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A muffin-tin potential for metals in the photoexcited state has been constructed with the
use of an approximation for exchange and correlation in the electron gas by Hedin and
Lundqvist. This potential has been included in calculations of the photocurrent. The
dynamical effects so included have been studied in detail for the case of Cu.

I. INTRODUCTION

In the present paper we are concerned with the
description of the excited state in photoemission. In
the past ten years a number of papers have been de-
voted to the theory of photoemission (see, e.g., Refs.
1—4). The conclusion has been made that simple
theoretical models work well for comparison with
experimental photoelectron energies. The single-
particle approximation has, in spite of the neglect of
complex electron and hole interactions, produced
very accurate results. For instance, photoemission
experiments have been used as a test of E-vs-k rela-
tions and the agreement with ground-state band-
structure calculations has been quite good. The con-
clusion from such studies has been that the simple
theoretical model which has been applied together
with a specific ground-state band structure describes
in practice the photoemission process with sufficient
accuracy.

In recent years this situation has changed slightly.
As experimental techniques have improved, and
band-structure calculations have become more so-
phisticated, differences between experimental and
theoretical results have become more clear. Dif-
ferent band-structure calculational methods give
quite similar results, but there still exists a certain
spread among the reported eigenvalues. Moreover,
as has been noted, for example, by Courths et al.’ in
the case of Cu, the differences between the experi-
mental and the theoretical values often have the
same sign for a given k point. Systematic differ-
ences of this kind were discussed by Wagner et al.®
and were suggested to be effects of the final state in
the photoemission process. Empirical corrections to
the ground-state band structure have accordingly
been carried out”? in order to increase the agreement
with experimental data. There are also some calcu-
lations in the literature’~!! on the effects of an exci-
tation potential, based on fundamental work on the
electron gas by Sham and Kohn.? To our
knowledge there exists, however, no ab initio photo-
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emission calculation in which dynamical exchange
and correlation effects in the final state have been
included. This is the goal of the present paper.

The mathematical description we use for the
photoemission process is given in Sec. II. In Sec. III
the construction of the dynamical exchange-
correlation potential is sketched. Technical details
are given in the Appendix. Section IV presents the
results obtained and comparisons with experimental
data are made. In Sec. V we analyze the various cal-
culational steps in some detail. Finally we give, in
Sec. VI, some conclusions and suggestions for future
work.

II. THE PHOTOEMISSION PROCESS

Several authors have given complete descriptions
of the photoemission process in the noninteracting
case.”~* We will here follow the formulation given
by Caroli et al.* and by Pendry.!® In their descrip-
tion the photocurrent is written as

I=—11;Im(¢]G§*AGI+A+G{ 16) . (1)

Here G, , are the hole and electron Green’s func-
tions, respectively, and A is the photon-field opera-
tor. This formula is valid if one neglects quantum-
mechanical interference terms and terms represent-
ing inelastic energy losses. The simplest approxima-
tion, the noninteracting single-particle approxima-
tion, is illustrated in Fig. 1(a). This can be extended
in different ways by including various interactions
in the formalism.* In the present work we have in-
cluded effects to the electron and hole Green’s func-
tions due to dynamic exchange and correlation in
the electron gas. This is realized by separate renor-
malizations of the propagators Gy, (@=1 or 2) of
Fig. 1(a). The renormalized, one-particle propaga-
tors (quasiparticles) G, can be obtained from the
ground-state propagators via the Dyson equation
[see Figs. 1(b) and 1(c)]. Interactions of the medium
with the escaping electron and the remaining hole
are in this way taken into account by the use of a
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(c)

FIG. 1. (a) Diagrammatic representation of the photoemission current in lowest order (noninteracting case). Compare
Egq. (1). (b) Same diagram as in (a), but with renormalized propagators. (c) Dyson equation for the renormalized propaga-
tor in (b). The self-energy = is represented in the present work by the Hedin-Lundqvist random-phase—approximation

(RPA) exchange-correlation function (Refs. 15 and 16).

