2). We find from Eq. (2.20a),

k
(K K„) . —

~ 4k'K'
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diverges. To understand this behavior, we consider
for a moment (S, )z for a finite field determined by
Eq. (2.14a). We see that if the barrier is completely
transparent for particles with spin parallel to the
field, the reflected beam is completely polarized
antiparallel to the field. At a higher energy the bar-
rier will be completely transparent for the particles
with spin antiparallel to the field and the reflected
beain will be completely polarized in the direction of
the field. As the field is made smaller and smaller,
these two completely polarized states come closer
and closer together on the energy scale and finally
give rise to the singularity described by Eq. (3.21).

The energies where r, crosses from negative to
positive values are determined by

gdk p gdk p

z
——tan(Ed) . (3.22)k'+E2 2E'+ k,'

At these energies the traversal time and the reflec-
tion time are both equal to the dwell time
rT wii r——~(=——~~) The en. ergies at which this hap-
pens are smaller than the energies which correspond
to the local minimas in the transmission probability
which occur at ECd„=(vr/2)(2n + 1).

To summarize: We have presented a reinterpreta-
tion of the Baz'-Rybachenko experiment. We point-
ed out that there are three characteristic times asso-
ciated with the interaction of particles with a bar-
rier: a dwell time, a traversal time, and a reflection
time. None of these characteristic times is related to
the phase-delay time. We treated only the rectangu-
lar barrier. We hope that this paper stimulates fur-

I

ther investigation of barriers of arbitrary shape as
well as scattering problems in higher dimensions.
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APPENDIX A: PENETRATION OF A FIELD

E+ ——(k +mcoL /i')'~

The transmission probability

(Al)

We have assumed that the magnetic field is pre-
cisely confined to the barrier. This is an unneces-
sary assumption, made only for simplicity. If the
magnetic field extends beyond the barrier, the parti-
cles undergo a Larmor precession in these additional
regions and the effects due to the barrier alone are
easily separated. To show this, we consider the case
where the barrier potential vanishes and particles
enter a region of field of width d.

We have to solve the scattering problem for the
Hamiltonian Eq. (2.1) with Vo ——0. As above, we
assume that the incident particles are polarized in
the x direction. We are interested in the effect of an
infinitesimal field. Thus, we consider the case
where E &ficoL/2. In the region of the field, the

iK+x —IK+x
wave is described by B+e — +C+e —,where

4k (k +mc01. /A')

4k (k +meal /R)+(mcoL /R) sin [(k +mcoL /R)'~ d]
(A2)

(ficoL )
T+ ——1 — sin (kd)+0 (col ) .

16E
(A3)

Thus the transmission probability changes only to
second order in the field. Moreover, to this order,
the transmission coefficient does not depend on the
sign of the spin. Using Eq. (2.12a), we find a spin
component in the z direction,

3

(s, )=- %col

2 E [2sin (kd) —kd sin(2kd)],

(A4)

is found by replacing ic in Eq. (2.5) by iX+ In the.
limit of a small field, coL ~0, we obtain

2 Rk

md

To order coL, , we have2

(S» ) = (fi/2)[1 —( I /2)(md/flak)2ctiJ ] .

(A5)

Thus to lowest order in the field Bp the particles
traversing a small magnetic field perforin a Larmor
precession as expected.

APPENDIX 8: PARTICLES WITH SPIN s &

I

magnetic field [Eqs. (1.8) and (2.17a)]. For the y
component, we find by substituting iE+ [Eq. (Al)]
for ic in Eq. (2.6) and using Eq. (2.18b),

only to third order in ml . This is in contrast to the
first-order effect produced by a barrier and a small

Consider the case of a particle with spin s & —,

tunneling through a barrier in a field. We calculate
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q= g C ~sm),
m = —.sg

(B1)

(S, ) for s & —,. The polarization of the incident
particles is determined by

m =+s

and ~s, m, ) are the eigenstates of S, with eigen-
values Am, . For each eigenvalue m„ the exponential
decay of the wave function in the barrier is different
and given by

where
m =+s

m =—sz

a~ =(ko k —m, —2mcol IA)'~ .

The spinor of the transmitted wave is

(B2)

m =+s

2 ICm I'ID«
m =—sz

' —1/2
m =+s

m =—sg

C~ D(tc~ )
/
s, m, ) (B3)

since H is diagonal in the basis of the
~
s, m, ). The z component of the spin is then given by

m =+s m =+s
(S,)=A g m, /C /'/!D(ir )/'

m =—sg m = —sg

In the limit of a small magnetic field where

K~ =K—mg (m Cgg /fllC ) ~

(B4)

(B5)

we obtain from (B4),

(s, )=
m =+s

m =—sz

m, /C
2NLm a 1/2(lnT ) .

Using Eq. (2.18a), we find

m =+s
(S)=X g m,'~C ~' 2~,r, ,

m =—sz

with ~, determined by Eq. (2.20a). If the spin of the
incident particles is polarized completely in the x

I

direction, the coefficients in (B1) are given by
' 1/2

1 2s I
C

(s+m, )!(s—m, )!

We find g *,m, C =s j2 so that

(S, ) =fisc)i, r, .

(B7)

(B8)
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