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Ground-state properties of a spin-1 antiferromaanetic chain

R. Botet and R. Jullien
Laboratoire de Physique des Solides, Universite de Paris-Sud, Centre d'Orsay, 91405 Orsay, France

(Received 15 July 1982)

A finite-cell-scaling analysis of the spin-1 antiferromagnetic Heisenberg-Ising chain, shows that

the ground-state properties are completely different than in the spin- —case. Between the XY
2

gapless phase and the doublet ground-state Neel phase, it appears, in an extended range of the
anisotropy (0 & A. & 1.18) a characteristic Heisenberg-phase with a nonmagnetic singlet ground
state, nonzero gap, and exponential decay of the correlation functions.

Quantum spin chains are of current interest, both
experimentally and theoretically. ' Experimentally, a
number of crystals are investigated, in which the
magnetic ions are arranged in chains with strong in-
trachain and small interchain interactions. Theoreti-
cally, these are the simplest many-body models in
which quantum effects play an essential role. In par-
ticular the spin-

2
antiferromagnetic Heisenberg-Ising

chain, defined by the Hamiltonian

H = $(S;S,"+) +S;S~~t + gS;S,*~t )

shows a particular transition in the ground state at
~ =1, with an "essential singularity, "which has been
widely studied in the past. '

The Heisenberg system, with X = 1, shares the
same properties as the whole 0 ~ X ~ 1 region where
the system is gapless, without long-range order, and
with power-law decay for the ground-state spin-
correlation functions. For X. & 1, the system has a
doublet ground state with a nonzero gap, a spontane-
ous staggered z magnetization and an exponential
behavior for the ground-state correlations. A naive
conclusion would be to trust these results for large
spin s.

In this Communication, we consider the spin-1 an-
tiferromagnetic Heisenberg-Ising chain. This model
(with an extra uniaxial anisotropy term of the form
DS 2) is experimentally realized in the compounds
CsNiC13 and RbNiC13. We report on exact numerical
calculations done on finite cells. From a scaling
analysis of our results we show unambiguously that
the ground-state properties of (1) are completely dif-
ferent in the spin-1 case than in the spin- —case.

2

The most spectacular result is that the isotropic,
A. =1, Heisenberg case belongs to an extended phase
in h. (0 & ) & 1.18) characterized by a nonmagnetic
singlet ground state, a nonzero gap, and an exponen-
tial decay of the spin-correlation functions. In con-
trast with the spin- —, case, there is no transition in

the ground state at the Heisenberg point X =1.
There is instead a change of symmetry of the first ex-

cited state. The predictions of Haldane4 about the
different behaviors of integer and half-integer spin
chains are here completely confirmed. Moreover, the
locations, the exponents of the transitions, and the
behavior of the spin-correlation functions have been
estimated.

We have considered finite rings of N sites (N
even) with periodic boundary conditions. The follow-

ing symmetries have been used to reduce the size of
the matrices: the conservation of X*= X, S,* and total
wave vector K, the right-left (p = + 1) and spin re-
verse (o = +1) symmetries. Even so, the larger ma-
trix was of order 1728 for X = 12 and we have used
the Lanczos algorithm5 to compute the energies and
wave functions of each ground state in the different
subspaces of any symmetry. We have observed that
the ground state of the chain is always a singlet corre-
sponding to X'=0, E =0, and p=a-=+1. For
A. ) 1, the first excited state is a singlet corresponding
to X'= 0, E = m, and p = a- = —1 while for A. ( 1 it is

a doublet corresponding to X'=+1, K =m, p= —1.
The crossing of the first excited state at A. = 1, for any
finite N, is expected from the extra symmetry (spin
rotation invariance) of the Heisenberg case.

The most significant results of our calculations are
summarized in Figs. 1 and 2. More details (in partic-
ular the ground-state energies) will be given else-
where. Figure 1 reports the results for the gap G&
between the two lowest states of the chain in terms
of "scaled gaps" NG& as a function of X. Figure 2

reports the results for the correlation functions in the
ground state, between two opposite spins on the ring,
defined as

where n =N/2. The result is obviously independent
of the site I. In the following we will suppose that
the behavior of the correlation functions with n,
when n = N/2 ~, reflects their behavior with dis-
tance in the infinite system. (This is the case for sys-
tems where the exact solution is known. )

For A. ~ 1, our results are consistent with a sec-
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10.

1.2

1/(N +1) in inset of Fig. 1. The extrapolation to
N ~ gives an estimate for the location of the tran-
sition in the infinite system: A.,=1.18+0.01. The
corresponding exponent v which tells how the coher-
ence length g diverges at the transition (g —

I h.

—h, , I
") can be calculated by linearizing near

X, (N, N +2):
ln[(N +2)/N]

ln[(N + 2) Gn+p/(NGn) ]

0.
0.0 1.0 2.0

FIG. 1. Plot of the scaled gap NG& as a function of A. for
N =6, 8, 10, and 12. (For clarity, the cases N =2 and 4,
which can be obtained analytically, have been omitted. ) In
inset is shown X, (N, N +2) vs 1/N (see text).
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FIG. 2. Plot of the correlation functions: p+
=(—1)"(S;+S;+„)and p~ = (—1)"(S;*Sf+„),where n = N/2,
as a function of X for N =6, 8, 10, and 12.

ond-order phase transition in the infinite system
(N ~), for a given critical value A., larger than l.
This transition corresponds to a closing of the gap
and appearance of a staggered z magnetization when
increasing X. A simple log-log plot of G~ vs N shows
that the gap follows a power-law behavior of the type
Gg —N ' only around A.