self-energy, or optical potential. The imaginary part
of this potential corresponds to real excitations and
describes the absorption of the electron and hole
flux. The real part is usually neglected in the litera-
ture, or taken to be a constant. It corresponds to
virtual excitations and causes shifts of the energy
levels. The purpose of the present paper is to in-
clude a more realistic description of this effect. As
will be seen in Sec. III the specific numerical ap-
proximations we apply for the self-energy reduce the
problem to the introduction of a local, but energy-
dependent, potential. This potential can be fairly

easily incorporated in a computing scheme which
has already been established for calculation of the
photocurrent.'*

Although many approximations have been intro-
duced above we believe that our computational re-
sults take into account the essential corrections to
the ground-state energy levels in metals as observed
in photoelectron spectroscopy. The numerical
agreement with experimental data can probably be
increased further by improving some of the various
approximations, e.g., in 2 and the ground-state cal-
culation.
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III. THE DYNAMICAL POTENTIAL

As mentioned above, two particles are of interest
in photoemission, namely the photoelectron and the
hole left behind. The photoelectron is represented
by the so-called time-reversed—LEED (low-energy
electron diffraction) state.'* This means that we
trace the electron from the detector into the crystal
and find the appropriate state by a multiple-
scattering calculation. This method is most com-
pactly formulated using propagators. The Green’s
function for a noninteracting electron with energy E
and momentum k in a homogeneous system can be
written

Golk,E)=[E —e(k)—pye(p)+i8]7" . )

Here €'(k)=¢€(k)+p(p) is the eigenvalue of the
ground-state Hamiltonian including exchange and
correlation contributions to the ground state u,.(p).
Multiple scattering can also be used to calculate the
low-energy state, and an expression similar to Eq. (2)
is used also for the hole. By combining these ex-
pressions, and the operator for the photon field, the
photoemission formula can be written in the com-
pact form of Eq. (1). Because of the neglect of
damping effects, this scheme gives in practice the
same eigenvalues as in a band-structure calculation.

When the interaction between the electron (hole)
and the electron gas is turned on, there occur pertur-
bations which change the properties of the final
state. The sources of these effects are virtual and
real excitations. These processes can be treated in
the theory by including a self-energy in the Green’s
functions. In a homogeneous system the Green’s
function for the hole and electron state can then be
written as

G(k,E)=[E —e(k)—3(p,E)+i8] "' . (3)

In general, 2 is a complex, nonlocal, energy-
dependent function. Sham and Kohn!? used the
self-energy for the homogeneous electron gas =, and
applied the local-density approximation (LDA).
Moreover, they introduced a local momentum lead-
ing to a local potential. This potential is, however,
still energy dependent and complex. Lundqvist!®
and Hedin and Lundqvist'® achieved numerical
values for this potential by computations using a
dynamically screened interaction expanded to lowest
order. In Fig. 2 the results from Ref. 15 for the real
and imaginary parts of ¥ are shown. Similar
electron-gas data from Ref. 16 will be used in the
present work to represent the exchange-correlation
part of the excitation potential for a real solid. We
have not changed the real part in our calculations,
but for computational reasons a simpler approxima-
tion has been made for the imaginary part. This
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FIG. 2. Real and imaginary parts of the RPA self-
energy as calculated by Lundqvist (Ref. 15). The self-
energy numerically applied in the present work was slight-
ly different (Ref. 16).

will now be explained.

As can be seen in Fig. 2 the self-energy of an elec-
tron has a rather large imaginary part (i.e., it is
strongly damped) as soon as the energy is high
enough for plasmon creation to occur (10—20 eV).
For many metals the plasmon is not a very well-
defined quasiparticle. However, it is known that
considerable dampling occurs for high energies. For
the hole state the situation is different. Only Auger
processes relatively close to the Fermi level affect its
lifetime. Accordingly, this state will be sharper than
the electron state which is also seen in photoemis-
sion experiments. For transition elements, which
have unoccupied states of high density just above
the Fermi level, the hole damping could still be ap-
preciable. It is, however, less than the electron
damping is at, for example approximately 50 eV
above the Fermi level. From Fig. 2 we see that the
use of two constants for Im3, one for each state,
does not seem to be too crude an approximation (if -
not very low-photon energies are used). The size of
the constants can be fitted to typical values of the
electron density in the interstitial region between the
individual muffin-tin spheres. This is the same pro-
cedure as suggested by Pendry.!* Our approxima-
tion of constant damping is not at all important for
the present study of energy levels.



