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Quantitative measure of the electron localization in disordered systems with long-range hopping
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Exact numerical solution of a chain of 340 atoms has been obtained to study the electron

localization in a disordered system with long-range hopping. The moment and the inverse

participation ratio are calculated to check the electron localization and then compared with

the end component ratio. In contrast to the random system with short-range hopping, we

discover that the states in the bulk part of the density of states are mostly localized while

those in the tail are mostly extended.

Although much is known concerning the qualita-
tive feature of electron localization in disordered
systems, a quantitative measure of the electron lo-
calization in bulk systems which requires the
knowledge of eigenstates is an almost impossible
task. With sophisticated computational technique
applied to finite disordered systems, quantitative in-
vestigations on the electron localization have been
carried out by many authors. ' Most of these
works study the Anderson model with short-range
hopping. Recently, the Anderson model with long-
range hopping has been investigated by Day and
Martino' and by Ching and Huber. "

The density of states (DOS) of a disordered sys-
tem, as compared to that of a regular one, is charac-
terized by the irregular structure in the bulk part of
the DOS and the presence of tails the states in
which are localized. While these features are well
established for disordered systems with short-range
hopping, disordered systems with long-range hop-
ping (LRH) may behave rather differently. For ex-

ample, the states in the low-energy tails of the DOS
obtained by Day and Martinom (DM) and Ching
and Huber" (CH) are mostly extended states.

In this paper we will present the results of a quan-
titative measure of the electron localization in a fin-
ite chain with LRH. Let us consider the tight-
binding Hamiltonian for a one-dimensional system

N N

~=& Ii&e &t I+2 (1)
i=1 i+J

where the basis functions Ii & are assumed to be
orthonorrnal. DM have used a power-law LRH

2

Ii —j I+1
for

I
i —j I

&M and ttj =0 otherwise. On the other
hand, CH have assumed an exponential law LRH

t,j tpexp—( ———a Ii —j I
)

and constant e;.
Before introducing the random character to the

site energy e;, it will be helpful to analyze a periodic
chain. For given value of the cutoff M in the
power-law LRH or the value a in the exponential
law LRH, the tight-binding energy band E(k) of an
infinite chain N~O can be derived easily. Figure 1

shows the E(k) in the first Brillouin zone for the
power law LRH with M=2, 3, 4, 5, 6, 8, 11, and 15.
Because of the symmetry, for each value of M the
E(k) is plotted in half of the first Brillouin zone.
The two insets illustrate the E(k) and the corre-
sponding density of states for M =5 and 6, respec-
tively. The DOS exhibits rich structures and a long
tail. The formation of the long tail is due to the
long-range hopping, as can be detected from the fig-
ure in which the tail grows with increasing value of
M. When disorder is introduced into the system, if
the disorder is not strong enough, it will not be able
to localize the states in the tail. This is the reason
why DM and CH found extended states in the DOS
tails in their calculations.

Since exact solutions of disordered chains can be
obtained only for finite-chain length, it will help our
future discussions if we know the characteristic
features of a finite periodic chain. Figure 2 shows a
series of DOS of a chain of 340 atoms with the
power-law LRH. The corresponding value of M for
each DOS is marked at the left end. For M )6, we
see tuning-fork structures appear. The origin of
such structure can be traced back from the E(k) in
Fig. 1. Each E(k) curve starts at k=0 with a
minimum and then oscillates toward the zone boun-
dary. If the 1th local maximum counting from k =0
is lower than the (i+2)th local minimum, then a
tuning-fork structure occurs. Once the pth local
maximum gets higher than the (p+ 2)th local
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FIG. 1. Band energy E(k) of an infinite periodic chain with the power-law long-range hopping. Each curve corre-

sponds to a maximum hopping range (M value) marked by the number. Insets are the density of states.

minimum, from there on there is no more tuning-
fork structure. Such specific p, th local maximum
and (@+2)th minimum of each E(k) curve are
marked in Fig. 1 with a star and a circle, respective-
ly. The energy corresponding to the k vector indi-
cated by an arrow head in Fig. 1 is defined as the
threshold energy. For an infinite periodic chain
with given value of M, the number of tuning-fork
structures, the value of the threshold energy, and the
corresponding threshold k vector can be derived
analytically. Table I lists the results for M up to 40.