—1.15 with z —1, while it
behaves exponentially below and above this A. value.
We can reasonably assume that the dynamical ex-
ponent z is strictly equal to 1 at the transition. 7 Then
a scaling analysis, as done in the "phenomenological
renormalization group" 8 can be developed by com-
paring successive sizes. An implicit renormalization-
group transformation which transforms A. into X' after
a size rescaling from N to N + 2 is defined by

(N +2)Gn+z(X') = NGn(A. )

The N-dependent fixed-point h, ,(N, N +2) (which
corresponds to the successive crossings of the scaled
gaps of Fig. 1) has been plotted as a function of

where G~ and G~+~ are the derivatives of the gap,
with respect to X, taken at X, (N, N +2). The results
extrapolated to infinite N gives the following estimate
for v in the infinite system:

v=1.3+0.2
This analysis is consistent with a gap closing as
G —(h, , —

A. ) in the infinite system with s = vz
—1.3 + 0.2.

Similarly a log-log analysis of the z-z correlation
function shows that p follows a power law of the

type p (n) —n * for large n, around X —1.18. Tak-
ing A., as determined above, one gets q, =0.23+0.03.
A scaling analysis of the correlation function yields
v=1.2+0.2 consistent with the value coming from
the scaling of the gap. This analysis implies an open-
ing of the staggered magnetization m, =lim~ p'
at h., of the form m, —(A. —h.,)a with P = v7), /2
=0.17 +0.05. Moreover, in a large range of X values
above A.„we observe that p converges exponential-
ly very quickly giving a good precision for the
behavior of the staggered magnetization which is very
well fitted by the formula m, = [1—(X,/h. ) ] ' 6 with

CK
= 2.067.
All this scaling analysis around X = X, —1.18 is

consistent with the recent theory of Haldane4 who

predicted a transition with q, = —at a given X, larger

than 1. Moreover we have been able to give more
details on the transition by estimating X, and other
exponents like P and v. This transition which corre-
sponds to a change of nature of the ground state
from singlet to doublet is similar to the transition in
the ground state of transverse Ising model and has
nothing to do with the transition observed at A. = 1 in

the spin- —, Heisenberg-Ising chain. ' However, our

exponents v and P seem closer to v =
3

and P =
6

4 1

than the values v = 1 and P = —of the one-dimen-
8

sional transverse Ising model.
For X & 1, the situation is quite different and the

scaling analysis is more difficult there. One can see
on Fig. 1 that in an extended range (0 & A. & 0.2)
the scaled gaps are quite superimposed so that G
seems to behave as 1/N Similarly, in the. same re-
gion, the p+ correlation function tends to zero as

n +, for large fI with q+ varying only slightly with
~. This is a typical situation where an essential
singularity or a line of fixed points is present. ' Any
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attempt to analyze the results by the phenomenologi-
cal renormalization-group method gives a quasi-
infinite v exponent at the transition. " It is really dif-
ficult to locate precisely the termination of the line
where an essential singularity takes place. A simple
analysis of the gap of the type G = G +A /N yields
G —0 up to A. & 0.1 suggesting that the termination
is certainly smaller than A. =0.1. Haldane4 predicted
such a line of fixed points terminated by a transition
point at which q+ = 4. Here, we suggest that the

essential singularity takes place strictly at X =0, since
at this point we find g+ =0.248 +0.005, which in-
cludes the predicted value with a good precision. For
A. —0.1, q+ -0.260 is already significantly larger
than 4. The fact that we observe power-law

1

behaviors for both G and p+ up to X —0.2 comes
perhaps from the fact that the gap is so small in this
region that it would be necessary to reach very large
cells to observe the crossover to an exponential
behavior. Assuming an essential singularity at A,

0 and searching a behavior of the kind G —A
x exp( —B/X ),"one can estimate cr =0.30+0.05.

Between the essential singularity and the transition
at A,, the chain has a nonmagnetic singlet ground
state with a nonzero gap and exponential behavior for
the correlation functions. More precisely, in the
Heisenberg case A. = 1, we have obtained a good fit by
the form suggested by Haldane4:

p~=2p An '=i exp( Kn)+—Bn 'exp( —2Kn)

by a simple crossing, accompanied by a change of the
symmetry, of the first excited level. This causes an
abrupt change in the slope dG/d X for the variation of
the gap with the anisotropy which could have in-
teresting experimental consequences (for example, in
optical experiments when varying anisotropy).

The study has been completed in presence of an
uniaxial anisotropy DS; and the results will be re-
ported soon. 6 As expected, when increasing D, the
gap increases and the singlet ground-state phase is
enlarged [X, increases and the essential singularity
disappears around D —0.4 (Ref. 13)]. The presence
of a nonzero gap in a large range of A. and D values
could explain why a simple spin-wave theory done on
the same Hamiltonian seems to apply quite well to
spin-1 compounds. ' However, in the spin-wave ap-
proximation, the gap is strictly equal to D while here
it already exists for D = 0 and has a quite complicated
behavior with respect to A. . This could explain the
discrepancies between the different estimations given
for X and D in these compounds. ""Even if the ex-
tension to larger spins is more difficult we expect to
extend the same study to the case of spins —, and 2.3

We hope that the present work will stimulate further
exact theoretical investigations to check our con-
clusions concerning the locations of the transitions
and the values of the various exponents. The study
of antiferromagnetic chains with arbitrary spins will

certainly be the subject of an increasing interest in
the near future.

with E —0.07, A —1.2, and B ——3.
So, the antiferromagnetic spin-1 Heisenberg chain,

with its finite gap and exponential decay for the
:orrelations, has completely different ground-state
properties than in the spin- —, case. The particular

Heisenberg symmetry at X = 1 is here characterized
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