6146 P. O. NILSSON AND C. G. LARSSON 27

The real part of the self-energy in Fig. 2 is given
for an electron gas of constant density while we are
using the muffin-tin—potential approximation. In
the regions of the nonconstant part of the muffin-tin
potential the density varies rapidly with the coordi-
nate r, which is illustrated in Fig. 7(a). For a given
radius 7 and energy E, p(r) and p(r) can be obtained.
For these given values the self-energy =(p,E,p) is
calculated and we obtain the corresponding potential
(LDA, Ref. 16)

Vie(psp)=ReZ(p(r),E,p) . (4)

Including this effective exchange and correlation
potential in Eq. (3) will give us a suitable expression
for a photoemission calculation,

G'(k,E)=[E—E'(k)—iVy]~". (5

Here we have approximated the imaginary part of
the self-energy with a constant. E'(k)=e(k)
+V,(p,p) is the eigenvalue of the Hamiltonian in-
cluding the dynamic exchange and correlation po-
tential V,.. For further details see the Appendix.

It is important to notice that our calculations are
based on the self-energy calculated for an electron
gas, and used in the local-density approximation.
Other types of many-body effects (for example, the
two-hole correlation in Ni) can of course be included
in the same manner in a photoemission calculation
if only the appropriate self-energy is available.

IV. RESULTS

We have earlier reported®!” on small but signifi-
cant energy differences between experimental photo-
emission data and ground-state band-structure cal-
culations. We present here computational results for
Cu(111), but we have also obtained similar results
for other elements. '

In Fig. 3 we show the occupied part of the band
structure of Cu in the I'-L direction calculated with
the photoemission program using zero damping
Voi=0. The dashed curve corresponds to a self-
consistent ground-state potential.'”” The solid curve
has been obtained with the excitation potential gen-
erated as described in Sec. III and the Appendix.
We observe an increased binding energy for the d
states of the order of 0.1 eV. This is similar to that
which was reported in Ref. 11. The /=2 phase shift
in Fig. 4 illustrates this downward shift of the d res-
onance. The s-p band is quite unaffected.

In Fig. 5 we show the corresponding photoelect-
ron energy distribution curves (EDC) at 21.2-eV
photon energy but with V0. Again the dashed
curve corresponds to the ground-state potential,
while the solid-line curve has been obtained with the
energy-dependent potential. The low binding-energy

Ep=0 (eV)

r L

FIG. 3. Calculated occupied energy bands in the I'-L
direction for Cu. The dashed bands derive from a
ground-state potential (Ref. 19) and the solid lines from
an energy-dependent excitation potential [Eq. (A9)].

peak is found to shift 0.06 eV to a higher binding
energy, while the other two peaks move 0.09 eV in
the same direction. These peak shifts correspond to
approximately a 2.5% change in binding energy.
The vertical lines show the positions of the experi-
mentally observed peaks.!” Obviously, the differ-
ences between theoretical and experimental results
decrease somewhat by the use of the energy-
dependent potential, but there is still a discrepancy
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ENERGY BELOW FERMI LEVEL (eV)
FIG. 4. 1=2 phase shift for the two potentials used for
Fig. 3.

1
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FIG. 5. Calculated photoemission EDC for Cu. The
dashed curve corresponds to a ground-state potential (Ref.
19) and the solid-line curve to the energy-dependent exci-
tation potential [Eq. (A9)]. The bars show the experimen-
tally obtained peak positions (Ref. 8).

which remains.

For investigations of the self-energy effect on the
photoelectron we have extended the EDC calcula-
tions to higher photon energies. We observe strong
modulations in the peak amplitudes of the EDC as a
function of photon energy. In particular, the peak
around 5-eV binding energy goes through a max-
imum around 70-eV photon energy. Such modula-
tions have been observed experimentally.??! In Fig.
6 the amplitude variation of the 5-eV peak is plotted
as a function of photon energy [constant—initial-
energy curve (CIEC)]. As can be seen, the self-
energy correction brings theory in better agreement
with experiment. We have earlier identified!”?? the
observed peak as an interband resonance correspond-
ing to transitions from a flat d subband into a broad
free-electron band at the L point, rather than as
emission from a surface state.’! This mechanism is
in principle the same as in x-ray-absorption near-
edge structure (XANES) experiments. The peak po-
sition at 73 eV can thus be correlated with the lattice
constant of Cu.