A chain of 340 atoms is almost the largest system
an ordinary computer (for example, DEC10 or
IBM370) can solve exactly, not only to solve for

eigenenergies but also for eigenstates of a disordered
system without specific restrictions. Usually, exact
numerical solutions are obtained for a disordered
system containing less atoms. The DOS similar to
those in Fig. 2 are shown in Fig. 3 for a periodic
chain of 160 atoms. Although the general structures
still remain when the number of atoms decreases
from 340 to 160, the DOS for 6(M(15 have the
characteristic features of a disordered chain, except
for the sharp edge at the high-energy end. Such
features are introduced artificially by the cutoff of
the LRH at

~

i —j ~

=M, but disappear if M=100
for which the hopping t;~ for

~

i —j ~
&M is already

negligibly small. We can demonstrate this point
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FIG. 2. Numerical solutions of the DOS for a finite periodic chain of 340 atoms with the power-law long-range hop-

ping. Inset is the DOS of the same chain but with the exponential law LRH.

more clearly by considering the exponential law
LRH r;J =—exp( —

! i —j!}. The so obtained DOS
are shown as insets in Fig. 2 for X =340 and in Fig.
3 for N =160. In this case, the irregular structures
in the DOS can be detected only for M & 4.

By now it is obvious that if one investigates nu-

merically a finite disordered system with LRH, the
DOS gives very little information. It is necessary to
have a quantitative measure on the localization of
each eigenstate. One quantitative measure is the in-
verse participation ratio (IPR) which was introduced

by Bell et al. ' and has been used by Ching and
CH." On the other hand, DM (Ref. 10) has used
the end component ratio (ECR) to measure the elec-
tron localization. In this paper, in addition to the
IPR and the ECR we will perform the moment
analysis to check the electron localization in a ran-
dom system with LRH.

We must first show that the disordered chain we
are going to investigate is long enough to yield reli-
able results. Figure 4 demonstrates a series of DOS
for a periodic chain with the power-law LRH. The
LRH is cut off at M =4, and the number of atoms
N for each DOS is marked next to the plot. Similar
results are given in Fig. 5 for the exponential law
LRH with

t,j= —exp( —!i —j!}.

We see that the results begin to converge when X in-
creases to 160.

In order to compare our result with that of DM,
we will introduce the same types of disorder in the
site energy e; as DM have done. For the first case
of uniformly (U) distributed disorder, e; is a random
number distributed uniformly on the interval (-1, 1).
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FIG. 3. Same as in Fig. 2 but for a chain of 160 atoms.

For the second case of percolation (P) distribution,
e; can be either —0.9 or 0.9 and are distributed ran-
domly. %e consider both the power-law LRH

2

I
~
—j I+I

with M =4, and the exponential law LRH

340 atoms and a shorter chain of 160 atoms.
The normalized eigenstates can be expressed as

I
~ &= X~,; I j&

and the corresponding IPR is defined as

t&~ exp( —
I
i —j——I

)

with the same cutoff at Ii —j I
=4. Finally, two

different chain lengths are studied: a long chain of
If we take the nearest-neighbor distance along the
chain as the unit of length, then the second moment
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FIG. 4. DOS of a periodic chain with the power-law LRH. The number of atoms in the chain for each DOS is indicat-

ed by the number. The maximum range of hopping is M =4.

can be defined as

XJ I&J I'

(4)

The second moment and the IPR will then be used
to measure the localization of the eigenstate

I 4; ).
The numerical results are shown in Fig. 6 for the

case of power-law LRH and in Fig. 7 for the case of
exponential law I.RH. In each figure the left
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N=70 100

TABLE I. Threshold energy E and the threshold k
vector (the point marked by an arrow head in Fig. 1) for
given maximum range of hopping M (column under
"neighbor"). The number of tuning-fork structures in the
DOS is given by the number in the last column under
CCg

Neighbor k vector Threshold E

130

190

250

310

I

-31056 E 0 1.4365

160

220

280

340

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1.0000
1.0000
0.8650
0.7620
0.8940
0.8080
0.7370
0.6770
0.7760
0.7220
0.6750
0.6340
0.7130
0.6740
0.6390
0.6080
0.6730
0.6430
0.6160
0.5900
0.6460
0.6220
0.5990
0.5780
0.6260
0.6060
0.5860
0.5680
0.6110
0.5940
0.5770
0.5610
0.5990
0.5840
0.5690
0.5550

0.40405
0.360 37
0.31054
0.442 81
0.412 52
0.379 13
0.343 84
0.441 48
0.416 36
0.389 93
0.362 58
0.439 75
0.418 70
0.39690
0.374 60
0.438 31
0.42024
0.401 79
0.383 05
0.437 26
0.421 41
0.405 37
0.389 20
0.436 3.7
0.422 32
0.408 13
0.393 79
0.435 70
0.423 15
0.41043
0.397 55
0.435 00
0.423 59
0.41224
0.40075

FIG. 5. Same as in Fig. 4 but for the exponential law
LRH.

column is for the longer chain N=340, while the
right column is for the shorter chain N= 160. Each
column is divided into three parts: The three plots
at the bottom marked by S are for the periodic

straight chain, the three plots at the middle marked

by U are for the uniformly distributed disorder, and
the three plots at the top marked by P are for the
percolation distribution of the disordered-site ener-

gy. For the periodic chain, both the IPR and the
moment are typical for extended state. However,
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FIG. 6. DOS, IPR, and moment of a periodic chain

(S), a disordered chain with uniformly distributed
random-site energy (U), and a disordered chain with the
percolation distribution of the random-site energy. The
long-range hopping is of the power-law type with the
maximum range M=4. Left column is for a chain of 340
atoms and the right column is for a chain of 160 atoms.
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FIG. 7. Same as in Fig. 6 but for the exponential law

LRH.

when the system becomes disordered for both the U
case and the P case, the moment analysis and the
IPR result consistently indicate that the states in the
bulk part of the density of states are more localized
than those in the band tail. This phenomenum is
opposite to what one finds in random systems with
short-range hopping.

Day and Martino' have developed a technique
based on the ideas of Herbert and Jones to obtain
the end component ratio 6 1/62 for the eigenstates
in some energy region. The ECR can be considered
as an approximated value of

~ BIJ /B~~ ~
where j la-

bels one eigenstate with the corresponding eigenener-

gy lying in this energy region. Since DM can obtain

the ECR without solving for the eigenstates, they
can study a much longer chain of 1000 atoms.
Their results are reproduced in Fig. 8 for the period-
ic chain (marked as S), the uniformly distributed
disorder (marked by U), and the percolation distri-
bution of the random-site energy (marked by P). We
should notice that in Fig. 8 G 1/62 is plotted in the
logarithmic scale. Then, if we compare Fig. 8 to the
three moment curves in the left column of Fig. 6,
again we see that the ECR, the IPR, and the mo-
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FIG. 8. End component ratio as a measure of the local-

ization (from Ref. 10).

ment analysis give the similar qualitative feature of
the electron localization characteristic to the long-
range hopping.

To close this paper, we should emphasize that in a
system with LRH, the DOS itself is too complicated
to tell whether the system is ordered or random.
The most important feature in a random system
with LRH, as clearly shown in Figs. 6 and 7, is that
the states in the bulk part of the DOS are mostly lo-

calized while the states in the tail are mostly extend-
ed. This is just the opposite of the localization prop-
erty in a random system with short-range hopping.
A similar result has been obtained by Ching and
Huber" in a three-dimensional system where the site
energy is constant and the disorder is introduced
with the random placement of the atoms (random
long-range hopping). In a system with short-range

hopping, the band tail is caused by the disorder ef-
fect which also tends to localize the states. On the
other hand, in a system with LRH the band-tail for-
mation has its origin in the long-range hopping in
the absence of disorder. The long-range hopping
makes the electrons in the tail states extremely
mobile. Therefore, extremely strong disorder is
needed to localize such mobile electrons in the band
tail.
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