V. DISCUSSION

From the preceeding section it is clear that the use
of an excitation potential improves the agreement
between experimental and theoretical photoelectron
energies. The discrepancy which remains may to
some degree originate from uncertainties in the

T T I T T T

Cu (111)
CIE.
6=0

1 | |
30.0 50.0 70.0 90.0
PHOTON ENERGY (eV)

FIG. 6. Calculated CIEC for normal photoemission
from Cu(l111). The dashed curve corresponds to the
ground-state potential and an initial energy of 5.28 eV
below the Fermi level (Er). The solid-line curve is calcu-
lated using the excitation potential with an initial energy
of 5.41 eV below Er. Both curves correspond to emission
from the top, flat part of the d subband close to the L
point. The bars are the experimental results from Ref. 21.

_ground-state potential. However, we believe that the

main effect originates from approximations in the
excitation potential, at least with regard to the
high-energy (electron) state. To discuss this in some
detail we will now analyze the various steps of the
computational results presented above.

The starting point was a self-energy of the type
shown in Fig. 2. This has been obtained!>!® by a
lowest-order calculation on the homogeneous elec-
tron gas. From a computational point of view there
are two contributions to the dynamical potential, as
is evident from Eq. (A9): the correction of the
muffin-tin (MT) potential and the correction of the
MT zero in the interstitial region. In order to obtain
numerical values for the first term, the electron-gas
data in Fig. 2 for the real part of the self-energy is
extended to lower r; values in Fig. 7(a) (broken
lines). The solution of Eq. (A5) in the Appendix for
the Cu MT potential is shown as solid lines in the
same figure for a few energies. Figure 7(b) displays
the same data, but normalized to the value at the
Fermi energy. The actual MT-potential correction
is shown in Fig. 8 for a few energies. Figure 9
shows the energy dependence of the MT zero for the
dynamical potential [last term of Eq. (A9)]. The ac-
tual photoemission calculation is performed with the
two corrections of Figs. 8 and 9, respectively. The
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FIG. 7. (a) Dynamical exchange-correlation potential normalized to the electron-gas Fermi energy. The dashed lines
are for typical electron densities in a metal. The solid lines correspond to the actual exchange-correlation potential for Cu
at a few energies. (b) Same as for (a) but the potential is now normalized to its value on the Fermi surface.

eigenvalues in this manner are thereafter “corrected
back” using Eq. (A10), i.e., the function of Fig. 9.
Thus, a qualitative picture of the net effect is given
in Fig. 8. We conclude that, although the electron-

gas data of Fig. 7 could in principle give negative
and positive corrections both above and below the
Fermi level, real electron densities give a simpler
picture. For normal densities the correction below

5x10~-2 T T T T
B Kxc (P) 1- _\L)EEM)_
Vxe (P.kg) E=0.0

-15 | |

4.0

0 1.0

2.0

RADIUS (a.u.)

FIG. 8. Potential correction term as a function of radius for

a few energies. The Fermi energy is 0.314 hartree. The

peak around r=1.4 for E =3.0 and 4.0 hartree corresponds to the plasmon dip in the electron-gas function of Fig. 2.
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FIG. 9. Muffin-tin—zero correction to the potential [Eq. (A10)] as a function of energy. Note the different scales.

Er will be negative, i.e., the dynamic potential is
more attractive than the static one. This correction
is, however, expected to be numerically small (0.1
eV). It is only for unrealistically large densities that
an Hartree-Fock behavior is approached. The larg-
est effect for Cu occurs around r=1.2 a.u., and this
can be seen in Fig. 8 for E=0. The 3d states are
heavily weighted in this region while the 4s and 4p
states have their main contribution further out.
Thus the finding in Fig. 3, that the 4s,p conduction
band is rather unaffected, can be explained in this
way.

Above the Fermi energy shifts become much
larger in general. Of course, for very large energies
the exchange-correlation forces must vanish com-
pletely. Thus a maximum shift equal to the static
exchange-correlation energy is expected. For the
electron density in the interstitial region (r,=2) this
corresponds to about 10 eV. However, for an elec-
tron gas this transition is not smooth. In particular,
for low densities the strong plasmon interaction re-
sults in an abrupt increase in the imaginary part and
accordingly a dip in the real part of the self-energy
(see Fig. 2). This effect survives in the LDA calcu-
lations for Cu, as is evident from Figs. 7 and 8, and
causes a delaying effect in the reduction of the self-
energy as a function of quasiparticle energy. The
reason why we only obtain about half (2 €V) of the
required shift (4 eV) of the bands that are about 70
eV above Er in Cu is likely to be due to the
“plasmon delay” just described. The plasmon for
Cu is in reality far from being as well defined as for
the corresponding electron gas. We have found the
same effect for Pd, where a shift of 4 eV was ob-
served,® while we calculated about 2 eV.!® Accord-
ingly, the peaks of the functions in Fig. 7 should be
smeared out, resulting in an effectively larger pho-
toelectron shift for a given energy.

VI. CONCLUSIONS

Comparisons between experimental photoelectron
energies (for a typical metal such as Cu) and corre-
sponding ground-state band-structure calculations
suggest that effects of the excited state (modified ex-
change and correlation) can be observed. For the
holes in the valence band the effect is small (less
than 0.1 eV) and of the order of the uncertainty in
ground-state band structure calculations, but sys-
tematic. For the excited electron the effect becomes
large at high energies (4 eV at 70 eV above Ef).

With the use of data for the self-energy of the
electron and hole in the homogeneous electron gas a
local but energy-dependent potential can be con-
structed (Ref. 16). Such a potential was applied in
the present work for the calculation of photoelectron
specta. Comparisons with experiment show im-
proved agreement: About half of the wanted correc-
tion was achieved. The remaining descrepancy is
probably due to the strong plasmon contribution in
the homogeneous electron gas not present in most
transition and noble metals.

To further investigate these phenomena we sug-
gest two studies. Firstly, typical free-electron metals
such as aluminum should be studied experimentally
and comparisons should be made with the present
theory. Secondly, efforts should be done to improve
on the self-energy data, e.g., by using a more realis-
tic screening (dielectric) function in the case of non-
free-electron solids.
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APPENDIX

As mentioned in Sec. ITI, Sham and Kohn!? pro-
posed a local approximation for the density and for
the momentum. This leads to a local, but energy-
dependent, potential

Vic(p:p)=ReZy(p(r),E,p) . (A1)

The energy of the quasiparticle can thus be written
as

E(p,p)=p2/2+Vy(p,p), (A2)

To determine the local momentum p(r), Sham
and Kohn proposed'? two alternatives. We have
used the following:

E(p,p)=E,—Ep+pi(p) . (A3)

This procedure has been analyzed by Hedin and
Lundqvist.!® Ej is the excitation energy relative the
Fermi level Er and p; is the chemical potential for
the ground state of homogeneous electron gas:

1ilp) =T kF +1taclp) - (A4)
Combining Eqgs. (A2)—(A4) gives
A p =By —Ep+ +kE +15e(p)— Vaelpop) . (AS)

Given the ground-state density p(r) and a table for
Vi(p,p), one can obviously determine p(r) iterative-
ly from Eq. (A5), and thus the local potential in Eq.
(A1).

In the present case we have used a MT potential'®
which for the ground state can be written as

Ve(P)= Vot (P) el p(F)) — piclpy) - (A6)

Here p; is the density in the interstitial region and
Va(r) the Hartree contribution to the potential.
Correspondingly, we write for the excitation poten-
tial
Ve(r,E)=Vu(r)+ Vi (p(r),p) — Vielprpr) -
(A7)
To avoid unphysical effects at the Fermi energy

we force the two potentials to be equal at the Fermi
energy:

Ve(r)=V,(r,Ep) . (A8)

Thus we finally arrive at the excitation potential
used in the present work:

Ve(r,E)=Vg(r)—puy(p(r))

L Vie(p(r),p)
Vielp(r),kp)

ch(pI Pr)
(pp) |1 ———— | . (A9)
+uxclpr Ve lprker)

Note that to calculate p () for use in Eq. (A9) we
have to modify Eq. (AS5) using the criterion (A8).
The interstitial density p; was obtained from the
number of electrons in the interstitial region as given
in Ref. 19. The quasiparticle energy Ex (the mea-
sured energy) is related to the single-particle energy
€ (used in the calculations) via

ch(PI »Pr1 )

1
Viclprsker)

€=Ex +ulp;) . (A10)
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